/* * Copyright (c) 2003 Hidetoshi Shimokawa * Copyright (c) 1998-2002 Katsushi Kobayashi and Hidetoshi Shimokawa * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the acknowledgement as bellow: * * This product includes software developed by K. Kobayashi and H. Shimokawa * * 4. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * $FreeBSD: src/sys/dev/firewire/fwohci.c,v 1.72 2004/01/22 14:41:17 simokawa Exp $ * $FreeBSD: src/sys/dev/firewire/fwohci.c,v 1.1.2.19 2003/05/01 06:24:37 simokawa Exp $ */ #define ATRQ_CH 0 #define ATRS_CH 1 #define ARRQ_CH 2 #define ARRS_CH 3 #define ITX_CH 4 #define IRX_CH 0x24 #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static char dbcode[16][0x10]={"OUTM", "OUTL","INPM","INPL", "STOR","LOAD","NOP ","STOP",}; static char dbkey[8][0x10]={"ST0", "ST1","ST2","ST3", "UNDEF","REG","SYS","DEV"}; static char dbcond[4][0x10]={"NEV","C=1", "C=0", "ALL"}; char fwohcicode[32][0x20]={ "No stat","Undef","long","miss Ack err", "underrun","overrun","desc err", "data read err", "data write err","bus reset","timeout","tcode err", "Undef","Undef","unknown event","flushed", "Undef","ack complete","ack pend","Undef", "ack busy_X","ack busy_A","ack busy_B","Undef", "Undef","Undef","Undef","ack tardy", "Undef","ack data_err","ack type_err",""}; #define MAX_SPEED 3 extern char *linkspeed[]; u_int32_t tagbit[4] = { 1 << 28, 1 << 29, 1 << 30, 1 << 31}; static struct tcode_info tinfo[] = { /* hdr_len block flag*/ /* 0 WREQQ */ {16, FWTI_REQ | FWTI_TLABEL}, /* 1 WREQB */ {16, FWTI_REQ | FWTI_TLABEL | FWTI_BLOCK_ASY}, /* 2 WRES */ {12, FWTI_RES}, /* 3 XXX */ { 0, 0}, /* 4 RREQQ */ {12, FWTI_REQ | FWTI_TLABEL}, /* 5 RREQB */ {16, FWTI_REQ | FWTI_TLABEL}, /* 6 RRESQ */ {16, FWTI_RES}, /* 7 RRESB */ {16, FWTI_RES | FWTI_BLOCK_ASY}, /* 8 CYCS */ { 0, 0}, /* 9 LREQ */ {16, FWTI_REQ | FWTI_TLABEL | FWTI_BLOCK_ASY}, /* a STREAM */ { 4, FWTI_REQ | FWTI_BLOCK_STR}, /* b LRES */ {16, FWTI_RES | FWTI_BLOCK_ASY}, /* c XXX */ { 0, 0}, /* d XXX */ { 0, 0}, /* e PHY */ {12, FWTI_REQ}, /* f XXX */ { 0, 0} }; #define OHCI_WRITE_SIGMASK 0xffff0000 #define OHCI_READ_SIGMASK 0xffff0000 #define OWRITE(sc, r, x) bus_space_write_4((sc)->bst, (sc)->bsh, (r), (x)) #define OREAD(sc, r) bus_space_read_4((sc)->bst, (sc)->bsh, (r)) static void fwohci_ibr (struct firewire_comm *); static void fwohci_db_init (struct fwohci_softc *, struct fwohci_dbch *); static void fwohci_db_free (struct fwohci_dbch *); static void fwohci_arcv (struct fwohci_softc *, struct fwohci_dbch *, int); static void fwohci_txd (struct fwohci_softc *, struct fwohci_dbch *); static void fwohci_start_atq (struct firewire_comm *); static void fwohci_start_ats (struct firewire_comm *); static void fwohci_start (struct fwohci_softc *, struct fwohci_dbch *); static u_int32_t fwphy_wrdata ( struct fwohci_softc *, u_int32_t, u_int32_t); static u_int32_t fwphy_rddata ( struct fwohci_softc *, u_int32_t); static int fwohci_rx_enable (struct fwohci_softc *, struct fwohci_dbch *); static int fwohci_tx_enable (struct fwohci_softc *, struct fwohci_dbch *); static int fwohci_irx_enable (struct firewire_comm *, int); static int fwohci_irx_disable (struct firewire_comm *, int); #if BYTE_ORDER == BIG_ENDIAN static void fwohci_irx_post (struct firewire_comm *, u_int32_t *); #endif static int fwohci_itxbuf_enable (struct firewire_comm *, int); static int fwohci_itx_disable (struct firewire_comm *, int); static void fwohci_timeout (void *); static void fwohci_set_intr (struct firewire_comm *, int); static int fwohci_add_rx_buf (struct fwohci_dbch *, struct fwohcidb_tr *, int, struct fwdma_alloc *); static int fwohci_add_tx_buf (struct fwohci_dbch *, struct fwohcidb_tr *, int); static void dump_db (struct fwohci_softc *, u_int32_t); static void print_db (struct fwohcidb_tr *, struct fwohcidb *, u_int32_t , u_int32_t); static void dump_dma (struct fwohci_softc *, u_int32_t); static u_int32_t fwohci_cyctimer (struct firewire_comm *); static void fwohci_rbuf_update (struct fwohci_softc *, int); static void fwohci_tbuf_update (struct fwohci_softc *, int); void fwohci_txbufdb (struct fwohci_softc *, int , struct fw_bulkxfer *); #if FWOHCI_TASKQUEUE static void fwohci_complete(void *, int); #endif /* * memory allocated for DMA programs */ #define DMA_PROG_ALLOC (8 * PAGE_SIZE) #define NDB FWMAXQUEUE #define OHCI_VERSION 0x00 #define OHCI_ATRETRY 0x08 #define OHCI_CROMHDR 0x18 #define OHCI_BUS_OPT 0x20 #define OHCI_BUSIRMC (1 << 31) #define OHCI_BUSCMC (1 << 30) #define OHCI_BUSISC (1 << 29) #define OHCI_BUSBMC (1 << 28) #define OHCI_BUSPMC (1 << 27) #define OHCI_BUSFNC OHCI_BUSIRMC | OHCI_BUSCMC | OHCI_BUSISC |\ OHCI_BUSBMC | OHCI_BUSPMC #define OHCI_EUID_HI 0x24 #define OHCI_EUID_LO 0x28 #define OHCI_CROMPTR 0x34 #define OHCI_HCCCTL 0x50 #define OHCI_HCCCTLCLR 0x54 #define OHCI_AREQHI 0x100 #define OHCI_AREQHICLR 0x104 #define OHCI_AREQLO 0x108 #define OHCI_AREQLOCLR 0x10c #define OHCI_PREQHI 0x110 #define OHCI_PREQHICLR 0x114 #define OHCI_PREQLO 0x118 #define OHCI_PREQLOCLR 0x11c #define OHCI_PREQUPPER 0x120 #define OHCI_SID_BUF 0x64 #define OHCI_SID_CNT 0x68 #define OHCI_SID_ERR (1 << 31) #define OHCI_SID_CNT_MASK 0xffc #define OHCI_IT_STAT 0x90 #define OHCI_IT_STATCLR 0x94 #define OHCI_IT_MASK 0x98 #define OHCI_IT_MASKCLR 0x9c #define OHCI_IR_STAT 0xa0 #define OHCI_IR_STATCLR 0xa4 #define OHCI_IR_MASK 0xa8 #define OHCI_IR_MASKCLR 0xac #define OHCI_LNKCTL 0xe0 #define OHCI_LNKCTLCLR 0xe4 #define OHCI_PHYACCESS 0xec #define OHCI_CYCLETIMER 0xf0 #define OHCI_DMACTL(off) (off) #define OHCI_DMACTLCLR(off) (off + 4) #define OHCI_DMACMD(off) (off + 0xc) #define OHCI_DMAMATCH(off) (off + 0x10) #define OHCI_ATQOFF 0x180 #define OHCI_ATQCTL OHCI_ATQOFF #define OHCI_ATQCTLCLR (OHCI_ATQOFF + 4) #define OHCI_ATQCMD (OHCI_ATQOFF + 0xc) #define OHCI_ATQMATCH (OHCI_ATQOFF + 0x10) #define OHCI_ATSOFF 0x1a0 #define OHCI_ATSCTL OHCI_ATSOFF #define OHCI_ATSCTLCLR (OHCI_ATSOFF + 4) #define OHCI_ATSCMD (OHCI_ATSOFF + 0xc) #define OHCI_ATSMATCH (OHCI_ATSOFF + 0x10) #define OHCI_ARQOFF 0x1c0 #define OHCI_ARQCTL OHCI_ARQOFF #define OHCI_ARQCTLCLR (OHCI_ARQOFF + 4) #define OHCI_ARQCMD (OHCI_ARQOFF + 0xc) #define OHCI_ARQMATCH (OHCI_ARQOFF + 0x10) #define OHCI_ARSOFF 0x1e0 #define OHCI_ARSCTL OHCI_ARSOFF #define OHCI_ARSCTLCLR (OHCI_ARSOFF + 4) #define OHCI_ARSCMD (OHCI_ARSOFF + 0xc) #define OHCI_ARSMATCH (OHCI_ARSOFF + 0x10) #define OHCI_ITOFF(CH) (0x200 + 0x10 * (CH)) #define OHCI_ITCTL(CH) (OHCI_ITOFF(CH)) #define OHCI_ITCTLCLR(CH) (OHCI_ITOFF(CH) + 4) #define OHCI_ITCMD(CH) (OHCI_ITOFF(CH) + 0xc) #define OHCI_IROFF(CH) (0x400 + 0x20 * (CH)) #define OHCI_IRCTL(CH) (OHCI_IROFF(CH)) #define OHCI_IRCTLCLR(CH) (OHCI_IROFF(CH) + 4) #define OHCI_IRCMD(CH) (OHCI_IROFF(CH) + 0xc) #define OHCI_IRMATCH(CH) (OHCI_IROFF(CH) + 0x10) d_ioctl_t fwohci_ioctl; /* * Communication with PHY device */ static u_int32_t fwphy_wrdata( struct fwohci_softc *sc, u_int32_t addr, u_int32_t data) { u_int32_t fun; addr &= 0xf; data &= 0xff; fun = (PHYDEV_WRCMD | (addr << PHYDEV_REGADDR) | (data << PHYDEV_WRDATA)); OWRITE(sc, OHCI_PHYACCESS, fun); DELAY(100); return(fwphy_rddata( sc, addr)); } static u_int32_t fwohci_set_bus_manager(struct firewire_comm *fc, u_int node) { struct fwohci_softc *sc = (struct fwohci_softc *)fc; int i; u_int32_t bm; #define OHCI_CSR_DATA 0x0c #define OHCI_CSR_COMP 0x10 #define OHCI_CSR_CONT 0x14 #define OHCI_BUS_MANAGER_ID 0 OWRITE(sc, OHCI_CSR_DATA, node); OWRITE(sc, OHCI_CSR_COMP, 0x3f); OWRITE(sc, OHCI_CSR_CONT, OHCI_BUS_MANAGER_ID); for (i = 0; !(OREAD(sc, OHCI_CSR_CONT) & (1<<31)) && (i < 1000); i++) DELAY(10); bm = OREAD(sc, OHCI_CSR_DATA); if((bm & 0x3f) == 0x3f) bm = node; if (bootverbose) device_printf(sc->fc.dev, "fw_set_bus_manager: %d->%d (loop=%d)\n", bm, node, i); return(bm); } static u_int32_t fwphy_rddata(struct fwohci_softc *sc, u_int addr) { u_int32_t fun, stat; u_int i, retry = 0; addr &= 0xf; #define MAX_RETRY 100 again: OWRITE(sc, FWOHCI_INTSTATCLR, OHCI_INT_REG_FAIL); fun = PHYDEV_RDCMD | (addr << PHYDEV_REGADDR); OWRITE(sc, OHCI_PHYACCESS, fun); for ( i = 0 ; i < MAX_RETRY ; i ++ ){ fun = OREAD(sc, OHCI_PHYACCESS); if ((fun & PHYDEV_RDCMD) == 0 && (fun & PHYDEV_RDDONE) != 0) break; DELAY(100); } if(i >= MAX_RETRY) { if (bootverbose) device_printf(sc->fc.dev, "phy read failed(1).\n"); if (++retry < MAX_RETRY) { DELAY(100); goto again; } } /* Make sure that SCLK is started */ stat = OREAD(sc, FWOHCI_INTSTAT); if ((stat & OHCI_INT_REG_FAIL) != 0 || ((fun >> PHYDEV_REGADDR) & 0xf) != addr) { if (bootverbose) device_printf(sc->fc.dev, "phy read failed(2).\n"); if (++retry < MAX_RETRY) { DELAY(100); goto again; } } if (bootverbose || retry >= MAX_RETRY) device_printf(sc->fc.dev, "fwphy_rddata: 0x%x loop=%d, retry=%d\n", addr, i, retry); #undef MAX_RETRY return((fun >> PHYDEV_RDDATA )& 0xff); } /* Device specific ioctl. */ int fwohci_ioctl (struct dev_ioctl_args *ap) { cdev_t dev = ap->a_head.a_dev; struct firewire_softc *sc; struct fwohci_softc *fc; int unit = DEV2UNIT(dev); int err = 0; struct fw_reg_req_t *reg = (struct fw_reg_req_t *) ap->a_data; u_int32_t *dmach = (u_int32_t *) ap->a_data; sc = devclass_get_softc(firewire_devclass, unit); if(sc == NULL){ return(EINVAL); } fc = (struct fwohci_softc *)sc->fc; if (!ap->a_data) return(EINVAL); switch (ap->a_cmd) { case FWOHCI_WRREG: #define OHCI_MAX_REG 0x800 if(reg->addr <= OHCI_MAX_REG){ OWRITE(fc, reg->addr, reg->data); reg->data = OREAD(fc, reg->addr); }else{ err = EINVAL; } break; case FWOHCI_RDREG: if(reg->addr <= OHCI_MAX_REG){ reg->data = OREAD(fc, reg->addr); }else{ err = EINVAL; } break; /* Read DMA descriptors for debug */ case DUMPDMA: if(*dmach <= OHCI_MAX_DMA_CH ){ dump_dma(fc, *dmach); dump_db(fc, *dmach); }else{ err = EINVAL; } break; /* Read/Write Phy registers */ #define OHCI_MAX_PHY_REG 0xf case FWOHCI_RDPHYREG: if (reg->addr <= OHCI_MAX_PHY_REG) reg->data = fwphy_rddata(fc, reg->addr); else err = EINVAL; break; case FWOHCI_WRPHYREG: if (reg->addr <= OHCI_MAX_PHY_REG) reg->data = fwphy_wrdata(fc, reg->addr, reg->data); else err = EINVAL; break; default: err = EINVAL; break; } return err; } static int fwohci_probe_phy(struct fwohci_softc *sc, device_t dev) { u_int32_t reg, reg2; int e1394a = 1; /* * probe PHY parameters * 0. to prove PHY version, whether compliance of 1394a. * 1. to probe maximum speed supported by the PHY and * number of port supported by core-logic. * It is not actually available port on your PC . */ OWRITE(sc, OHCI_HCCCTL, OHCI_HCC_LPS); DELAY(500); reg = fwphy_rddata(sc, FW_PHY_SPD_REG); if((reg >> 5) != 7 ){ sc->fc.mode &= ~FWPHYASYST; sc->fc.nport = reg & FW_PHY_NP; sc->fc.speed = reg & FW_PHY_SPD >> 6; if (sc->fc.speed > MAX_SPEED) { device_printf(dev, "invalid speed %d (fixed to %d).\n", sc->fc.speed, MAX_SPEED); sc->fc.speed = MAX_SPEED; } device_printf(dev, "Phy 1394 only %s, %d ports.\n", linkspeed[sc->fc.speed], sc->fc.nport); }else{ reg2 = fwphy_rddata(sc, FW_PHY_ESPD_REG); sc->fc.mode |= FWPHYASYST; sc->fc.nport = reg & FW_PHY_NP; sc->fc.speed = (reg2 & FW_PHY_ESPD) >> 5; if (sc->fc.speed > MAX_SPEED) { device_printf(dev, "invalid speed %d (fixed to %d).\n", sc->fc.speed, MAX_SPEED); sc->fc.speed = MAX_SPEED; } device_printf(dev, "Phy 1394a available %s, %d ports.\n", linkspeed[sc->fc.speed], sc->fc.nport); /* check programPhyEnable */ reg2 = fwphy_rddata(sc, 5); #if 0 if (e1394a && (OREAD(sc, OHCI_HCCCTL) & OHCI_HCC_PRPHY)) { #else /* XXX force to enable 1394a */ if (e1394a) { #endif if (bootverbose) device_printf(dev, "Enable 1394a Enhancements\n"); /* enable EAA EMC */ reg2 |= 0x03; /* set aPhyEnhanceEnable */ OWRITE(sc, OHCI_HCCCTL, OHCI_HCC_PHYEN); OWRITE(sc, OHCI_HCCCTLCLR, OHCI_HCC_PRPHY); } else { /* for safe */ reg2 &= ~0x83; } reg2 = fwphy_wrdata(sc, 5, reg2); } reg = fwphy_rddata(sc, FW_PHY_SPD_REG); if((reg >> 5) == 7 ){ reg = fwphy_rddata(sc, 4); reg |= 1 << 6; fwphy_wrdata(sc, 4, reg); reg = fwphy_rddata(sc, 4); } return 0; } void fwohci_reset(struct fwohci_softc *sc, device_t dev) { int i, max_rec, speed; u_int32_t reg, reg2; struct fwohcidb_tr *db_tr; /* Disable interrupt */ OWRITE(sc, FWOHCI_INTMASKCLR, ~0); /* Now stopping all DMA channel */ OWRITE(sc, OHCI_ARQCTLCLR, OHCI_CNTL_DMA_RUN); OWRITE(sc, OHCI_ARSCTLCLR, OHCI_CNTL_DMA_RUN); OWRITE(sc, OHCI_ATQCTLCLR, OHCI_CNTL_DMA_RUN); OWRITE(sc, OHCI_ATSCTLCLR, OHCI_CNTL_DMA_RUN); OWRITE(sc, OHCI_IR_MASKCLR, ~0); for( i = 0 ; i < sc->fc.nisodma ; i ++ ){ OWRITE(sc, OHCI_IRCTLCLR(i), OHCI_CNTL_DMA_RUN); OWRITE(sc, OHCI_ITCTLCLR(i), OHCI_CNTL_DMA_RUN); } /* FLUSH FIFO and reset Transmitter/Reciever */ OWRITE(sc, OHCI_HCCCTL, OHCI_HCC_RESET); if (bootverbose) device_printf(dev, "resetting OHCI..."); i = 0; while(OREAD(sc, OHCI_HCCCTL) & OHCI_HCC_RESET) { if (i++ > 100) break; DELAY(1000); } if (bootverbose) kprintf("done (loop=%d)\n", i); /* Probe phy */ fwohci_probe_phy(sc, dev); /* Probe link */ reg = OREAD(sc, OHCI_BUS_OPT); reg2 = reg | OHCI_BUSFNC; max_rec = (reg & 0x0000f000) >> 12; speed = (reg & 0x00000007); device_printf(dev, "Link %s, max_rec %d bytes.\n", linkspeed[speed], MAXREC(max_rec)); /* XXX fix max_rec */ sc->fc.maxrec = sc->fc.speed + 8; if (max_rec != sc->fc.maxrec) { reg2 = (reg2 & 0xffff0fff) | (sc->fc.maxrec << 12); device_printf(dev, "max_rec %d -> %d\n", MAXREC(max_rec), MAXREC(sc->fc.maxrec)); } if (bootverbose) device_printf(dev, "BUS_OPT 0x%x -> 0x%x\n", reg, reg2); OWRITE(sc, OHCI_BUS_OPT, reg2); /* Initialize registers */ OWRITE(sc, OHCI_CROMHDR, sc->fc.config_rom[0]); OWRITE(sc, OHCI_CROMPTR, sc->crom_dma.bus_addr); OWRITE(sc, OHCI_HCCCTLCLR, OHCI_HCC_BIGEND); OWRITE(sc, OHCI_HCCCTL, OHCI_HCC_POSTWR); OWRITE(sc, OHCI_SID_BUF, sc->sid_dma.bus_addr); OWRITE(sc, OHCI_LNKCTL, OHCI_CNTL_SID); /* Enable link */ OWRITE(sc, OHCI_HCCCTL, OHCI_HCC_LINKEN); /* Force to start async RX DMA */ sc->arrq.xferq.flag &= ~FWXFERQ_RUNNING; sc->arrs.xferq.flag &= ~FWXFERQ_RUNNING; fwohci_rx_enable(sc, &sc->arrq); fwohci_rx_enable(sc, &sc->arrs); /* Initialize async TX */ OWRITE(sc, OHCI_ATQCTLCLR, OHCI_CNTL_DMA_RUN | OHCI_CNTL_DMA_DEAD); OWRITE(sc, OHCI_ATSCTLCLR, OHCI_CNTL_DMA_RUN | OHCI_CNTL_DMA_DEAD); /* AT Retries */ OWRITE(sc, FWOHCI_RETRY, /* CycleLimit PhyRespRetries ATRespRetries ATReqRetries */ (0xffff << 16 ) | (0x0f << 8) | (0x0f << 4) | 0x0f) ; sc->atrq.top = STAILQ_FIRST(&sc->atrq.db_trq); sc->atrs.top = STAILQ_FIRST(&sc->atrs.db_trq); sc->atrq.bottom = sc->atrq.top; sc->atrs.bottom = sc->atrs.top; for( i = 0, db_tr = sc->atrq.top; i < sc->atrq.ndb ; i ++, db_tr = STAILQ_NEXT(db_tr, link)){ db_tr->xfer = NULL; } for( i = 0, db_tr = sc->atrs.top; i < sc->atrs.ndb ; i ++, db_tr = STAILQ_NEXT(db_tr, link)){ db_tr->xfer = NULL; } /* Enable interrupt */ OWRITE(sc, FWOHCI_INTMASK, OHCI_INT_ERR | OHCI_INT_PHY_SID | OHCI_INT_DMA_ATRQ | OHCI_INT_DMA_ATRS | OHCI_INT_DMA_PRRQ | OHCI_INT_DMA_PRRS | OHCI_INT_PHY_BUS_R | OHCI_INT_PW_ERR); fwohci_set_intr(&sc->fc, 1); } int fwohci_init(struct fwohci_softc *sc, device_t dev) { int i, mver; u_int32_t reg; u_int8_t ui[8]; #if FWOHCI_TASKQUEUE TASK_INIT(&sc->fwohci_task_complete, 0, fwohci_complete, sc); #endif /* OHCI version */ reg = OREAD(sc, OHCI_VERSION); mver = (reg >> 16) & 0xff; device_printf(dev, "OHCI version %x.%x (ROM=%d)\n", mver, reg & 0xff, (reg>>24) & 1); if (mver < 1 || mver > 9) { device_printf(dev, "invalid OHCI version\n"); return (ENXIO); } /* Available Isochrounous DMA channel probe */ OWRITE(sc, OHCI_IT_MASK, 0xffffffff); OWRITE(sc, OHCI_IR_MASK, 0xffffffff); reg = OREAD(sc, OHCI_IT_MASK) & OREAD(sc, OHCI_IR_MASK); OWRITE(sc, OHCI_IT_MASKCLR, 0xffffffff); OWRITE(sc, OHCI_IR_MASKCLR, 0xffffffff); for (i = 0; i < 0x20; i++) if ((reg & (1 << i)) == 0) break; sc->fc.nisodma = i; device_printf(dev, "No. of Isochronous channel is %d.\n", i); if (i == 0) return (ENXIO); sc->fc.arq = &sc->arrq.xferq; sc->fc.ars = &sc->arrs.xferq; sc->fc.atq = &sc->atrq.xferq; sc->fc.ats = &sc->atrs.xferq; sc->arrq.xferq.psize = roundup2(FWPMAX_S400, PAGE_SIZE); sc->arrs.xferq.psize = roundup2(FWPMAX_S400, PAGE_SIZE); sc->atrq.xferq.psize = roundup2(FWPMAX_S400, PAGE_SIZE); sc->atrs.xferq.psize = roundup2(FWPMAX_S400, PAGE_SIZE); sc->arrq.xferq.start = NULL; sc->arrs.xferq.start = NULL; sc->atrq.xferq.start = fwohci_start_atq; sc->atrs.xferq.start = fwohci_start_ats; sc->arrq.xferq.buf = NULL; sc->arrs.xferq.buf = NULL; sc->atrq.xferq.buf = NULL; sc->atrs.xferq.buf = NULL; sc->arrq.xferq.dmach = -1; sc->arrs.xferq.dmach = -1; sc->atrq.xferq.dmach = -1; sc->atrs.xferq.dmach = -1; sc->arrq.ndesc = 1; sc->arrs.ndesc = 1; sc->atrq.ndesc = 8; /* equal to maximum of mbuf chains */ sc->atrs.ndesc = 2; sc->arrq.ndb = NDB; sc->arrs.ndb = NDB / 2; sc->atrq.ndb = NDB; sc->atrs.ndb = NDB / 2; for( i = 0 ; i < sc->fc.nisodma ; i ++ ){ sc->fc.it[i] = &sc->it[i].xferq; sc->fc.ir[i] = &sc->ir[i].xferq; sc->it[i].xferq.dmach = i; sc->ir[i].xferq.dmach = i; sc->it[i].ndb = 0; sc->ir[i].ndb = 0; } sc->fc.tcode = tinfo; sc->fc.dev = dev; sc->fc.config_rom = fwdma_malloc(&sc->fc, CROMSIZE, CROMSIZE, &sc->crom_dma, BUS_DMA_WAITOK); if(sc->fc.config_rom == NULL){ device_printf(dev, "config_rom alloc failed."); return ENOMEM; } #if 0 bzero(&sc->fc.config_rom[0], CROMSIZE); sc->fc.config_rom[1] = 0x31333934; sc->fc.config_rom[2] = 0xf000a002; sc->fc.config_rom[3] = OREAD(sc, OHCI_EUID_HI); sc->fc.config_rom[4] = OREAD(sc, OHCI_EUID_LO); sc->fc.config_rom[5] = 0; sc->fc.config_rom[0] = (4 << 24) | (5 << 16); sc->fc.config_rom[0] |= fw_crc16(&sc->fc.config_rom[1], 5*4); #endif /* SID recieve buffer must allign 2^11 */ #define OHCI_SIDSIZE (1 << 11) sc->sid_buf = fwdma_malloc(&sc->fc, OHCI_SIDSIZE, OHCI_SIDSIZE, &sc->sid_dma, BUS_DMA_WAITOK); if (sc->sid_buf == NULL) { device_printf(dev, "sid_buf alloc failed."); return ENOMEM; } fwdma_malloc(&sc->fc, sizeof(u_int32_t), sizeof(u_int32_t), &sc->dummy_dma, BUS_DMA_WAITOK); if (sc->dummy_dma.v_addr == NULL) { device_printf(dev, "dummy_dma alloc failed."); return ENOMEM; } fwohci_db_init(sc, &sc->arrq); if ((sc->arrq.flags & FWOHCI_DBCH_INIT) == 0) return ENOMEM; fwohci_db_init(sc, &sc->arrs); if ((sc->arrs.flags & FWOHCI_DBCH_INIT) == 0) return ENOMEM; fwohci_db_init(sc, &sc->atrq); if ((sc->atrq.flags & FWOHCI_DBCH_INIT) == 0) return ENOMEM; fwohci_db_init(sc, &sc->atrs); if ((sc->atrs.flags & FWOHCI_DBCH_INIT) == 0) return ENOMEM; sc->fc.eui.hi = OREAD(sc, FWOHCIGUID_H); sc->fc.eui.lo = OREAD(sc, FWOHCIGUID_L); for( i = 0 ; i < 8 ; i ++) ui[i] = FW_EUI64_BYTE(&sc->fc.eui,i); device_printf(dev, "EUI64 %02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x\n", ui[0], ui[1], ui[2], ui[3], ui[4], ui[5], ui[6], ui[7]); sc->fc.ioctl = fwohci_ioctl; sc->fc.cyctimer = fwohci_cyctimer; sc->fc.set_bmr = fwohci_set_bus_manager; sc->fc.ibr = fwohci_ibr; sc->fc.irx_enable = fwohci_irx_enable; sc->fc.irx_disable = fwohci_irx_disable; sc->fc.itx_enable = fwohci_itxbuf_enable; sc->fc.itx_disable = fwohci_itx_disable; #if BYTE_ORDER == BIG_ENDIAN sc->fc.irx_post = fwohci_irx_post; #else sc->fc.irx_post = NULL; #endif sc->fc.itx_post = NULL; sc->fc.timeout = fwohci_timeout; sc->fc.poll = fwohci_poll; sc->fc.set_intr = fwohci_set_intr; sc->intmask = sc->irstat = sc->itstat = 0; fw_init(&sc->fc); fwohci_reset(sc, dev); return 0; } static void fwohci_timeout(void *arg) { } static u_int32_t fwohci_cyctimer(struct firewire_comm *fc) { struct fwohci_softc *sc = (struct fwohci_softc *)fc; return(OREAD(sc, OHCI_CYCLETIMER)); } int fwohci_detach(struct fwohci_softc *sc, device_t dev) { int i; if (sc->sid_buf != NULL) fwdma_free(&sc->fc, &sc->sid_dma); if (sc->fc.config_rom != NULL) fwdma_free(&sc->fc, &sc->crom_dma); fwohci_db_free(&sc->arrq); fwohci_db_free(&sc->arrs); fwohci_db_free(&sc->atrq); fwohci_db_free(&sc->atrs); for( i = 0 ; i < sc->fc.nisodma ; i ++ ){ fwohci_db_free(&sc->it[i]); fwohci_db_free(&sc->ir[i]); } return 0; } #define LAST_DB(dbtr, db) do { \ struct fwohcidb_tr *_dbtr = (dbtr); \ int _cnt = _dbtr->dbcnt; \ db = &_dbtr->db[ (_cnt > 2) ? (_cnt -1) : 0]; \ } while (0) static void fwohci_execute_db(void *arg, bus_dma_segment_t *segs, int nseg, int error) { struct fwohcidb_tr *db_tr; struct fwohcidb *db; bus_dma_segment_t *s; int i; db_tr = (struct fwohcidb_tr *)arg; db = &db_tr->db[db_tr->dbcnt]; if (error) { if (firewire_debug || error != EFBIG) kprintf("fwohci_execute_db: error=%d\n", error); return; } for (i = 0; i < nseg; i++) { s = &segs[i]; FWOHCI_DMA_WRITE(db->db.desc.addr, s->ds_addr); FWOHCI_DMA_WRITE(db->db.desc.cmd, s->ds_len); FWOHCI_DMA_WRITE(db->db.desc.res, 0); db++; db_tr->dbcnt++; } } static void fwohci_execute_db2(void *arg, bus_dma_segment_t *segs, int nseg, bus_size_t size, int error) { fwohci_execute_db(arg, segs, nseg, error); } static void fwohci_start(struct fwohci_softc *sc, struct fwohci_dbch *dbch) { int i; int tcode, hdr_len, pl_off; int fsegment = -1; u_int32_t off; struct fw_xfer *xfer; struct fw_pkt *fp; struct fwohci_txpkthdr *ohcifp; struct fwohcidb_tr *db_tr; struct fwohcidb *db; u_int32_t *ld; struct tcode_info *info; static int maxdesc=0; if(&sc->atrq == dbch){ off = OHCI_ATQOFF; }else if(&sc->atrs == dbch){ off = OHCI_ATSOFF; }else{ return; } if (dbch->flags & FWOHCI_DBCH_FULL) return; crit_enter(); db_tr = dbch->top; txloop: xfer = STAILQ_FIRST(&dbch->xferq.q); if(xfer == NULL){ goto kick; } if(dbch->xferq.queued == 0 ){ device_printf(sc->fc.dev, "TX queue empty\n"); } STAILQ_REMOVE_HEAD(&dbch->xferq.q, link); db_tr->xfer = xfer; xfer->state = FWXF_START; fp = &xfer->send.hdr; tcode = fp->mode.common.tcode; ohcifp = (struct fwohci_txpkthdr *) db_tr->db[1].db.immed; info = &tinfo[tcode]; hdr_len = pl_off = info->hdr_len; ld = &ohcifp->mode.ld[0]; ld[0] = ld[1] = ld[2] = ld[3] = 0; for( i = 0 ; i < pl_off ; i+= 4) ld[i/4] = fp->mode.ld[i/4]; ohcifp->mode.common.spd = xfer->send.spd & 0x7; if (tcode == FWTCODE_STREAM ){ hdr_len = 8; ohcifp->mode.stream.len = fp->mode.stream.len; } else if (tcode == FWTCODE_PHY) { hdr_len = 12; ld[1] = fp->mode.ld[1]; ld[2] = fp->mode.ld[2]; ohcifp->mode.common.spd = 0; ohcifp->mode.common.tcode = FWOHCITCODE_PHY; } else { ohcifp->mode.asycomm.dst = fp->mode.hdr.dst; ohcifp->mode.asycomm.srcbus = OHCI_ASYSRCBUS; ohcifp->mode.asycomm.tlrt |= FWRETRY_X; } db = &db_tr->db[0]; FWOHCI_DMA_WRITE(db->db.desc.cmd, OHCI_OUTPUT_MORE | OHCI_KEY_ST2 | hdr_len); FWOHCI_DMA_WRITE(db->db.desc.addr, 0); FWOHCI_DMA_WRITE(db->db.desc.res, 0); /* Specify bound timer of asy. responce */ if(&sc->atrs == dbch){ FWOHCI_DMA_WRITE(db->db.desc.res, (OREAD(sc, OHCI_CYCLETIMER) >> 12) + (1 << 13)); } #if BYTE_ORDER == BIG_ENDIAN if (tcode == FWTCODE_WREQQ || tcode == FWTCODE_RRESQ) hdr_len = 12; for (i = 0; i < hdr_len/4; i ++) FWOHCI_DMA_WRITE(ld[i], ld[i]); #endif again: db_tr->dbcnt = 2; db = &db_tr->db[db_tr->dbcnt]; if (xfer->send.pay_len > 0) { int err; /* handle payload */ if (xfer->mbuf == NULL) { err = bus_dmamap_load(dbch->dmat, db_tr->dma_map, &xfer->send.payload[0], xfer->send.pay_len, fwohci_execute_db, db_tr, /*flags*/0); } else { /* XXX we can handle only 6 (=8-2) mbuf chains */ err = bus_dmamap_load_mbuf(dbch->dmat, db_tr->dma_map, xfer->mbuf, fwohci_execute_db2, db_tr, /* flags */0); if (err == EFBIG) { struct mbuf *m0; if (firewire_debug) device_printf(sc->fc.dev, "EFBIG.\n"); m0 = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); if (m0 != NULL) { m_copydata(xfer->mbuf, 0, xfer->mbuf->m_pkthdr.len, mtod(m0, void *)); m0->m_len = m0->m_pkthdr.len = xfer->mbuf->m_pkthdr.len; m_freem(xfer->mbuf); xfer->mbuf = m0; goto again; } device_printf(sc->fc.dev, "m_getcl failed.\n"); } } if (err) kprintf("dmamap_load: err=%d\n", err); bus_dmamap_sync(dbch->dmat, db_tr->dma_map, BUS_DMASYNC_PREWRITE); #if 0 /* OHCI_OUTPUT_MODE == 0 */ for (i = 2; i < db_tr->dbcnt; i++) FWOHCI_DMA_SET(db_tr->db[i].db.desc.cmd, OHCI_OUTPUT_MORE); #endif } if (maxdesc < db_tr->dbcnt) { maxdesc = db_tr->dbcnt; if (bootverbose) device_printf(sc->fc.dev, "maxdesc: %d\n", maxdesc); } /* last db */ LAST_DB(db_tr, db); FWOHCI_DMA_SET(db->db.desc.cmd, OHCI_OUTPUT_LAST | OHCI_INTERRUPT_ALWAYS | OHCI_BRANCH_ALWAYS); FWOHCI_DMA_WRITE(db->db.desc.depend, STAILQ_NEXT(db_tr, link)->bus_addr); if(fsegment == -1 ) fsegment = db_tr->dbcnt; if (dbch->pdb_tr != NULL) { LAST_DB(dbch->pdb_tr, db); FWOHCI_DMA_SET(db->db.desc.depend, db_tr->dbcnt); } dbch->pdb_tr = db_tr; db_tr = STAILQ_NEXT(db_tr, link); if(db_tr != dbch->bottom){ goto txloop; } else { device_printf(sc->fc.dev, "fwohci_start: lack of db_trq\n"); dbch->flags |= FWOHCI_DBCH_FULL; } kick: /* kick asy q */ fwdma_sync_multiseg_all(dbch->am, BUS_DMASYNC_PREREAD); fwdma_sync_multiseg_all(dbch->am, BUS_DMASYNC_PREWRITE); if(dbch->xferq.flag & FWXFERQ_RUNNING) { OWRITE(sc, OHCI_DMACTL(off), OHCI_CNTL_DMA_WAKE); } else { if (bootverbose) device_printf(sc->fc.dev, "start AT DMA status=%x\n", OREAD(sc, OHCI_DMACTL(off))); OWRITE(sc, OHCI_DMACMD(off), dbch->top->bus_addr | fsegment); OWRITE(sc, OHCI_DMACTL(off), OHCI_CNTL_DMA_RUN); dbch->xferq.flag |= FWXFERQ_RUNNING; } dbch->top = db_tr; crit_exit(); return; } static void fwohci_start_atq(struct firewire_comm *fc) { struct fwohci_softc *sc = (struct fwohci_softc *)fc; fwohci_start( sc, &(sc->atrq)); return; } static void fwohci_start_ats(struct firewire_comm *fc) { struct fwohci_softc *sc = (struct fwohci_softc *)fc; fwohci_start( sc, &(sc->atrs)); return; } static void fwohci_txd(struct fwohci_softc *sc, struct fwohci_dbch *dbch) { int ch, err = 0; struct fwohcidb_tr *tr; struct fwohcidb *db; struct fw_xfer *xfer; u_int32_t off; u_int stat, status; int packets; struct firewire_comm *fc = (struct firewire_comm *)sc; if(&sc->atrq == dbch){ off = OHCI_ATQOFF; ch = ATRQ_CH; }else if(&sc->atrs == dbch){ off = OHCI_ATSOFF; ch = ATRS_CH; }else{ return; } crit_enter(); tr = dbch->bottom; packets = 0; fwdma_sync_multiseg_all(dbch->am, BUS_DMASYNC_POSTREAD); fwdma_sync_multiseg_all(dbch->am, BUS_DMASYNC_POSTWRITE); while(dbch->xferq.queued > 0){ LAST_DB(tr, db); status = FWOHCI_DMA_READ(db->db.desc.res) >> OHCI_STATUS_SHIFT; if(!(status & OHCI_CNTL_DMA_ACTIVE)){ if (fc->status != FWBUSRESET) /* maybe out of order?? */ goto out; } bus_dmamap_sync(dbch->dmat, tr->dma_map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(dbch->dmat, tr->dma_map); #if 1 if (firewire_debug) dump_db(sc, ch); #endif if(status & OHCI_CNTL_DMA_DEAD) { /* Stop DMA */ OWRITE(sc, OHCI_DMACTLCLR(off), OHCI_CNTL_DMA_RUN); device_printf(sc->fc.dev, "force reset AT FIFO\n"); OWRITE(sc, OHCI_HCCCTLCLR, OHCI_HCC_LINKEN); OWRITE(sc, OHCI_HCCCTL, OHCI_HCC_LPS | OHCI_HCC_LINKEN); OWRITE(sc, OHCI_DMACTLCLR(off), OHCI_CNTL_DMA_RUN); } stat = status & FWOHCIEV_MASK; switch(stat){ case FWOHCIEV_ACKPEND: case FWOHCIEV_ACKCOMPL: err = 0; break; case FWOHCIEV_ACKBSA: case FWOHCIEV_ACKBSB: case FWOHCIEV_ACKBSX: device_printf(sc->fc.dev, "txd err=%2x %s\n", stat, fwohcicode[stat]); err = EBUSY; break; case FWOHCIEV_FLUSHED: case FWOHCIEV_ACKTARD: device_printf(sc->fc.dev, "txd err=%2x %s\n", stat, fwohcicode[stat]); err = EAGAIN; break; case FWOHCIEV_MISSACK: case FWOHCIEV_UNDRRUN: case FWOHCIEV_OVRRUN: case FWOHCIEV_DESCERR: case FWOHCIEV_DTRDERR: case FWOHCIEV_TIMEOUT: case FWOHCIEV_TCODERR: case FWOHCIEV_UNKNOWN: case FWOHCIEV_ACKDERR: case FWOHCIEV_ACKTERR: default: device_printf(sc->fc.dev, "txd err=%2x %s\n", stat, fwohcicode[stat]); err = EINVAL; break; } if (tr->xfer != NULL) { xfer = tr->xfer; if (xfer->state == FWXF_RCVD) { #if 0 if (firewire_debug) kprintf("already rcvd\n"); #endif fw_xfer_done(xfer); } else { xfer->state = FWXF_SENT; if (err == EBUSY && fc->status != FWBUSRESET) { xfer->state = FWXF_BUSY; xfer->resp = err; if (xfer->retry_req != NULL) xfer->retry_req(xfer); else { xfer->recv.pay_len = 0; fw_xfer_done(xfer); } } else if (stat != FWOHCIEV_ACKPEND) { if (stat != FWOHCIEV_ACKCOMPL) xfer->state = FWXF_SENTERR; xfer->resp = err; xfer->recv.pay_len = 0; fw_xfer_done(xfer); } } /* * The watchdog timer takes care of split * transcation timeout for ACKPEND case. */ } else { kprintf("this shouldn't happen\n"); } dbch->xferq.queued --; tr->xfer = NULL; packets ++; tr = STAILQ_NEXT(tr, link); dbch->bottom = tr; if (dbch->bottom == dbch->top) { /* we reaches the end of context program */ if (firewire_debug && dbch->xferq.queued > 0) kprintf("queued > 0\n"); break; } } out: if ((dbch->flags & FWOHCI_DBCH_FULL) && packets > 0) { kprintf("make free slot\n"); dbch->flags &= ~FWOHCI_DBCH_FULL; fwohci_start(sc, dbch); } crit_exit(); } static void fwohci_db_free(struct fwohci_dbch *dbch) { struct fwohcidb_tr *db_tr; int idb; if ((dbch->flags & FWOHCI_DBCH_INIT) == 0) return; for(db_tr = STAILQ_FIRST(&dbch->db_trq), idb = 0; idb < dbch->ndb; db_tr = STAILQ_NEXT(db_tr, link), idb++){ if ((dbch->xferq.flag & FWXFERQ_EXTBUF) == 0 && db_tr->buf != NULL) { fwdma_free_size(dbch->dmat, db_tr->dma_map, db_tr->buf, dbch->xferq.psize); db_tr->buf = NULL; } else if (db_tr->dma_map != NULL) bus_dmamap_destroy(dbch->dmat, db_tr->dma_map); } dbch->ndb = 0; db_tr = STAILQ_FIRST(&dbch->db_trq); fwdma_free_multiseg(dbch->am); kfree(db_tr, M_FW); STAILQ_INIT(&dbch->db_trq); dbch->flags &= ~FWOHCI_DBCH_INIT; } static void fwohci_db_init(struct fwohci_softc *sc, struct fwohci_dbch *dbch) { int idb; struct fwohcidb_tr *db_tr; if ((dbch->flags & FWOHCI_DBCH_INIT) != 0) goto out; /* create dma_tag for buffers */ #define MAX_REQCOUNT 0xffff if (bus_dma_tag_create(/*parent*/ sc->fc.dmat, /*alignment*/ 1, /*boundary*/ 0, /*lowaddr*/ BUS_SPACE_MAXADDR_32BIT, /*highaddr*/ BUS_SPACE_MAXADDR, #if defined(__FreeBSD__) /*filter*/NULL, /*filterarg*/NULL, #endif /*maxsize*/ dbch->xferq.psize, /*nsegments*/ dbch->ndesc > 3 ? dbch->ndesc - 2 : 1, /*maxsegsz*/ MAX_REQCOUNT, /*flags*/ 0, #if defined(__FreeBSD__) && __FreeBSD_version >= 501102 /*lockfunc*/busdma_lock_mutex, /*lockarg*/&Giant, #endif &dbch->dmat)) return; /* allocate DB entries and attach one to each DMA channels */ /* DB entry must start at 16 bytes bounary. */ STAILQ_INIT(&dbch->db_trq); db_tr = (struct fwohcidb_tr *) kmalloc(sizeof(struct fwohcidb_tr) * dbch->ndb, M_FW, M_WAITOK | M_ZERO); #define DB_SIZE(x) (sizeof(struct fwohcidb) * (x)->ndesc) dbch->am = fwdma_malloc_multiseg(&sc->fc, DB_SIZE(dbch), DB_SIZE(dbch), dbch->ndb, BUS_DMA_WAITOK); if (dbch->am == NULL) { kprintf("fwohci_db_init: fwdma_malloc_multiseg failed\n"); kfree(db_tr, M_FW); return; } /* Attach DB to DMA ch. */ for(idb = 0 ; idb < dbch->ndb ; idb++){ db_tr->dbcnt = 0; db_tr->db = (struct fwohcidb *)fwdma_v_addr(dbch->am, idb); db_tr->bus_addr = fwdma_bus_addr(dbch->am, idb); /* create dmamap for buffers */ /* XXX do we need 4bytes alignment tag? */ /* XXX don't alloc dma_map for AR */ if (bus_dmamap_create(dbch->dmat, 0, &db_tr->dma_map) != 0) { kprintf("bus_dmamap_create failed\n"); dbch->flags = FWOHCI_DBCH_INIT; /* XXX fake */ fwohci_db_free(dbch); return; } STAILQ_INSERT_TAIL(&dbch->db_trq, db_tr, link); if (dbch->xferq.flag & FWXFERQ_EXTBUF) { if (idb % dbch->xferq.bnpacket == 0) dbch->xferq.bulkxfer[idb / dbch->xferq.bnpacket ].start = (caddr_t)db_tr; if ((idb + 1) % dbch->xferq.bnpacket == 0) dbch->xferq.bulkxfer[idb / dbch->xferq.bnpacket ].end = (caddr_t)db_tr; } db_tr++; } STAILQ_LAST(&dbch->db_trq, fwohcidb_tr,link)->link.stqe_next = STAILQ_FIRST(&dbch->db_trq); out: dbch->xferq.queued = 0; dbch->pdb_tr = NULL; dbch->top = STAILQ_FIRST(&dbch->db_trq); dbch->bottom = dbch->top; dbch->flags = FWOHCI_DBCH_INIT; } static int fwohci_itx_disable(struct firewire_comm *fc, int dmach) { struct fwohci_softc *sc = (struct fwohci_softc *)fc; int sleepch; OWRITE(sc, OHCI_ITCTLCLR(dmach), OHCI_CNTL_DMA_RUN | OHCI_CNTL_CYCMATCH_S); OWRITE(sc, OHCI_IT_MASKCLR, 1 << dmach); OWRITE(sc, OHCI_IT_STATCLR, 1 << dmach); /* XXX we cannot free buffers until the DMA really stops */ tsleep((void *)&sleepch, FWPRI, "fwitxd", hz); fwohci_db_free(&sc->it[dmach]); sc->it[dmach].xferq.flag &= ~FWXFERQ_RUNNING; return 0; } static int fwohci_irx_disable(struct firewire_comm *fc, int dmach) { struct fwohci_softc *sc = (struct fwohci_softc *)fc; int sleepch; OWRITE(sc, OHCI_IRCTLCLR(dmach), OHCI_CNTL_DMA_RUN); OWRITE(sc, OHCI_IR_MASKCLR, 1 << dmach); OWRITE(sc, OHCI_IR_STATCLR, 1 << dmach); /* XXX we cannot free buffers until the DMA really stops */ tsleep((void *)&sleepch, FWPRI, "fwirxd", hz); fwohci_db_free(&sc->ir[dmach]); sc->ir[dmach].xferq.flag &= ~FWXFERQ_RUNNING; return 0; } #if BYTE_ORDER == BIG_ENDIAN static void fwohci_irx_post (struct firewire_comm *fc , u_int32_t *qld) { qld[0] = FWOHCI_DMA_READ(qld[0]); return; } #endif static int fwohci_tx_enable(struct fwohci_softc *sc, struct fwohci_dbch *dbch) { int err = 0; int idb, z, i, dmach = 0, ldesc; u_int32_t off = 0; struct fwohcidb_tr *db_tr; struct fwohcidb *db; if(!(dbch->xferq.flag & FWXFERQ_EXTBUF)){ err = EINVAL; return err; } z = dbch->ndesc; for(dmach = 0 ; dmach < sc->fc.nisodma ; dmach++){ if( &sc->it[dmach] == dbch){ off = OHCI_ITOFF(dmach); break; } } if(off == 0){ err = EINVAL; return err; } if(dbch->xferq.flag & FWXFERQ_RUNNING) return err; dbch->xferq.flag |= FWXFERQ_RUNNING; for( i = 0, dbch->bottom = dbch->top; i < (dbch->ndb - 1); i++){ dbch->bottom = STAILQ_NEXT(dbch->bottom, link); } db_tr = dbch->top; for (idb = 0; idb < dbch->ndb; idb ++) { fwohci_add_tx_buf(dbch, db_tr, idb); if(STAILQ_NEXT(db_tr, link) == NULL){ break; } db = db_tr->db; ldesc = db_tr->dbcnt - 1; FWOHCI_DMA_WRITE(db[0].db.desc.depend, STAILQ_NEXT(db_tr, link)->bus_addr | z); db[ldesc].db.desc.depend = db[0].db.desc.depend; if(dbch->xferq.flag & FWXFERQ_EXTBUF){ if(((idb + 1 ) % dbch->xferq.bnpacket) == 0){ FWOHCI_DMA_SET( db[ldesc].db.desc.cmd, OHCI_INTERRUPT_ALWAYS); /* OHCI 1.1 and above */ FWOHCI_DMA_SET( db[0].db.desc.cmd, OHCI_INTERRUPT_ALWAYS); } } db_tr = STAILQ_NEXT(db_tr, link); } FWOHCI_DMA_CLEAR( dbch->bottom->db[dbch->bottom->dbcnt - 1].db.desc.depend, 0xf); return err; } static int fwohci_rx_enable(struct fwohci_softc *sc, struct fwohci_dbch *dbch) { int err = 0; int idb, z, i, dmach = 0, ldesc; u_int32_t off = 0; struct fwohcidb_tr *db_tr; struct fwohcidb *db; z = dbch->ndesc; if(&sc->arrq == dbch){ off = OHCI_ARQOFF; }else if(&sc->arrs == dbch){ off = OHCI_ARSOFF; }else{ for(dmach = 0 ; dmach < sc->fc.nisodma ; dmach++){ if( &sc->ir[dmach] == dbch){ off = OHCI_IROFF(dmach); break; } } } if(off == 0){ err = EINVAL; return err; } if(dbch->xferq.flag & FWXFERQ_STREAM){ if(dbch->xferq.flag & FWXFERQ_RUNNING) return err; }else{ if(dbch->xferq.flag & FWXFERQ_RUNNING){ err = EBUSY; return err; } } dbch->xferq.flag |= FWXFERQ_RUNNING; dbch->top = STAILQ_FIRST(&dbch->db_trq); for( i = 0, dbch->bottom = dbch->top; i < (dbch->ndb - 1); i++){ dbch->bottom = STAILQ_NEXT(dbch->bottom, link); } db_tr = dbch->top; for (idb = 0; idb < dbch->ndb; idb ++) { fwohci_add_rx_buf(dbch, db_tr, idb, &sc->dummy_dma); if (STAILQ_NEXT(db_tr, link) == NULL) break; db = db_tr->db; ldesc = db_tr->dbcnt - 1; FWOHCI_DMA_WRITE(db[ldesc].db.desc.depend, STAILQ_NEXT(db_tr, link)->bus_addr | z); if(dbch->xferq.flag & FWXFERQ_EXTBUF){ if(((idb + 1 ) % dbch->xferq.bnpacket) == 0){ FWOHCI_DMA_SET( db[ldesc].db.desc.cmd, OHCI_INTERRUPT_ALWAYS); FWOHCI_DMA_CLEAR( db[ldesc].db.desc.depend, 0xf); } } db_tr = STAILQ_NEXT(db_tr, link); } FWOHCI_DMA_CLEAR( dbch->bottom->db[db_tr->dbcnt - 1].db.desc.depend, 0xf); dbch->buf_offset = 0; fwdma_sync_multiseg_all(dbch->am, BUS_DMASYNC_PREREAD); fwdma_sync_multiseg_all(dbch->am, BUS_DMASYNC_PREWRITE); if(dbch->xferq.flag & FWXFERQ_STREAM){ return err; }else{ OWRITE(sc, OHCI_DMACMD(off), dbch->top->bus_addr | z); } OWRITE(sc, OHCI_DMACTL(off), OHCI_CNTL_DMA_RUN); return err; } static int fwohci_next_cycle(struct firewire_comm *fc, int cycle_now) { int sec, cycle, cycle_match; cycle = cycle_now & 0x1fff; sec = cycle_now >> 13; #define CYCLE_MOD 0x10 #if 1 #define CYCLE_DELAY 8 /* min delay to start DMA */ #else #define CYCLE_DELAY 7000 /* min delay to start DMA */ #endif cycle = cycle + CYCLE_DELAY; if (cycle >= 8000) { sec ++; cycle -= 8000; } cycle = roundup2(cycle, CYCLE_MOD); if (cycle >= 8000) { sec ++; if (cycle == 8000) cycle = 0; else cycle = CYCLE_MOD; } cycle_match = ((sec << 13) | cycle) & 0x7ffff; return(cycle_match); } static int fwohci_itxbuf_enable(struct firewire_comm *fc, int dmach) { struct fwohci_softc *sc = (struct fwohci_softc *)fc; int err = 0; struct fwohci_dbch *dbch; int cycle_match, cycle_now, ldesc; u_int32_t stat; struct fw_bulkxfer *first, *chunk, *prev; struct fw_xferq *it; dbch = &sc->it[dmach]; it = &dbch->xferq; if ((dbch->flags & FWOHCI_DBCH_INIT) == 0) { dbch->ndb = it->bnpacket * it->bnchunk; dbch->ndesc = 3; fwohci_db_init(sc, dbch); if ((dbch->flags & FWOHCI_DBCH_INIT) == 0) return ENOMEM; err = fwohci_tx_enable(sc, dbch); } if(err) return err; ldesc = dbch->ndesc - 1; crit_enter(); prev = STAILQ_LAST(&it->stdma, fw_bulkxfer, link); while ((chunk = STAILQ_FIRST(&it->stvalid)) != NULL) { struct fwohcidb *db; fwdma_sync_multiseg(it->buf, chunk->poffset, it->bnpacket, BUS_DMASYNC_PREWRITE); fwohci_txbufdb(sc, dmach, chunk); if (prev != NULL) { db = ((struct fwohcidb_tr *)(prev->end))->db; #if 0 /* XXX necessary? */ FWOHCI_DMA_SET(db[ldesc].db.desc.cmd, OHCI_BRANCH_ALWAYS); #endif #if 0 /* if bulkxfer->npacket changes */ db[ldesc].db.desc.depend = db[0].db.desc.depend = ((struct fwohcidb_tr *) (chunk->start))->bus_addr | dbch->ndesc; #else FWOHCI_DMA_SET(db[0].db.desc.depend, dbch->ndesc); FWOHCI_DMA_SET(db[ldesc].db.desc.depend, dbch->ndesc); #endif } STAILQ_REMOVE_HEAD(&it->stvalid, link); STAILQ_INSERT_TAIL(&it->stdma, chunk, link); prev = chunk; } fwdma_sync_multiseg_all(dbch->am, BUS_DMASYNC_PREWRITE); fwdma_sync_multiseg_all(dbch->am, BUS_DMASYNC_PREREAD); crit_exit(); stat = OREAD(sc, OHCI_ITCTL(dmach)); if (firewire_debug && (stat & OHCI_CNTL_CYCMATCH_S)) kprintf("stat 0x%x\n", stat); if (stat & (OHCI_CNTL_DMA_ACTIVE | OHCI_CNTL_CYCMATCH_S)) return 0; #if 0 OWRITE(sc, OHCI_ITCTLCLR(dmach), OHCI_CNTL_DMA_RUN); #endif OWRITE(sc, OHCI_IT_MASKCLR, 1 << dmach); OWRITE(sc, OHCI_IT_STATCLR, 1 << dmach); OWRITE(sc, OHCI_IT_MASK, 1 << dmach); OWRITE(sc, FWOHCI_INTMASK, OHCI_INT_DMA_IT); first = STAILQ_FIRST(&it->stdma); OWRITE(sc, OHCI_ITCMD(dmach), ((struct fwohcidb_tr *)(first->start))->bus_addr | dbch->ndesc); if (firewire_debug) { kprintf("fwohci_itxbuf_enable: kick 0x%08x\n", stat); #if 1 dump_dma(sc, ITX_CH + dmach); #endif } if ((stat & OHCI_CNTL_DMA_RUN) == 0) { #if 1 /* Don't start until all chunks are buffered */ if (STAILQ_FIRST(&it->stfree) != NULL) goto out; #endif #if 1 /* Clear cycle match counter bits */ OWRITE(sc, OHCI_ITCTLCLR(dmach), 0xffff0000); /* 2bit second + 13bit cycle */ cycle_now = (fc->cyctimer(fc) >> 12) & 0x7fff; cycle_match = fwohci_next_cycle(fc, cycle_now); OWRITE(sc, OHCI_ITCTL(dmach), OHCI_CNTL_CYCMATCH_S | (cycle_match << 16) | OHCI_CNTL_DMA_RUN); #else OWRITE(sc, OHCI_ITCTL(dmach), OHCI_CNTL_DMA_RUN); #endif if (firewire_debug) { kprintf("cycle_match: 0x%04x->0x%04x\n", cycle_now, cycle_match); dump_dma(sc, ITX_CH + dmach); dump_db(sc, ITX_CH + dmach); } } else if ((stat & OHCI_CNTL_CYCMATCH_S) == 0) { device_printf(sc->fc.dev, "IT DMA underrun (0x%08x)\n", stat); OWRITE(sc, OHCI_ITCTL(dmach), OHCI_CNTL_DMA_WAKE); } out: return err; } static int fwohci_irx_enable(struct firewire_comm *fc, int dmach) { struct fwohci_softc *sc = (struct fwohci_softc *)fc; int err = 0, ldesc; unsigned short tag, ich; u_int32_t stat; struct fwohci_dbch *dbch; struct fwohcidb_tr *db_tr; struct fw_bulkxfer *first, *prev, *chunk; struct fw_xferq *ir; dbch = &sc->ir[dmach]; ir = &dbch->xferq; if ((ir->flag & FWXFERQ_RUNNING) == 0) { tag = (ir->flag >> 6) & 3; ich = ir->flag & 0x3f; OWRITE(sc, OHCI_IRMATCH(dmach), tagbit[tag] | ich); ir->queued = 0; dbch->ndb = ir->bnpacket * ir->bnchunk; dbch->ndesc = 2; fwohci_db_init(sc, dbch); if ((dbch->flags & FWOHCI_DBCH_INIT) == 0) return ENOMEM; err = fwohci_rx_enable(sc, dbch); } if(err) return err; first = STAILQ_FIRST(&ir->stfree); if (first == NULL) { device_printf(fc->dev, "IR DMA no free chunk\n"); return 0; } ldesc = dbch->ndesc - 1; crit_enter(); prev = STAILQ_LAST(&ir->stdma, fw_bulkxfer, link); while ((chunk = STAILQ_FIRST(&ir->stfree)) != NULL) { struct fwohcidb *db; #if 1 /* XXX for if_fwe */ if (chunk->mbuf != NULL) { db_tr = (struct fwohcidb_tr *)(chunk->start); db_tr->dbcnt = 1; err = bus_dmamap_load_mbuf(dbch->dmat, db_tr->dma_map, chunk->mbuf, fwohci_execute_db2, db_tr, /* flags */0); FWOHCI_DMA_SET(db_tr->db[1].db.desc.cmd, OHCI_UPDATE | OHCI_INPUT_LAST | OHCI_INTERRUPT_ALWAYS | OHCI_BRANCH_ALWAYS); } #endif db = ((struct fwohcidb_tr *)(chunk->end))->db; FWOHCI_DMA_WRITE(db[ldesc].db.desc.res, 0); FWOHCI_DMA_CLEAR(db[ldesc].db.desc.depend, 0xf); if (prev != NULL) { db = ((struct fwohcidb_tr *)(prev->end))->db; FWOHCI_DMA_SET(db[ldesc].db.desc.depend, dbch->ndesc); } STAILQ_REMOVE_HEAD(&ir->stfree, link); STAILQ_INSERT_TAIL(&ir->stdma, chunk, link); prev = chunk; } fwdma_sync_multiseg_all(dbch->am, BUS_DMASYNC_PREWRITE); fwdma_sync_multiseg_all(dbch->am, BUS_DMASYNC_PREREAD); crit_exit(); stat = OREAD(sc, OHCI_IRCTL(dmach)); if (stat & OHCI_CNTL_DMA_ACTIVE) return 0; if (stat & OHCI_CNTL_DMA_RUN) { OWRITE(sc, OHCI_IRCTLCLR(dmach), OHCI_CNTL_DMA_RUN); device_printf(sc->fc.dev, "IR DMA overrun (0x%08x)\n", stat); } if (firewire_debug) kprintf("start IR DMA 0x%x\n", stat); OWRITE(sc, OHCI_IR_MASKCLR, 1 << dmach); OWRITE(sc, OHCI_IR_STATCLR, 1 << dmach); OWRITE(sc, OHCI_IR_MASK, 1 << dmach); OWRITE(sc, OHCI_IRCTLCLR(dmach), 0xf0000000); OWRITE(sc, OHCI_IRCTL(dmach), OHCI_CNTL_ISOHDR); OWRITE(sc, OHCI_IRCMD(dmach), ((struct fwohcidb_tr *)(first->start))->bus_addr | dbch->ndesc); OWRITE(sc, OHCI_IRCTL(dmach), OHCI_CNTL_DMA_RUN); OWRITE(sc, FWOHCI_INTMASK, OHCI_INT_DMA_IR); #if 0 dump_db(sc, IRX_CH + dmach); #endif return err; } int fwohci_stop(struct fwohci_softc *sc, device_t dev) { u_int i; /* Now stopping all DMA channel */ OWRITE(sc, OHCI_ARQCTLCLR, OHCI_CNTL_DMA_RUN); OWRITE(sc, OHCI_ARSCTLCLR, OHCI_CNTL_DMA_RUN); OWRITE(sc, OHCI_ATQCTLCLR, OHCI_CNTL_DMA_RUN); OWRITE(sc, OHCI_ATSCTLCLR, OHCI_CNTL_DMA_RUN); for( i = 0 ; i < sc->fc.nisodma ; i ++ ){ OWRITE(sc, OHCI_IRCTLCLR(i), OHCI_CNTL_DMA_RUN); OWRITE(sc, OHCI_ITCTLCLR(i), OHCI_CNTL_DMA_RUN); } /* FLUSH FIFO and reset Transmitter/Reciever */ OWRITE(sc, OHCI_HCCCTL, OHCI_HCC_RESET); /* Stop interrupt */ OWRITE(sc, FWOHCI_INTMASKCLR, OHCI_INT_EN | OHCI_INT_ERR | OHCI_INT_PHY_SID | OHCI_INT_PHY_INT | OHCI_INT_DMA_ATRQ | OHCI_INT_DMA_ATRS | OHCI_INT_DMA_PRRQ | OHCI_INT_DMA_PRRS | OHCI_INT_DMA_ARRQ | OHCI_INT_DMA_ARRS | OHCI_INT_PHY_BUS_R); if (sc->fc.arq != NULL && sc->fc.arq->maxq > 0) fw_drain_txq(&sc->fc); /* XXX Link down? Bus reset? */ return 0; } int fwohci_resume(struct fwohci_softc *sc, device_t dev) { int i; struct fw_xferq *ir; struct fw_bulkxfer *chunk; fwohci_reset(sc, dev); /* XXX resume isochronus receive automatically. (how about TX?) */ for(i = 0; i < sc->fc.nisodma; i ++) { ir = &sc->ir[i].xferq; if((ir->flag & FWXFERQ_RUNNING) != 0) { device_printf(sc->fc.dev, "resume iso receive ch: %d\n", i); ir->flag &= ~FWXFERQ_RUNNING; /* requeue stdma to stfree */ while((chunk = STAILQ_FIRST(&ir->stdma)) != NULL) { STAILQ_REMOVE_HEAD(&ir->stdma, link); STAILQ_INSERT_TAIL(&ir->stfree, chunk, link); } sc->fc.irx_enable(&sc->fc, i); } } bus_generic_resume(dev); sc->fc.ibr(&sc->fc); return 0; } #define ACK_ALL static void fwohci_intr_body(struct fwohci_softc *sc, u_int32_t stat, int count) { u_int32_t irstat, itstat; u_int i; struct firewire_comm *fc = (struct firewire_comm *)sc; #ifdef FWOHCI_DEBUG if(stat & OREAD(sc, FWOHCI_INTMASK)) device_printf(fc->dev, "INTERRUPT < %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s> 0x%08x, 0x%08x\n", stat & OHCI_INT_EN ? "DMA_EN ":"", stat & OHCI_INT_PHY_REG ? "PHY_REG ":"", stat & OHCI_INT_CYC_LONG ? "CYC_LONG ":"", stat & OHCI_INT_ERR ? "INT_ERR ":"", stat & OHCI_INT_CYC_ERR ? "CYC_ERR ":"", stat & OHCI_INT_CYC_LOST ? "CYC_LOST ":"", stat & OHCI_INT_CYC_64SECOND ? "CYC_64SECOND ":"", stat & OHCI_INT_CYC_START ? "CYC_START ":"", stat & OHCI_INT_PHY_INT ? "PHY_INT ":"", stat & OHCI_INT_PHY_BUS_R ? "BUS_RESET ":"", stat & OHCI_INT_PHY_SID ? "SID ":"", stat & OHCI_INT_LR_ERR ? "DMA_LR_ERR ":"", stat & OHCI_INT_PW_ERR ? "DMA_PW_ERR ":"", stat & OHCI_INT_DMA_IR ? "DMA_IR ":"", stat & OHCI_INT_DMA_IT ? "DMA_IT " :"", stat & OHCI_INT_DMA_PRRS ? "DMA_PRRS " :"", stat & OHCI_INT_DMA_PRRQ ? "DMA_PRRQ " :"", stat & OHCI_INT_DMA_ARRS ? "DMA_ARRS " :"", stat & OHCI_INT_DMA_ARRQ ? "DMA_ARRQ " :"", stat & OHCI_INT_DMA_ATRS ? "DMA_ATRS " :"", stat & OHCI_INT_DMA_ATRQ ? "DMA_ATRQ " :"", stat, OREAD(sc, FWOHCI_INTMASK) ); #endif /* Bus reset */ if(stat & OHCI_INT_PHY_BUS_R ){ if (fc->status == FWBUSRESET) goto busresetout; /* Disable bus reset interrupt until sid recv. */ OWRITE(sc, FWOHCI_INTMASKCLR, OHCI_INT_PHY_BUS_R); device_printf(fc->dev, "BUS reset\n"); OWRITE(sc, FWOHCI_INTMASKCLR, OHCI_INT_CYC_LOST); OWRITE(sc, OHCI_LNKCTLCLR, OHCI_CNTL_CYCSRC); OWRITE(sc, OHCI_ATQCTLCLR, OHCI_CNTL_DMA_RUN); sc->atrq.xferq.flag &= ~FWXFERQ_RUNNING; OWRITE(sc, OHCI_ATSCTLCLR, OHCI_CNTL_DMA_RUN); sc->atrs.xferq.flag &= ~FWXFERQ_RUNNING; #ifndef ACK_ALL OWRITE(sc, FWOHCI_INTSTATCLR, OHCI_INT_PHY_BUS_R); #endif fw_busreset(fc); OWRITE(sc, OHCI_CROMHDR, ntohl(sc->fc.config_rom[0])); OWRITE(sc, OHCI_BUS_OPT, ntohl(sc->fc.config_rom[2])); } busresetout: if((stat & OHCI_INT_DMA_IR )){ #ifndef ACK_ALL OWRITE(sc, FWOHCI_INTSTATCLR, OHCI_INT_DMA_IR); #endif irstat = atomic_readandclear_int(&sc->irstat); for(i = 0; i < fc->nisodma ; i++){ struct fwohci_dbch *dbch; if((irstat & (1 << i)) != 0){ dbch = &sc->ir[i]; if ((dbch->xferq.flag & FWXFERQ_OPEN) == 0) { device_printf(sc->fc.dev, "dma(%d) not active\n", i); continue; } fwohci_rbuf_update(sc, i); } } } if((stat & OHCI_INT_DMA_IT )){ #ifndef ACK_ALL OWRITE(sc, FWOHCI_INTSTATCLR, OHCI_INT_DMA_IT); #endif itstat = atomic_readandclear_int(&sc->itstat); for(i = 0; i < fc->nisodma ; i++){ if((itstat & (1 << i)) != 0){ fwohci_tbuf_update(sc, i); } } } if((stat & OHCI_INT_DMA_PRRS )){ #ifndef ACK_ALL OWRITE(sc, FWOHCI_INTSTATCLR, OHCI_INT_DMA_PRRS); #endif #if 0 dump_dma(sc, ARRS_CH); dump_db(sc, ARRS_CH); #endif fwohci_arcv(sc, &sc->arrs, count); } if((stat & OHCI_INT_DMA_PRRQ )){ #ifndef ACK_ALL OWRITE(sc, FWOHCI_INTSTATCLR, OHCI_INT_DMA_PRRQ); #endif #if 0 dump_dma(sc, ARRQ_CH); dump_db(sc, ARRQ_CH); #endif fwohci_arcv(sc, &sc->arrq, count); } if(stat & OHCI_INT_PHY_SID){ u_int32_t *buf, node_id; int plen; #ifndef ACK_ALL OWRITE(sc, FWOHCI_INTSTATCLR, OHCI_INT_PHY_SID); #endif /* Enable bus reset interrupt */ OWRITE(sc, FWOHCI_INTMASK, OHCI_INT_PHY_BUS_R); /* Allow async. request to us */ OWRITE(sc, OHCI_AREQHI, 1 << 31); /* XXX insecure ?? */ OWRITE(sc, OHCI_PREQHI, 0x7fffffff); OWRITE(sc, OHCI_PREQLO, 0xffffffff); OWRITE(sc, OHCI_PREQUPPER, 0x10000); /* Set ATRetries register */ OWRITE(sc, OHCI_ATRETRY, 1<<(13+16) | 0xfff); /* ** Checking whether the node is root or not. If root, turn on ** cycle master. */ node_id = OREAD(sc, FWOHCI_NODEID); plen = OREAD(sc, OHCI_SID_CNT); device_printf(fc->dev, "node_id=0x%08x, gen=%d, ", node_id, (plen >> 16) & 0xff); if (!(node_id & OHCI_NODE_VALID)) { kprintf("Bus reset failure\n"); goto sidout; } if (node_id & OHCI_NODE_ROOT) { kprintf("CYCLEMASTER mode\n"); OWRITE(sc, OHCI_LNKCTL, OHCI_CNTL_CYCMTR | OHCI_CNTL_CYCTIMER); } else { kprintf("non CYCLEMASTER mode\n"); OWRITE(sc, OHCI_LNKCTLCLR, OHCI_CNTL_CYCMTR); OWRITE(sc, OHCI_LNKCTL, OHCI_CNTL_CYCTIMER); } fc->nodeid = node_id & 0x3f; if (plen & OHCI_SID_ERR) { device_printf(fc->dev, "SID Error\n"); goto sidout; } plen &= OHCI_SID_CNT_MASK; if (plen < 4 || plen > OHCI_SIDSIZE) { device_printf(fc->dev, "invalid SID len = %d\n", plen); goto sidout; } plen -= 4; /* chop control info */ buf = (u_int32_t *)kmalloc(OHCI_SIDSIZE, M_FW, M_INTWAIT); if (buf == NULL) { device_printf(fc->dev, "malloc failed\n"); goto sidout; } for (i = 0; i < plen / 4; i ++) buf[i] = FWOHCI_DMA_READ(sc->sid_buf[i+1]); #if 1 /* pending all pre-bus_reset packets */ fwohci_txd(sc, &sc->atrq); fwohci_txd(sc, &sc->atrs); fwohci_arcv(sc, &sc->arrs, -1); fwohci_arcv(sc, &sc->arrq, -1); fw_drain_txq(fc); #endif fw_sidrcv(fc, buf, plen); kfree(buf, M_FW); } sidout: if((stat & OHCI_INT_DMA_ATRQ )){ #ifndef ACK_ALL OWRITE(sc, FWOHCI_INTSTATCLR, OHCI_INT_DMA_ATRQ); #endif fwohci_txd(sc, &(sc->atrq)); } if((stat & OHCI_INT_DMA_ATRS )){ #ifndef ACK_ALL OWRITE(sc, FWOHCI_INTSTATCLR, OHCI_INT_DMA_ATRS); #endif fwohci_txd(sc, &(sc->atrs)); } if((stat & OHCI_INT_PW_ERR )){ #ifndef ACK_ALL OWRITE(sc, FWOHCI_INTSTATCLR, OHCI_INT_PW_ERR); #endif /* permanently mask unsupported interrupt source */ OWRITE(sc, FWOHCI_INTMASKCLR, OHCI_INT_PW_ERR); device_printf(fc->dev, "posted write error\n"); } if((stat & OHCI_INT_ERR )){ #ifndef ACK_ALL OWRITE(sc, FWOHCI_INTSTATCLR, OHCI_INT_ERR); #endif /* permanently mask unsupported interrupt source */ OWRITE(sc, FWOHCI_INTMASKCLR, OHCI_INT_ERR); device_printf(fc->dev, "unrecoverable error\n"); } if((stat & OHCI_INT_PHY_INT)) { #ifndef ACK_ALL OWRITE(sc, FWOHCI_INTSTATCLR, OHCI_INT_PHY_INT); #endif /* permanently mask unsupported interrupt source */ OWRITE(sc, FWOHCI_INTMASKCLR, OHCI_INT_PHY_INT); /*device_printf(fc->dev, "phy int\n");*/ } return; } #if FWOHCI_TASKQUEUE static void fwohci_complete(void *arg, int pending) { struct fwohci_softc *sc = (struct fwohci_softc *)arg; u_int32_t stat; again: stat = atomic_readandclear_int(&sc->intstat); if (stat) fwohci_intr_body(sc, stat, -1); else return; goto again; } #endif static u_int32_t fwochi_check_stat(struct fwohci_softc *sc) { u_int32_t stat, irstat, itstat; stat = OREAD(sc, FWOHCI_INTSTAT); if (stat == 0xffffffff) { device_printf(sc->fc.dev, "device physically ejected?\n"); return(stat); } #ifdef ACK_ALL if (stat) OWRITE(sc, FWOHCI_INTSTATCLR, stat); #endif if (stat & OHCI_INT_DMA_IR) { irstat = OREAD(sc, OHCI_IR_STAT); OWRITE(sc, OHCI_IR_STATCLR, irstat); atomic_set_int(&sc->irstat, irstat); } if (stat & OHCI_INT_DMA_IT) { itstat = OREAD(sc, OHCI_IT_STAT); OWRITE(sc, OHCI_IT_STATCLR, itstat); atomic_set_int(&sc->itstat, itstat); } return(stat); } void fwohci_intr(void *arg) { struct fwohci_softc *sc = (struct fwohci_softc *)arg; u_int32_t stat; #if !FWOHCI_TASKQUEUE u_int32_t bus_reset = 0; #endif if (!(sc->intmask & OHCI_INT_EN)) { /* polling mode */ return; } #if !FWOHCI_TASKQUEUE again: #endif stat = fwochi_check_stat(sc); if (stat == 0 || stat == 0xffffffff) return; #if FWOHCI_TASKQUEUE atomic_set_int(&sc->intstat, stat); /* XXX mask bus reset intr. during bus reset phase */ if (stat) taskqueue_enqueue(taskqueue_swi_giant, &sc->fwohci_task_complete); #else /* We cannot clear bus reset event during bus reset phase */ if ((stat & ~bus_reset) == 0) return; bus_reset = stat & OHCI_INT_PHY_BUS_R; fwohci_intr_body(sc, stat, -1); goto again; #endif } void fwohci_poll(struct firewire_comm *fc, int quick, int count) { u_int32_t stat; struct fwohci_softc *sc; sc = (struct fwohci_softc *)fc; stat = OHCI_INT_DMA_IR | OHCI_INT_DMA_IT | OHCI_INT_DMA_PRRS | OHCI_INT_DMA_PRRQ | OHCI_INT_DMA_ATRQ | OHCI_INT_DMA_ATRS; #if 0 if (!quick) { #else if (1) { #endif stat = fwochi_check_stat(sc); if (stat == 0 || stat == 0xffffffff) return; } crit_enter(); fwohci_intr_body(sc, stat, count); crit_exit(); } static void fwohci_set_intr(struct firewire_comm *fc, int enable) { struct fwohci_softc *sc; sc = (struct fwohci_softc *)fc; if (bootverbose) device_printf(sc->fc.dev, "fwohci_set_intr: %d\n", enable); if (enable) { sc->intmask |= OHCI_INT_EN; OWRITE(sc, FWOHCI_INTMASK, OHCI_INT_EN); } else { sc->intmask &= ~OHCI_INT_EN; OWRITE(sc, FWOHCI_INTMASKCLR, OHCI_INT_EN); } } static void fwohci_tbuf_update(struct fwohci_softc *sc, int dmach) { struct firewire_comm *fc = &sc->fc; struct fwohcidb *db; struct fw_bulkxfer *chunk; struct fw_xferq *it; u_int32_t stat, count; int w=0, ldesc; it = fc->it[dmach]; ldesc = sc->it[dmach].ndesc - 1; crit_enter(); /* unnecessary? */ fwdma_sync_multiseg_all(sc->it[dmach].am, BUS_DMASYNC_POSTREAD); if (firewire_debug) dump_db(sc, ITX_CH + dmach); while ((chunk = STAILQ_FIRST(&it->stdma)) != NULL) { db = ((struct fwohcidb_tr *)(chunk->end))->db; stat = FWOHCI_DMA_READ(db[ldesc].db.desc.res) >> OHCI_STATUS_SHIFT; db = ((struct fwohcidb_tr *)(chunk->start))->db; /* timestamp */ count = FWOHCI_DMA_READ(db[ldesc].db.desc.res) & OHCI_COUNT_MASK; if (stat == 0) break; STAILQ_REMOVE_HEAD(&it->stdma, link); switch (stat & FWOHCIEV_MASK){ case FWOHCIEV_ACKCOMPL: #if 0 device_printf(fc->dev, "0x%08x\n", count); #endif break; default: device_printf(fc->dev, "Isochronous transmit err %02x(%s)\n", stat, fwohcicode[stat & 0x1f]); } STAILQ_INSERT_TAIL(&it->stfree, chunk, link); w++; } crit_exit(); if (w) wakeup(it); } static void fwohci_rbuf_update(struct fwohci_softc *sc, int dmach) { struct firewire_comm *fc = &sc->fc; struct fwohcidb_tr *db_tr; struct fw_bulkxfer *chunk; struct fw_xferq *ir; u_int32_t stat; int w=0, ldesc; ir = fc->ir[dmach]; ldesc = sc->ir[dmach].ndesc - 1; #if 0 dump_db(sc, dmach); #endif crit_enter(); fwdma_sync_multiseg_all(sc->ir[dmach].am, BUS_DMASYNC_POSTREAD); while ((chunk = STAILQ_FIRST(&ir->stdma)) != NULL) { db_tr = (struct fwohcidb_tr *)chunk->end; stat = FWOHCI_DMA_READ(db_tr->db[ldesc].db.desc.res) >> OHCI_STATUS_SHIFT; if (stat == 0) break; if (chunk->mbuf != NULL) { bus_dmamap_sync(sc->ir[dmach].dmat, db_tr->dma_map, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->ir[dmach].dmat, db_tr->dma_map); } else if (ir->buf != NULL) { fwdma_sync_multiseg(ir->buf, chunk->poffset, ir->bnpacket, BUS_DMASYNC_POSTREAD); } else { /* XXX */ kprintf("fwohci_rbuf_update: this shouldn't happen\n"); } STAILQ_REMOVE_HEAD(&ir->stdma, link); STAILQ_INSERT_TAIL(&ir->stvalid, chunk, link); switch (stat & FWOHCIEV_MASK) { case FWOHCIEV_ACKCOMPL: chunk->resp = 0; break; default: chunk->resp = EINVAL; device_printf(fc->dev, "Isochronous receive err %02x(%s)\n", stat, fwohcicode[stat & 0x1f]); } w++; } crit_exit(); if (w) { if (ir->flag & FWXFERQ_HANDLER) ir->hand(ir); else wakeup(ir); } } static void dump_dma(struct fwohci_softc *sc, u_int32_t ch) { u_int32_t off, cntl, stat, cmd, match; if(ch == 0){ off = OHCI_ATQOFF; }else if(ch == 1){ off = OHCI_ATSOFF; }else if(ch == 2){ off = OHCI_ARQOFF; }else if(ch == 3){ off = OHCI_ARSOFF; }else if(ch < IRX_CH){ off = OHCI_ITCTL(ch - ITX_CH); }else{ off = OHCI_IRCTL(ch - IRX_CH); } cntl = stat = OREAD(sc, off); cmd = OREAD(sc, off + 0xc); match = OREAD(sc, off + 0x10); device_printf(sc->fc.dev, "ch %1x cntl:0x%08x cmd:0x%08x match:0x%08x\n", ch, cntl, cmd, match); stat &= 0xffff ; if (stat) { device_printf(sc->fc.dev, "dma %d ch:%s%s%s%s%s%s %s(%x)\n", ch, stat & OHCI_CNTL_DMA_RUN ? "RUN," : "", stat & OHCI_CNTL_DMA_WAKE ? "WAKE," : "", stat & OHCI_CNTL_DMA_DEAD ? "DEAD," : "", stat & OHCI_CNTL_DMA_ACTIVE ? "ACTIVE," : "", stat & OHCI_CNTL_DMA_BT ? "BRANCH," : "", stat & OHCI_CNTL_DMA_BAD ? "BADDMA," : "", fwohcicode[stat & 0x1f], stat & 0x1f ); }else{ device_printf(sc->fc.dev, "dma %d ch: Nostat\n", ch); } } static void dump_db(struct fwohci_softc *sc, u_int32_t ch) { struct fwohci_dbch *dbch; struct fwohcidb_tr *cp = NULL, *pp, *np = NULL; struct fwohcidb *curr = NULL; #if 0 struct fwohcidb *prev, *next = NULL; #endif int idb, jdb; u_int32_t cmd, off; if(ch == 0){ off = OHCI_ATQOFF; dbch = &sc->atrq; }else if(ch == 1){ off = OHCI_ATSOFF; dbch = &sc->atrs; }else if(ch == 2){ off = OHCI_ARQOFF; dbch = &sc->arrq; }else if(ch == 3){ off = OHCI_ARSOFF; dbch = &sc->arrs; }else if(ch < IRX_CH){ off = OHCI_ITCTL(ch - ITX_CH); dbch = &sc->it[ch - ITX_CH]; }else { off = OHCI_IRCTL(ch - IRX_CH); dbch = &sc->ir[ch - IRX_CH]; } cmd = OREAD(sc, off + 0xc); if( dbch->ndb == 0 ){ device_printf(sc->fc.dev, "No DB is attached ch=%d\n", ch); return; } pp = dbch->top; #if 0 prev = pp->db; #endif for(idb = 0 ; idb < dbch->ndb ; idb ++ ){ if(pp == NULL){ curr = NULL; goto outdb; } cp = STAILQ_NEXT(pp, link); if(cp == NULL){ curr = NULL; goto outdb; } np = STAILQ_NEXT(cp, link); for(jdb = 0 ; jdb < dbch->ndesc ; jdb ++ ){ if ((cmd & 0xfffffff0) == cp->bus_addr) { curr = cp->db; #if 0 if(np != NULL){ next = np->db; }else{ next = NULL; } #endif goto outdb; } } pp = STAILQ_NEXT(pp, link); #if 0 prev = pp->db; #endif } outdb: if( curr != NULL){ #if 0 kprintf("Prev DB %d\n", ch); print_db(pp, prev, ch, dbch->ndesc); #endif kprintf("Current DB %d\n", ch); print_db(cp, curr, ch, dbch->ndesc); #if 0 kprintf("Next DB %d\n", ch); print_db(np, next, ch, dbch->ndesc); #endif }else{ kprintf("dbdump err ch = %d cmd = 0x%08x\n", ch, cmd); } return; } static void print_db(struct fwohcidb_tr *db_tr, struct fwohcidb *db, u_int32_t ch, u_int32_t max) { fwohcireg_t stat; int i, key; u_int32_t cmd, res; if(db == NULL){ kprintf("No Descriptor is found\n"); return; } kprintf("ch = %d\n%8s %s %s %s %s %4s %8s %8s %4s:%4s\n", ch, "Current", "OP ", "KEY", "INT", "BR ", "len", "Addr", "Depend", "Stat", "Cnt"); for( i = 0 ; i <= max ; i ++){ cmd = FWOHCI_DMA_READ(db[i].db.desc.cmd); res = FWOHCI_DMA_READ(db[i].db.desc.res); key = cmd & OHCI_KEY_MASK; stat = res >> OHCI_STATUS_SHIFT; kprintf("%08jx %s %s %s %s %5d %08lx %08lx %04x:%04x", (uintmax_t)db_tr->bus_addr, dbcode[(cmd >> 28) & 0xf], dbkey[(cmd >> 24) & 0x7], dbcond[(cmd >> 20) & 0x3], dbcond[(cmd >> 18) & 0x3], cmd & OHCI_COUNT_MASK, (u_long)FWOHCI_DMA_READ(db[i].db.desc.addr), (u_long)FWOHCI_DMA_READ(db[i].db.desc.depend), (u_int)stat, (u_int)(res & OHCI_COUNT_MASK)); if(stat & 0xff00){ kprintf(" %s%s%s%s%s%s %s(%x)\n", stat & OHCI_CNTL_DMA_RUN ? "RUN," : "", stat & OHCI_CNTL_DMA_WAKE ? "WAKE," : "", stat & OHCI_CNTL_DMA_DEAD ? "DEAD," : "", stat & OHCI_CNTL_DMA_ACTIVE ? "ACTIVE," : "", stat & OHCI_CNTL_DMA_BT ? "BRANCH," : "", stat & OHCI_CNTL_DMA_BAD ? "BADDMA," : "", fwohcicode[stat & 0x1f], stat & 0x1f ); }else{ kprintf(" Nostat\n"); } if(key == OHCI_KEY_ST2 ){ kprintf("0x%08x 0x%08x 0x%08x 0x%08x\n", FWOHCI_DMA_READ(db[i+1].db.immed[0]), FWOHCI_DMA_READ(db[i+1].db.immed[1]), FWOHCI_DMA_READ(db[i+1].db.immed[2]), FWOHCI_DMA_READ(db[i+1].db.immed[3])); } if(key == OHCI_KEY_DEVICE){ return; } if((cmd & OHCI_BRANCH_MASK) == OHCI_BRANCH_ALWAYS){ return; } if((cmd & OHCI_CMD_MASK) == OHCI_OUTPUT_LAST){ return; } if((cmd & OHCI_CMD_MASK) == OHCI_INPUT_LAST){ return; } if(key == OHCI_KEY_ST2 ){ i++; } } return; } static void fwohci_ibr(struct firewire_comm *fc) { struct fwohci_softc *sc; u_int32_t fun; device_printf(fc->dev, "Initiate bus reset\n"); sc = (struct fwohci_softc *)fc; /* * Set root hold-off bit so that non cyclemaster capable node * shouldn't became the root node. */ #if 1 fun = fwphy_rddata(sc, FW_PHY_IBR_REG); fun |= FW_PHY_IBR | FW_PHY_RHB; fun = fwphy_wrdata(sc, FW_PHY_IBR_REG, fun); #else /* Short bus reset */ fun = fwphy_rddata(sc, FW_PHY_ISBR_REG); fun |= FW_PHY_ISBR | FW_PHY_RHB; fun = fwphy_wrdata(sc, FW_PHY_ISBR_REG, fun); #endif } void fwohci_txbufdb(struct fwohci_softc *sc, int dmach, struct fw_bulkxfer *bulkxfer) { struct fwohcidb_tr *db_tr; #if 0 struct fwohcidb_tr *fdb_tr; #endif struct fwohci_dbch *dbch; struct fwohcidb *db; struct fw_pkt *fp; struct fwohci_txpkthdr *ohcifp; unsigned short chtag; int idb; dbch = &sc->it[dmach]; chtag = sc->it[dmach].xferq.flag & 0xff; db_tr = (struct fwohcidb_tr *)(bulkxfer->start); #if 0 fdb_tr = (struct fwohcidb_tr *)(bulkxfer->end); device_printf(sc->fc.dev, "DB %08x %08x %08x\n", bulkxfer, db_tr->bus_addr, fdb_tr->bus_addr); #endif for (idb = 0; idb < dbch->xferq.bnpacket; idb ++) { db = db_tr->db; fp = (struct fw_pkt *)db_tr->buf; ohcifp = (struct fwohci_txpkthdr *) db[1].db.immed; ohcifp->mode.ld[0] = fp->mode.ld[0]; ohcifp->mode.common.spd = 0 & 0x7; ohcifp->mode.stream.len = fp->mode.stream.len; ohcifp->mode.stream.chtag = chtag; ohcifp->mode.stream.tcode = 0xa; #if BYTE_ORDER == BIG_ENDIAN FWOHCI_DMA_WRITE(db[1].db.immed[0], db[1].db.immed[0]); FWOHCI_DMA_WRITE(db[1].db.immed[1], db[1].db.immed[1]); #endif FWOHCI_DMA_CLEAR(db[2].db.desc.cmd, OHCI_COUNT_MASK); FWOHCI_DMA_SET(db[2].db.desc.cmd, fp->mode.stream.len); FWOHCI_DMA_WRITE(db[2].db.desc.res, 0); #if 0 /* if bulkxfer->npackets changes */ db[2].db.desc.cmd = OHCI_OUTPUT_LAST | OHCI_UPDATE | OHCI_BRANCH_ALWAYS; db[0].db.desc.depend = = db[dbch->ndesc - 1].db.desc.depend = STAILQ_NEXT(db_tr, link)->bus_addr | dbch->ndesc; #else FWOHCI_DMA_SET(db[0].db.desc.depend, dbch->ndesc); FWOHCI_DMA_SET(db[dbch->ndesc - 1].db.desc.depend, dbch->ndesc); #endif bulkxfer->end = (caddr_t)db_tr; db_tr = STAILQ_NEXT(db_tr, link); } db = ((struct fwohcidb_tr *)bulkxfer->end)->db; FWOHCI_DMA_CLEAR(db[0].db.desc.depend, 0xf); FWOHCI_DMA_CLEAR(db[dbch->ndesc - 1].db.desc.depend, 0xf); #if 0 /* if bulkxfer->npackets changes */ db[dbch->ndesc - 1].db.desc.control |= OHCI_INTERRUPT_ALWAYS; /* OHCI 1.1 and above */ db[0].db.desc.control |= OHCI_INTERRUPT_ALWAYS; #endif /* db_tr = (struct fwohcidb_tr *)bulkxfer->start; fdb_tr = (struct fwohcidb_tr *)bulkxfer->end; device_printf(sc->fc.dev, "DB %08x %3d %08x %08x\n", bulkxfer, bulkxfer->npacket, db_tr->bus_addr, fdb_tr->bus_addr); */ return; } static int fwohci_add_tx_buf(struct fwohci_dbch *dbch, struct fwohcidb_tr *db_tr, int poffset) { struct fwohcidb *db = db_tr->db; struct fw_xferq *it; int err = 0; it = &dbch->xferq; if(it->buf == NULL) { err = EINVAL; return err; } db_tr->buf = fwdma_v_addr(it->buf, poffset); db_tr->dbcnt = 3; FWOHCI_DMA_WRITE(db[0].db.desc.cmd, OHCI_OUTPUT_MORE | OHCI_KEY_ST2 | 8); FWOHCI_DMA_WRITE(db[0].db.desc.addr, 0); bzero((void *)&db[1].db.immed[0], sizeof(db[1].db.immed)); FWOHCI_DMA_WRITE(db[2].db.desc.addr, fwdma_bus_addr(it->buf, poffset) + sizeof(u_int32_t)); FWOHCI_DMA_WRITE(db[2].db.desc.cmd, OHCI_OUTPUT_LAST | OHCI_UPDATE | OHCI_BRANCH_ALWAYS); #if 1 FWOHCI_DMA_WRITE(db[0].db.desc.res, 0); FWOHCI_DMA_WRITE(db[2].db.desc.res, 0); #endif return 0; } static int fwohci_add_rx_buf(struct fwohci_dbch *dbch, struct fwohcidb_tr *db_tr, int poffset, struct fwdma_alloc *dummy_dma) { struct fwohcidb *db = db_tr->db; struct fw_xferq *ir; int i, ldesc; bus_addr_t dbuf[2]; int dsiz[2]; ir = &dbch->xferq; if (ir->buf == NULL && (dbch->xferq.flag & FWXFERQ_EXTBUF) == 0) { db_tr->buf = fwdma_malloc_size(dbch->dmat, &db_tr->dma_map, ir->psize, &dbuf[0], BUS_DMA_NOWAIT); if (db_tr->buf == NULL) return(ENOMEM); db_tr->dbcnt = 1; dsiz[0] = ir->psize; bus_dmamap_sync(dbch->dmat, db_tr->dma_map, BUS_DMASYNC_PREREAD); } else { db_tr->dbcnt = 0; if (dummy_dma != NULL) { dsiz[db_tr->dbcnt] = sizeof(u_int32_t); dbuf[db_tr->dbcnt++] = dummy_dma->bus_addr; } dsiz[db_tr->dbcnt] = ir->psize; if (ir->buf != NULL) { db_tr->buf = fwdma_v_addr(ir->buf, poffset); dbuf[db_tr->dbcnt] = fwdma_bus_addr( ir->buf, poffset); } db_tr->dbcnt++; } for(i = 0 ; i < db_tr->dbcnt ; i++){ FWOHCI_DMA_WRITE(db[i].db.desc.addr, dbuf[i]); FWOHCI_DMA_WRITE(db[i].db.desc.cmd, OHCI_INPUT_MORE | dsiz[i]); if (ir->flag & FWXFERQ_STREAM) { FWOHCI_DMA_SET(db[i].db.desc.cmd, OHCI_UPDATE); } FWOHCI_DMA_WRITE(db[i].db.desc.res, dsiz[i]); } ldesc = db_tr->dbcnt - 1; if (ir->flag & FWXFERQ_STREAM) { FWOHCI_DMA_SET(db[ldesc].db.desc.cmd, OHCI_INPUT_LAST); } FWOHCI_DMA_SET(db[ldesc].db.desc.cmd, OHCI_BRANCH_ALWAYS); return 0; } static int fwohci_arcv_swap(struct fw_pkt *fp, int len) { struct fw_pkt *fp0; u_int32_t ld0; int hlen; #if BYTE_ORDER == BIG_ENDIAN int slen, i; #endif ld0 = FWOHCI_DMA_READ(fp->mode.ld[0]); #if 0 kprintf("ld0: x%08x\n", ld0); #endif fp0 = (struct fw_pkt *)&ld0; /* determine length to swap */ switch (fp0->mode.common.tcode) { case FWTCODE_RREQQ: case FWTCODE_WRES: case FWTCODE_WREQQ: case FWTCODE_RRESQ: case FWOHCITCODE_PHY: #if BYTE_ORDER == BIG_ENDIAN slen = 12; break; #endif case FWTCODE_RREQB: case FWTCODE_WREQB: case FWTCODE_LREQ: case FWTCODE_RRESB: case FWTCODE_LRES: #if BYTE_ORDER == BIG_ENDIAN slen = 16; break; #endif default: kprintf("Unknown tcode %d\n", fp0->mode.common.tcode); return(0); } hlen = tinfo[fp0->mode.common.tcode].hdr_len; if (hlen > len) { if (firewire_debug) kprintf("split header\n"); return(-hlen); } #if BYTE_ORDER == BIG_ENDIAN for(i = 0; i < slen/4; i ++) fp->mode.ld[i] = FWOHCI_DMA_READ(fp->mode.ld[i]); #endif return(hlen); } static int fwohci_get_plen(struct fwohci_softc *sc, struct fwohci_dbch *dbch, struct fw_pkt *fp) { struct tcode_info *info; int r; info = &tinfo[fp->mode.common.tcode]; r = info->hdr_len + sizeof(u_int32_t); if ((info->flag & FWTI_BLOCK_ASY) != 0) r += roundup2(fp->mode.wreqb.len, sizeof(u_int32_t)); if (r == sizeof(u_int32_t)) /* XXX */ device_printf(sc->fc.dev, "Unknown tcode %d\n", fp->mode.common.tcode); if (r > dbch->xferq.psize) { device_printf(sc->fc.dev, "Invalid packet length %d\n", r); /* panic ? */ } return r; } static void fwohci_arcv_free_buf(struct fwohci_dbch *dbch, struct fwohcidb_tr *db_tr) { struct fwohcidb *db = &db_tr->db[0]; FWOHCI_DMA_CLEAR(db->db.desc.depend, 0xf); FWOHCI_DMA_WRITE(db->db.desc.res, dbch->xferq.psize); FWOHCI_DMA_SET(dbch->bottom->db[0].db.desc.depend, 1); fwdma_sync_multiseg_all(dbch->am, BUS_DMASYNC_PREWRITE); dbch->bottom = db_tr; } static void fwohci_arcv(struct fwohci_softc *sc, struct fwohci_dbch *dbch, int count) { struct fwohcidb_tr *db_tr; struct iovec vec[2]; struct fw_pkt pktbuf; int nvec; struct fw_pkt *fp; u_int8_t *ld; u_int32_t stat, status; u_int spd; int len, plen, hlen, pcnt, offset; caddr_t buf; int resCount; if (&sc->arrq != dbch && &sc->arrs != dbch) return; crit_enter(); db_tr = dbch->top; pcnt = 0; /* XXX we cannot handle a packet which lies in more than two buf */ fwdma_sync_multiseg_all(dbch->am, BUS_DMASYNC_POSTREAD); fwdma_sync_multiseg_all(dbch->am, BUS_DMASYNC_POSTWRITE); status = FWOHCI_DMA_READ(db_tr->db[0].db.desc.res) >> OHCI_STATUS_SHIFT; resCount = FWOHCI_DMA_READ(db_tr->db[0].db.desc.res) & OHCI_COUNT_MASK; #if 0 kprintf("status 0x%04x, resCount 0x%04x\n", status, resCount); #endif while (status & OHCI_CNTL_DMA_ACTIVE) { len = dbch->xferq.psize - resCount; ld = (u_int8_t *)db_tr->buf; if (dbch->pdb_tr == NULL) { len -= dbch->buf_offset; ld += dbch->buf_offset; } if (len > 0) bus_dmamap_sync(dbch->dmat, db_tr->dma_map, BUS_DMASYNC_POSTREAD); while (len > 0 ) { if (count >= 0 && count-- == 0) goto out; if(dbch->pdb_tr != NULL){ /* we have a fragment in previous buffer */ int rlen; offset = dbch->buf_offset; if (offset < 0) offset = - offset; buf = dbch->pdb_tr->buf + offset; rlen = dbch->xferq.psize - offset; if (firewire_debug) kprintf("rlen=%d, offset=%d\n", rlen, dbch->buf_offset); if (dbch->buf_offset < 0) { /* split in header, pull up */ char *p; p = (char *)&pktbuf; bcopy(buf, p, rlen); p += rlen; /* this must be too long but harmless */ rlen = sizeof(pktbuf) - rlen; if (rlen < 0) kprintf("why rlen < 0\n"); bcopy(db_tr->buf, p, rlen); ld += rlen; len -= rlen; hlen = fwohci_arcv_swap(&pktbuf, sizeof(pktbuf)); if (hlen < 0) { kprintf("hlen < 0 shouldn't happen"); } offset = sizeof(pktbuf); vec[0].iov_base = (char *)&pktbuf; vec[0].iov_len = offset; } else { /* split in payload */ offset = rlen; vec[0].iov_base = buf; vec[0].iov_len = rlen; } fp=(struct fw_pkt *)vec[0].iov_base; nvec = 1; } else { /* no fragment in previous buffer */ fp=(struct fw_pkt *)ld; hlen = fwohci_arcv_swap(fp, len); if (hlen == 0) /* XXX need reset */ goto out; if (hlen < 0) { dbch->pdb_tr = db_tr; dbch->buf_offset = - dbch->buf_offset; /* sanity check */ if (resCount != 0) kprintf("resCount = %d !?\n", resCount); /* XXX clear pdb_tr */ goto out; } offset = 0; nvec = 0; } plen = fwohci_get_plen(sc, dbch, fp) - offset; if (plen < 0) { /* minimum header size + trailer = sizeof(fw_pkt) so this shouldn't happens */ kprintf("plen(%d) is negative! offset=%d\n", plen, offset); /* XXX clear pdb_tr */ goto out; } if (plen > 0) { len -= plen; if (len < 0) { dbch->pdb_tr = db_tr; if (firewire_debug) kprintf("split payload\n"); /* sanity check */ if (resCount != 0) kprintf("resCount = %d !?\n", resCount); /* XXX clear pdb_tr */ goto out; } vec[nvec].iov_base = ld; vec[nvec].iov_len = plen; nvec ++; ld += plen; } dbch->buf_offset = ld - (u_int8_t *)db_tr->buf; if (nvec == 0) kprintf("nvec == 0\n"); /* DMA result-code will be written at the tail of packet */ #if BYTE_ORDER == BIG_ENDIAN stat = FWOHCI_DMA_READ(((struct fwohci_trailer *)(ld - sizeof(struct fwohci_trailer)))->stat) >> 16; #else stat = ((struct fwohci_trailer *)(ld - sizeof(struct fwohci_trailer)))->stat; #endif #if 0 kprintf("plen: %d, stat %x\n", plen ,stat); #endif spd = (stat >> 5) & 0x3; stat &= 0x1f; switch(stat){ case FWOHCIEV_ACKPEND: #if 0 kprintf("fwohci_arcv: ack pending tcode=0x%x..\n", fp->mode.common.tcode); #endif /* fall through */ case FWOHCIEV_ACKCOMPL: { struct fw_rcv_buf rb; if ((vec[nvec-1].iov_len -= sizeof(struct fwohci_trailer)) == 0) nvec--; rb.fc = &sc->fc; rb.vec = vec; rb.nvec = nvec; rb.spd = spd; fw_rcv(&rb); break; } case FWOHCIEV_BUSRST: if (sc->fc.status != FWBUSRESET) kprintf("got BUSRST packet!?\n"); break; default: device_printf(sc->fc.dev, "Async DMA Receive error err = %02x %s\n", stat, fwohcicode[stat]); #if 0 /* XXX */ goto out; #endif break; } pcnt ++; if (dbch->pdb_tr != NULL) { fwohci_arcv_free_buf(dbch, dbch->pdb_tr); dbch->pdb_tr = NULL; } } out: if (resCount == 0) { /* done on this buffer */ if (dbch->pdb_tr == NULL) { fwohci_arcv_free_buf(dbch, db_tr); dbch->buf_offset = 0; } else if (dbch->pdb_tr != db_tr) kprintf("pdb_tr != db_tr\n"); db_tr = STAILQ_NEXT(db_tr, link); status = FWOHCI_DMA_READ(db_tr->db[0].db.desc.res) >> OHCI_STATUS_SHIFT; resCount = FWOHCI_DMA_READ(db_tr->db[0].db.desc.res) & OHCI_COUNT_MASK; /* XXX check buffer overrun */ dbch->top = db_tr; } else { dbch->buf_offset = dbch->xferq.psize - resCount; break; } /* XXX make sure DMA is not dead */ } #if 0 if (pcnt < 1) kprintf("fwohci_arcv: no packets\n"); #endif crit_exit(); }