/* * Copyright (c) 2013 Qualcomm Atheros, Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH * REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY * AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, * INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM * LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR * OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR * PERFORMANCE OF THIS SOFTWARE. */ #ifndef _ATH_AR9300_EEP_H_ #define _ATH_AR9300_EEP_H_ #include "opt_ah.h" #include "ah.h" #if defined(WIN32) || defined(WIN64) #pragma pack (push, ar9300, 1) #endif /* FreeBSD extras - should be in ah_eeprom.h ? */ #define AR_EEPROM_EEPCAP_COMPRESS_DIS 0x0001 #define AR_EEPROM_EEPCAP_AES_DIS 0x0002 #define AR_EEPROM_EEPCAP_FASTFRAME_DIS 0x0004 #define AR_EEPROM_EEPCAP_BURST_DIS 0x0008 #define AR_EEPROM_EEPCAP_MAXQCU 0x01F0 #define AR_EEPROM_EEPCAP_MAXQCU_S 4 #define AR_EEPROM_EEPCAP_HEAVY_CLIP_EN 0x0200 #define AR_EEPROM_EEPCAP_KC_ENTRIES 0xF000 #define AR_EEPROM_EEPCAP_KC_ENTRIES_S 12 #define MSTATE 100 #define MOUTPUT 2048 #define MDEFAULT 15 #define MVALUE 100 enum CompressAlgorithm { _compress_none = 0, _compress_lzma, _compress_pairs, _compress_block, _compress4, _compress5, _compress6, _compress7, }; enum { calibration_data_none = 0, calibration_data_dram, calibration_data_flash, calibration_data_eeprom, calibration_data_otp, #ifdef ATH_CAL_NAND_FLASH calibration_data_nand, #endif CalibrationDataDontLoad, }; #define HOST_CALDATA_SIZE (16*1024) // // DO NOT CHANGE THE DEFINTIONS OF THESE SYMBOLS. // Add additional definitions to the end. // Yes, the first one is 2. Do not use 0 or 1. // enum Ar9300EepromTemplate { ar9300_eeprom_template_generic = 2, ar9300_eeprom_template_hb112 = 3, ar9300_eeprom_template_hb116 = 4, ar9300_eeprom_template_xb112 = 5, ar9300_eeprom_template_xb113 = 6, ar9300_eeprom_template_xb114 = 7, ar9300_eeprom_template_tb417 = 8, ar9300_eeprom_template_ap111 = 9, ar9300_eeprom_template_ap121 = 10, ar9300_eeprom_template_hornet_generic = 11, ar9300_eeprom_template_wasp_2 = 12, ar9300_eeprom_template_wasp_k31 = 13, ar9300_eeprom_template_osprey_k31 = 14, ar9300_eeprom_template_aphrodite = 15 }; #define ar9300_eeprom_template_default ar9300_eeprom_template_generic #define Ar9300EepromFormatDefault 2 #define reference_current 0 #define compression_header_length 4 #define compression_checksum_length 2 #define OSPREY_EEP_VER 0xD000 #define OSPREY_EEP_VER_MINOR_MASK 0xFFF #define OSPREY_EEP_MINOR_VER_1 0x1 #define OSPREY_EEP_MINOR_VER OSPREY_EEP_MINOR_VER_1 // 16-bit offset location start of calibration struct #define OSPREY_EEP_START_LOC 256 #define OSPREY_NUM_5G_CAL_PIERS 8 #define OSPREY_NUM_2G_CAL_PIERS 3 #define OSPREY_NUM_5G_20_TARGET_POWERS 8 #define OSPREY_NUM_5G_40_TARGET_POWERS 8 #define OSPREY_NUM_2G_CCK_TARGET_POWERS 2 #define OSPREY_NUM_2G_20_TARGET_POWERS 3 #define OSPREY_NUM_2G_40_TARGET_POWERS 3 //#define OSPREY_NUM_CTLS 21 #define OSPREY_NUM_CTLS_5G 9 #define OSPREY_NUM_CTLS_2G 12 #define OSPREY_CTL_MODE_M 0xF #define OSPREY_NUM_BAND_EDGES_5G 8 #define OSPREY_NUM_BAND_EDGES_2G 4 #define OSPREY_NUM_PD_GAINS 4 #define OSPREY_PD_GAINS_IN_MASK 4 #define OSPREY_PD_GAIN_ICEPTS 5 #define OSPREY_EEPROM_MODAL_SPURS 5 #define OSPREY_MAX_RATE_POWER 63 #define OSPREY_NUM_PDADC_VALUES 128 #define OSPREY_NUM_RATES 16 #define OSPREY_BCHAN_UNUSED 0xFF #define OSPREY_MAX_PWR_RANGE_IN_HALF_DB 64 #define OSPREY_OPFLAGS_11A 0x01 #define OSPREY_OPFLAGS_11G 0x02 #define OSPREY_OPFLAGS_5G_HT40 0x04 #define OSPREY_OPFLAGS_2G_HT40 0x08 #define OSPREY_OPFLAGS_5G_HT20 0x10 #define OSPREY_OPFLAGS_2G_HT20 0x20 #define OSPREY_EEPMISC_BIG_ENDIAN 0x01 #define OSPREY_EEPMISC_WOW 0x02 #define OSPREY_CUSTOMER_DATA_SIZE 20 #define FREQ2FBIN(x,y) \ (((int)(y) == (int)HAL_FREQ_BAND_2GHZ) ? ((x) - 2300) : (((x) - 4800) / 5)) #define FBIN2FREQ(x,y) \ (((int)(y) == (int)HAL_FREQ_BAND_2GHZ) ? (2300 + x) : (4800 + 5 * x)) #define OSPREY_MAX_CHAINS 3 #define OSPREY_ANT_16S 25 #define OSPREY_FUTURE_MODAL_SZ 6 #define OSPREY_NUM_ANT_CHAIN_FIELDS 7 #define OSPREY_NUM_ANT_COMMON_FIELDS 4 #define OSPREY_SIZE_ANT_CHAIN_FIELD 3 #define OSPREY_SIZE_ANT_COMMON_FIELD 4 #define OSPREY_ANT_CHAIN_MASK 0x7 #define OSPREY_ANT_COMMON_MASK 0xf #define OSPREY_CHAIN_0_IDX 0 #define OSPREY_CHAIN_1_IDX 1 #define OSPREY_CHAIN_2_IDX 2 #define OSPREY_1_CHAINMASK 1 #define OSPREY_2LOHI_CHAINMASK 5 #define OSPREY_2LOMID_CHAINMASK 3 #define OSPREY_3_CHAINMASK 7 #define AR928X_NUM_ANT_CHAIN_FIELDS 6 #define AR928X_SIZE_ANT_CHAIN_FIELD 2 #define AR928X_ANT_CHAIN_MASK 0x3 /* Delta from which to start power to pdadc table */ /* This offset is used in both open loop and closed loop power control * schemes. In open loop power control, it is not really needed, but for * the "sake of consistency" it was kept. * For certain AP designs, this value is overwritten by the value in the flag * "pwrTableOffset" just before writing the pdadc vs pwr into the chip registers. */ #define OSPREY_PWR_TABLE_OFFSET 0 //enable flags for voltage and temp compensation #define ENABLE_TEMP_COMPENSATION 0x01 #define ENABLE_VOLT_COMPENSATION 0x02 #define FLASH_BASE_CALDATA_OFFSET 0x1000 #define AR9300_EEPROM_SIZE 16*1024 // byte addressable #define FIXED_CCA_THRESHOLD 15 typedef struct eepFlags { u_int8_t op_flags; u_int8_t eepMisc; } __packed EEP_FLAGS; typedef enum targetPowerHTRates { HT_TARGET_RATE_0_8_16, HT_TARGET_RATE_1_3_9_11_17_19, HT_TARGET_RATE_4, HT_TARGET_RATE_5, HT_TARGET_RATE_6, HT_TARGET_RATE_7, HT_TARGET_RATE_12, HT_TARGET_RATE_13, HT_TARGET_RATE_14, HT_TARGET_RATE_15, HT_TARGET_RATE_20, HT_TARGET_RATE_21, HT_TARGET_RATE_22, HT_TARGET_RATE_23 }TARGET_POWER_HT_RATES; static const int mapRate2Index[24]= { 0,1,1,1,2, 3,4,5,0,1, 1,1,6,7,8, 9,0,1,1,1, 10,11,12,13 }; typedef enum targetPowerLegacyRates { LEGACY_TARGET_RATE_6_24, LEGACY_TARGET_RATE_36, LEGACY_TARGET_RATE_48, LEGACY_TARGET_RATE_54 }TARGET_POWER_LEGACY_RATES; typedef enum targetPowerCckRates { LEGACY_TARGET_RATE_1L_5L, LEGACY_TARGET_RATE_5S, LEGACY_TARGET_RATE_11L, LEGACY_TARGET_RATE_11S }TARGET_POWER_CCK_RATES; #define MAX_MODAL_RESERVED 11 #define MAX_MODAL_FUTURE 5 #define MAX_BASE_EXTENSION_FUTURE 2 #define MAX_TEMP_SLOPE 8 #define OSPREY_CHECKSUM_LOCATION (OSPREY_EEP_START_LOC + 1) typedef struct osprey_BaseEepHeader { u_int16_t reg_dmn[2]; //Does this need to be outside of this structure, if it gets written after calibration u_int8_t txrx_mask; //4 bits tx and 4 bits rx EEP_FLAGS op_cap_flags; u_int8_t rf_silent; u_int8_t blue_tooth_options; u_int8_t device_cap; u_int8_t device_type; // takes lower byte in eeprom location int8_t pwrTableOffset; // offset in dB to be added to beginning of pdadc table in calibration u_int8_t params_for_tuning_caps[2]; //placeholder, get more details from Don u_int8_t feature_enable; //bit0 - enable tx temp comp //bit1 - enable tx volt comp //bit2 - enable fastClock - default to 1 //bit3 - enable doubling - default to 1 //bit4 - enable internal regulator - default to 1 //bit5 - enable paprd - default to 0 //bit6 - enable TuningCaps - default to 0 //bit7 - enable tx_frame_to_xpa_on - default to 0 u_int8_t misc_configuration; //misc flags: bit0 - turn down drivestrength // bit 1:2 - 0=don't force, 1=force to thermometer 0, 2=force to thermometer 1, 3=force to thermometer 2 // bit 3 - reduce chain mask from 0x7 to 0x3 on 2 stream rates // bit 4 - enable quick drop // bit 5 - enable 8 temp slop // bit 6; enable xLNA_bias_strength // bit 7; enable rf_gain_cap u_int8_t eeprom_write_enable_gpio; u_int8_t wlan_disable_gpio; u_int8_t wlan_led_gpio; u_int8_t rx_band_select_gpio; u_int8_t txrxgain; u_int32_t swreg; // SW controlled internal regulator fields } __packed OSPREY_BASE_EEP_HEADER; typedef struct osprey_BaseExtension_1 { u_int8_t ant_div_control; u_int8_t future[MAX_BASE_EXTENSION_FUTURE]; u_int8_t misc_enable; int8_t tempslopextension[MAX_TEMP_SLOPE]; int8_t quick_drop_low; int8_t quick_drop_high; } __packed OSPREY_BASE_EXTENSION_1; typedef struct osprey_BaseExtension_2 { int8_t temp_slope_low; int8_t temp_slope_high; u_int8_t xatten1_db_low[OSPREY_MAX_CHAINS]; // 3 //xatten1_db for merlin (0xa20c/b20c 5:0) u_int8_t xatten1_margin_low[OSPREY_MAX_CHAINS]; // 3 //xatten1_margin for merlin (0xa20c/b20c 16:12 u_int8_t xatten1_db_high[OSPREY_MAX_CHAINS]; // 3 //xatten1_db for merlin (0xa20c/b20c 5:0) u_int8_t xatten1_margin_high[OSPREY_MAX_CHAINS]; // 3 //xatten1_margin for merlin (0xa20c/b20c 16:12 } __packed OSPREY_BASE_EXTENSION_2; typedef struct spurChanStruct { u_int16_t spur_chan; u_int8_t spurRangeLow; u_int8_t spurRangeHigh; } __packed SPUR_CHAN; //Note the order of the fields in this structure has been optimized to put all fields likely to change together typedef struct ospreyModalEepHeader { u_int32_t ant_ctrl_common; // 4 idle, t1, t2, b (4 bits per setting) u_int32_t ant_ctrl_common2; // 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 u_int16_t ant_ctrl_chain[OSPREY_MAX_CHAINS]; // 6 idle, t, r, rx1, rx12, b (2 bits each) u_int8_t xatten1_db[OSPREY_MAX_CHAINS]; // 3 //xatten1_db for merlin (0xa20c/b20c 5:0) u_int8_t xatten1_margin[OSPREY_MAX_CHAINS]; // 3 //xatten1_margin for merlin (0xa20c/b20c 16:12 int8_t temp_slope; int8_t voltSlope; u_int8_t spur_chans[OSPREY_EEPROM_MODAL_SPURS]; // spur channels in usual fbin coding format int8_t noise_floor_thresh_ch[OSPREY_MAX_CHAINS];// 3 //Check if the register is per chain u_int8_t reserved[MAX_MODAL_RESERVED]; int8_t quick_drop; u_int8_t xpa_bias_lvl; // 1 u_int8_t tx_frame_to_data_start; // 1 u_int8_t tx_frame_to_pa_on; // 1 u_int8_t txClip; // 4 bits tx_clip, 4 bits dac_scale_cck int8_t antenna_gain; // 1 u_int8_t switchSettling; // 1 int8_t adcDesiredSize; // 1 u_int8_t tx_end_to_xpa_off; // 1 u_int8_t txEndToRxOn; // 1 u_int8_t tx_frame_to_xpa_on; // 1 u_int8_t thresh62; // 1 u_int32_t paprd_rate_mask_ht20; u_int32_t paprd_rate_mask_ht40; u_int16_t switchcomspdt; u_int8_t xLNA_bias_strength; // bit: 0,1:chain0, 2,3:chain1, 4,5:chain2 u_int8_t rf_gain_cap; u_int8_t tx_gain_cap; // bit0:4 txgain cap, txgain index for max_txgain + 20 (10dBm higher than max txgain) u_int8_t futureModal[MAX_MODAL_FUTURE]; // last 12 bytes stolen and moved to newly created base extension structure } __packed OSPREY_MODAL_EEP_HEADER; // == 100 B typedef struct ospCalDataPerFreqOpLoop { int8_t ref_power; /* */ u_int8_t volt_meas; /* pdadc voltage at power measurement */ u_int8_t temp_meas; /* pcdac used for power measurement */ int8_t rx_noisefloor_cal; /*range is -60 to -127 create a mapping equation 1db resolution */ int8_t rx_noisefloor_power; /*range is same as noisefloor */ u_int8_t rxTempMeas; /*temp measured when noisefloor cal was performed */ } __packed OSP_CAL_DATA_PER_FREQ_OP_LOOP; typedef struct CalTargetPowerLegacy { u_int8_t t_pow2x[4]; } __packed CAL_TARGET_POWER_LEG; typedef struct ospCalTargetPowerHt { u_int8_t t_pow2x[14]; } __packed OSP_CAL_TARGET_POWER_HT; #if AH_BYTE_ORDER == AH_BIG_ENDIAN typedef struct CalCtlEdgePwr { u_int8_t flag :2, t_power :6; } __packed CAL_CTL_EDGE_PWR; #else typedef struct CalCtlEdgePwr { u_int8_t t_power :6, flag :2; } __packed CAL_CTL_EDGE_PWR; #endif typedef struct ospCalCtlData_5G { CAL_CTL_EDGE_PWR ctl_edges[OSPREY_NUM_BAND_EDGES_5G]; } __packed OSP_CAL_CTL_DATA_5G; typedef struct ospCalCtlData_2G { CAL_CTL_EDGE_PWR ctl_edges[OSPREY_NUM_BAND_EDGES_2G]; } __packed OSP_CAL_CTL_DATA_2G; typedef struct ospreyEeprom { u_int8_t eeprom_version; u_int8_t template_version; u_int8_t mac_addr[6]; u_int8_t custData[OSPREY_CUSTOMER_DATA_SIZE]; OSPREY_BASE_EEP_HEADER base_eep_header; OSPREY_MODAL_EEP_HEADER modal_header_2g; OSPREY_BASE_EXTENSION_1 base_ext1; u_int8_t cal_freq_pier_2g[OSPREY_NUM_2G_CAL_PIERS]; OSP_CAL_DATA_PER_FREQ_OP_LOOP cal_pier_data_2g[OSPREY_MAX_CHAINS][OSPREY_NUM_2G_CAL_PIERS]; u_int8_t cal_target_freqbin_cck[OSPREY_NUM_2G_CCK_TARGET_POWERS]; u_int8_t cal_target_freqbin_2g[OSPREY_NUM_2G_20_TARGET_POWERS]; u_int8_t cal_target_freqbin_2g_ht20[OSPREY_NUM_2G_20_TARGET_POWERS]; u_int8_t cal_target_freqbin_2g_ht40[OSPREY_NUM_2G_40_TARGET_POWERS]; CAL_TARGET_POWER_LEG cal_target_power_cck[OSPREY_NUM_2G_CCK_TARGET_POWERS]; CAL_TARGET_POWER_LEG cal_target_power_2g[OSPREY_NUM_2G_20_TARGET_POWERS]; OSP_CAL_TARGET_POWER_HT cal_target_power_2g_ht20[OSPREY_NUM_2G_20_TARGET_POWERS]; OSP_CAL_TARGET_POWER_HT cal_target_power_2g_ht40[OSPREY_NUM_2G_40_TARGET_POWERS]; u_int8_t ctl_index_2g[OSPREY_NUM_CTLS_2G]; u_int8_t ctl_freqbin_2G[OSPREY_NUM_CTLS_2G][OSPREY_NUM_BAND_EDGES_2G]; OSP_CAL_CTL_DATA_2G ctl_power_data_2g[OSPREY_NUM_CTLS_2G]; OSPREY_MODAL_EEP_HEADER modal_header_5g; OSPREY_BASE_EXTENSION_2 base_ext2; u_int8_t cal_freq_pier_5g[OSPREY_NUM_5G_CAL_PIERS]; OSP_CAL_DATA_PER_FREQ_OP_LOOP cal_pier_data_5g[OSPREY_MAX_CHAINS][OSPREY_NUM_5G_CAL_PIERS]; u_int8_t cal_target_freqbin_5g[OSPREY_NUM_5G_20_TARGET_POWERS]; u_int8_t cal_target_freqbin_5g_ht20[OSPREY_NUM_5G_20_TARGET_POWERS]; u_int8_t cal_target_freqbin_5g_ht40[OSPREY_NUM_5G_40_TARGET_POWERS]; CAL_TARGET_POWER_LEG cal_target_power_5g[OSPREY_NUM_5G_20_TARGET_POWERS]; OSP_CAL_TARGET_POWER_HT cal_target_power_5g_ht20[OSPREY_NUM_5G_20_TARGET_POWERS]; OSP_CAL_TARGET_POWER_HT cal_target_power_5g_ht40[OSPREY_NUM_5G_40_TARGET_POWERS]; u_int8_t ctl_index_5g[OSPREY_NUM_CTLS_5G]; u_int8_t ctl_freqbin_5G[OSPREY_NUM_CTLS_5G][OSPREY_NUM_BAND_EDGES_5G]; OSP_CAL_CTL_DATA_5G ctl_power_data_5g[OSPREY_NUM_CTLS_5G]; } __packed ar9300_eeprom_t; /* ** SWAP Functions ** used to read EEPROM data, which is apparently stored in little ** endian form. We have included both forms of the swap functions, ** one for big endian and one for little endian. The indices of the ** array elements are the differences */ #if AH_BYTE_ORDER == AH_BIG_ENDIAN #define AR9300_EEPROM_MAGIC 0x5aa5 #define SWAP16(_x) ( (u_int16_t)( (((const u_int8_t *)(&_x))[0] ) |\ ( ( (const u_int8_t *)( &_x ) )[1]<< 8) ) ) #define SWAP32(_x) ((u_int32_t)( \ (((const u_int8_t *)(&_x))[0]) | \ (((const u_int8_t *)(&_x))[1]<< 8) | \ (((const u_int8_t *)(&_x))[2]<<16) | \ (((const u_int8_t *)(&_x))[3]<<24))) #else // AH_BYTE_ORDER #define AR9300_EEPROM_MAGIC 0xa55a #define SWAP16(_x) ( (u_int16_t)( (((const u_int8_t *)(&_x))[1] ) |\ ( ( (const u_int8_t *)( &_x ) )[0]<< 8) ) ) #define SWAP32(_x) ((u_int32_t)( \ (((const u_int8_t *)(&_x))[3]) | \ (((const u_int8_t *)(&_x))[2]<< 8) | \ (((const u_int8_t *)(&_x))[1]<<16) | \ (((const u_int8_t *)(&_x))[0]<<24))) #endif // AH_BYTE_ORDER // OTP registers for OSPREY #define AR_GPIO_IN_OUT 0x4048 // GPIO input / output register #define OTP_MEM_START_ADDRESS 0x14000 #define OTP_STATUS0_OTP_SM_BUSY 0x00015f18 #define OTP_STATUS1_EFUSE_READ_DATA 0x00015f1c #define OTP_LDO_CONTROL_ENABLE 0x00015f24 #define OTP_LDO_STATUS_POWER_ON 0x00015f2c #define OTP_INTF0_EFUSE_WR_ENABLE_REG_V 0x00015f00 // OTP register for Jupiter #define GLB_OTP_LDO_CONTROL_ENABLE 0x00020020 #define GLB_OTP_LDO_STATUS_POWER_ON 0x00020028 #define OTP_PGENB_SETUP_HOLD_TIME_DELAY 0x15f34 // OTP register for Jupiter BT #define BTOTP_MEM_START_ADDRESS 0x64000 #define BTOTP_STATUS0_OTP_SM_BUSY 0x00065f18 #define BTOTP_STATUS1_EFUSE_READ_DATA 0x00065f1c #define BTOTP_INTF0_EFUSE_WR_ENABLE_REG_V 0x00065f00 #define BTOTP_INTF2 0x00065f08 #define BTOTP_PGENB_SETUP_HOLD_TIME_DELAY 0x65f34 #define BT_RESET_CTL 0x44000 #define BT_CLOCK_CONTROL 0x44028 // OTP register for WASP #define OTP_MEM_START_ADDRESS_WASP 0x00030000 #define OTP_STATUS0_OTP_SM_BUSY_WASP (OTP_MEM_START_ADDRESS_WASP + 0x1018) #define OTP_STATUS1_EFUSE_READ_DATA_WASP (OTP_MEM_START_ADDRESS_WASP + 0x101C) #define OTP_LDO_CONTROL_ENABLE_WASP (OTP_MEM_START_ADDRESS_WASP + 0x1024) #define OTP_LDO_STATUS_POWER_ON_WASP (OTP_MEM_START_ADDRESS_WASP + 0x102C) #define OTP_INTF0_EFUSE_WR_ENABLE_REG_V_WASP (OTP_MEM_START_ADDRESS_WASP + 0x1000) // Below control the access timing of OTP read/write #define OTP_PG_STROBE_PW_REG_V_WASP (OTP_MEM_START_ADDRESS_WASP + 0x1008) #define OTP_RD_STROBE_PW_REG_V_WASP (OTP_MEM_START_ADDRESS_WASP + 0x100C) #define OTP_VDDQ_HOLD_TIME_DELAY_WASP (OTP_MEM_START_ADDRESS_WASP + 0x1030) #define OTP_PGENB_SETUP_HOLD_TIME_DELAY_WASP (OTP_MEM_START_ADDRESS_WASP + 0x1034) #define OTP_STROBE_PULSE_INTERVAL_DELAY_WASP (OTP_MEM_START_ADDRESS_WASP + 0x1038) #define OTP_CSB_ADDR_LOAD_SETUP_HOLD_DELAY_WASP (OTP_MEM_START_ADDRESS_WASP + 0x103C) #define AR9300_EEPROM_MAGIC_OFFSET 0x0 /* reg_off = 4 * (eep_off) */ #define AR9300_EEPROM_S 2 #define AR9300_EEPROM_OFFSET 0x2000 #ifdef AR9100 #define AR9300_EEPROM_START_ADDR 0x1fff1000 #else #define AR9300_EEPROM_START_ADDR 0x503f1200 #endif #define AR9300_FLASH_CAL_START_OFFSET 0x1000 #define AR9300_EEPROM_MAX 0xae0 #define IS_EEP_MINOR_V3(_ahp) (ar9300_eeprom_get((_ahp), EEP_MINOR_REV) >= AR9300_EEP_MINOR_VER_3) #define ar9300_get_ntxchains(_txchainmask) \ (((_txchainmask >> 2) & 1) + ((_txchainmask >> 1) & 1) + (_txchainmask & 1)) /* RF silent fields in \ */ #define EEP_RFSILENT_ENABLED 0x0001 /* bit 0: enabled/disabled */ #define EEP_RFSILENT_ENABLED_S 0 /* bit 0: enabled/disabled */ #define EEP_RFSILENT_POLARITY 0x0002 /* bit 1: polarity */ #define EEP_RFSILENT_POLARITY_S 1 /* bit 1: polarity */ #define EEP_RFSILENT_GPIO_SEL 0x00fc /* bits 2..7: gpio PIN */ #define EEP_RFSILENT_GPIO_SEL_S 2 /* bits 2..7: gpio PIN */ #define AR9300_EEP_VER 0xE #define AR9300_BCHAN_UNUSED 0xFF #define AR9300_MAX_RATE_POWER 63 typedef enum { CALDATA_AUTO=0, CALDATA_EEPROM, CALDATA_FLASH, CALDATA_OTP } CALDATA_TYPE; typedef enum { EEP_NFTHRESH_5, EEP_NFTHRESH_2, EEP_MAC_MSW, EEP_MAC_MID, EEP_MAC_LSW, EEP_REG_0, EEP_REG_1, EEP_OP_CAP, EEP_OP_MODE, EEP_RF_SILENT, EEP_OB_5, EEP_DB_5, EEP_OB_2, EEP_DB_2, EEP_MINOR_REV, EEP_TX_MASK, EEP_RX_MASK, EEP_FSTCLK_5G, EEP_RXGAIN_TYPE, EEP_OL_PWRCTRL, EEP_TXGAIN_TYPE, EEP_RC_CHAIN_MASK, EEP_DAC_HPWR_5G, EEP_FRAC_N_5G, EEP_DEV_TYPE, EEP_TEMPSENSE_SLOPE, EEP_TEMPSENSE_SLOPE_PAL_ON, EEP_PWR_TABLE_OFFSET, EEP_DRIVE_STRENGTH, EEP_INTERNAL_REGULATOR, EEP_SWREG, EEP_PAPRD_ENABLED, EEP_ANTDIV_control, EEP_CHAIN_MASK_REDUCE, } EEPROM_PARAM; #define AR9300_RATES_OFDM_OFFSET 0 #define AR9300_RATES_CCK_OFFSET 4 #define AR9300_RATES_HT20_OFFSET 8 #define AR9300_RATES_HT40_OFFSET 22 typedef enum ar9300_Rates { ALL_TARGET_LEGACY_6_24, ALL_TARGET_LEGACY_36, ALL_TARGET_LEGACY_48, ALL_TARGET_LEGACY_54, ALL_TARGET_LEGACY_1L_5L, ALL_TARGET_LEGACY_5S, ALL_TARGET_LEGACY_11L, ALL_TARGET_LEGACY_11S, ALL_TARGET_HT20_0_8_16, ALL_TARGET_HT20_1_3_9_11_17_19, ALL_TARGET_HT20_4, ALL_TARGET_HT20_5, ALL_TARGET_HT20_6, ALL_TARGET_HT20_7, ALL_TARGET_HT20_12, ALL_TARGET_HT20_13, ALL_TARGET_HT20_14, ALL_TARGET_HT20_15, ALL_TARGET_HT20_20, ALL_TARGET_HT20_21, ALL_TARGET_HT20_22, ALL_TARGET_HT20_23, ALL_TARGET_HT40_0_8_16, ALL_TARGET_HT40_1_3_9_11_17_19, ALL_TARGET_HT40_4, ALL_TARGET_HT40_5, ALL_TARGET_HT40_6, ALL_TARGET_HT40_7, ALL_TARGET_HT40_12, ALL_TARGET_HT40_13, ALL_TARGET_HT40_14, ALL_TARGET_HT40_15, ALL_TARGET_HT40_20, ALL_TARGET_HT40_21, ALL_TARGET_HT40_22, ALL_TARGET_HT40_23, ar9300_rate_size } AR9300_RATES; /************************************************************************** * fbin2freq * * Get channel value from binary representation held in eeprom * RETURNS: the frequency in MHz */ static inline u_int16_t fbin2freq(u_int8_t fbin, HAL_BOOL is_2ghz) { /* * Reserved value 0xFF provides an empty definition both as * an fbin and as a frequency - do not convert */ if (fbin == AR9300_BCHAN_UNUSED) { return fbin; } return (u_int16_t)((is_2ghz) ? (2300 + fbin) : (4800 + 5 * fbin)); } extern int CompressionHeaderUnpack(u_int8_t *best, int *code, int *reference, int *length, int *major, int *minor); extern void Ar9300EepromFormatConvert(ar9300_eeprom_t *mptr); extern HAL_BOOL ar9300_eeprom_restore(struct ath_hal *ah); extern int ar9300_eeprom_restore_internal(struct ath_hal *ah, ar9300_eeprom_t *mptr, int /*msize*/); extern int ar9300_eeprom_base_address(struct ath_hal *ah); extern int ar9300_eeprom_volatile(struct ath_hal *ah); extern int ar9300_eeprom_low_limit(struct ath_hal *ah); extern u_int16_t ar9300_compression_checksum(u_int8_t *data, int dsize); extern int ar9300_compression_header_unpack(u_int8_t *best, int *code, int *reference, int *length, int *major, int *minor); extern u_int16_t ar9300_eeprom_struct_size(void); extern ar9300_eeprom_t *ar9300EepromStructInit(int default_index); extern ar9300_eeprom_t *ar9300EepromStructGet(void); extern ar9300_eeprom_t *ar9300_eeprom_struct_default(int default_index); extern ar9300_eeprom_t *ar9300_eeprom_struct_default_find_by_id(int ver); extern int ar9300_eeprom_struct_default_many(void); extern int ar9300EepromUpdateCalPier(int pierIdx, int freq, int chain, int pwrCorrection, int volt_meas, int temp_meas); extern int ar9300_power_control_override(struct ath_hal *ah, int frequency, int *correction, int *voltage, int *temperature); extern void ar9300EepromDisplayCalData(int for2GHz); extern void ar9300EepromDisplayAll(void); extern void ar9300_set_target_power_from_eeprom(struct ath_hal *ah, u_int16_t freq, u_int8_t *target_power_val_t2); extern HAL_BOOL ar9300_eeprom_set_power_per_rate_table(struct ath_hal *ah, ar9300_eeprom_t *p_eep_data, const struct ieee80211_channel *chan, u_int8_t *p_pwr_array, u_int16_t cfg_ctl, u_int16_t antenna_reduction, u_int16_t twice_max_regulatory_power, u_int16_t power_limit, u_int8_t chainmask); extern int ar9300_transmit_power_reg_write(struct ath_hal *ah, u_int8_t *p_pwr_array); extern u_int8_t ar9300_eeprom_get_legacy_trgt_pwr(struct ath_hal *ah, u_int16_t rate_index, u_int16_t freq, HAL_BOOL is_2ghz); extern u_int8_t ar9300_eeprom_get_ht20_trgt_pwr(struct ath_hal *ah, u_int16_t rate_index, u_int16_t freq, HAL_BOOL is_2ghz); extern u_int8_t ar9300_eeprom_get_ht40_trgt_pwr(struct ath_hal *ah, u_int16_t rate_index, u_int16_t freq, HAL_BOOL is_2ghz); extern u_int8_t ar9300_eeprom_get_cck_trgt_pwr(struct ath_hal *ah, u_int16_t rate_index, u_int16_t freq); extern HAL_BOOL ar9300_internal_regulator_apply(struct ath_hal *ah); extern HAL_BOOL ar9300_drive_strength_apply(struct ath_hal *ah); extern HAL_BOOL ar9300_attenuation_apply(struct ath_hal *ah, u_int16_t channel); extern int32_t ar9300_thermometer_get(struct ath_hal *ah); extern HAL_BOOL ar9300_thermometer_apply(struct ath_hal *ah); extern HAL_BOOL ar9300_xpa_timing_control_apply(struct ath_hal *ah, HAL_BOOL is_2ghz); extern HAL_BOOL ar9300_x_lNA_bias_strength_apply(struct ath_hal *ah, HAL_BOOL is_2ghz); extern int32_t ar9300MacAdressGet(u_int8_t *mac); extern int32_t ar9300CustomerDataGet(u_int8_t *data, int32_t len); extern int32_t ar9300ReconfigDriveStrengthGet(void); extern int32_t ar9300EnableTempCompensationGet(void); extern int32_t ar9300EnableVoltCompensationGet(void); extern int32_t ar9300FastClockEnableGet(void); extern int32_t ar9300EnableDoublingGet(void); extern u_int16_t *ar9300_regulatory_domain_get(struct ath_hal *ah); extern int32_t ar9300_eeprom_write_enable_gpio_get(struct ath_hal *ah); extern int32_t ar9300_wlan_led_gpio_get(struct ath_hal *ah); extern int32_t ar9300_wlan_disable_gpio_get(struct ath_hal *ah); extern int32_t ar9300_rx_band_select_gpio_get(struct ath_hal *ah); extern int32_t ar9300_rx_gain_index_get(struct ath_hal *ah); extern int32_t ar9300_tx_gain_index_get(struct ath_hal *ah); extern int32_t ar9300_xpa_bias_level_get(struct ath_hal *ah, HAL_BOOL is_2ghz); extern HAL_BOOL ar9300_xpa_bias_level_apply(struct ath_hal *ah, HAL_BOOL is_2ghz); extern u_int32_t ar9300_ant_ctrl_common_get(struct ath_hal *ah, HAL_BOOL is_2ghz); extern u_int32_t ar9300_ant_ctrl_common2_get(struct ath_hal *ah, HAL_BOOL is_2ghz); extern u_int16_t ar9300_ant_ctrl_chain_get(struct ath_hal *ah, int chain, HAL_BOOL is_2ghz); extern HAL_BOOL ar9300_ant_ctrl_apply(struct ath_hal *ah, HAL_BOOL is_2ghz); /* since valid noise floor values are negative, returns 1 on error */ extern int32_t ar9300_noise_floor_cal_or_power_get( struct ath_hal *ah, int32_t frequency, int32_t ichain, HAL_BOOL use_cal); #define ar9300NoiseFloorGet(ah, frequency, ichain) \ ar9300_noise_floor_cal_or_power_get(ah, frequency, ichain, 1/*use_cal*/) #define ar9300NoiseFloorPowerGet(ah, frequency, ichain) \ ar9300_noise_floor_cal_or_power_get(ah, frequency, ichain, 0/*use_cal*/) extern void ar9300_eeprom_template_preference(int32_t value); extern int32_t ar9300_eeprom_template_install(struct ath_hal *ah, int32_t value); extern void ar9300_calibration_data_set(struct ath_hal *ah, int32_t source); extern int32_t ar9300_calibration_data_get(struct ath_hal *ah); extern int32_t ar9300_calibration_data_address_get(struct ath_hal *ah); extern void ar9300_calibration_data_address_set(struct ath_hal *ah, int32_t source); extern HAL_BOOL ar9300_calibration_data_read_flash(struct ath_hal *ah, long address, u_int8_t *buffer, int many); extern HAL_BOOL ar9300_calibration_data_read_eeprom(struct ath_hal *ah, long address, u_int8_t *buffer, int many); extern HAL_BOOL ar9300_calibration_data_read_otp(struct ath_hal *ah, long address, u_int8_t *buffer, int many, HAL_BOOL is_wifi); extern HAL_BOOL ar9300_calibration_data_read(struct ath_hal *ah, long address, u_int8_t *buffer, int many); extern int32_t ar9300_eeprom_size(struct ath_hal *ah); extern int32_t ar9300_otp_size(struct ath_hal *ah); extern HAL_BOOL ar9300_calibration_data_read_array(struct ath_hal *ah, int address, u_int8_t *buffer, int many); #if defined(WIN32) || defined(WIN64) #pragma pack (pop, ar9300) #endif #endif /* _ATH_AR9300_EEP_H_ */