/* * Copyright (c) 2001 Wind River Systems * Copyright (c) 1997, 1998, 1999, 2000, 2001 * Bill Paul . All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Bill Paul. * 4. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. * * $FreeBSD: src/sys/dev/nge/if_nge.c,v 1.13.2.13 2003/02/05 22:03:57 mbr Exp $ */ /* * National Semiconductor DP83820/DP83821 gigabit ethernet driver * for FreeBSD. Datasheets are available from: * * http://www.national.com/ds/DP/DP83820.pdf * http://www.national.com/ds/DP/DP83821.pdf * * These chips are used on several low cost gigabit ethernet NICs * sold by D-Link, Addtron, SMC and Asante. Both parts are * virtually the same, except the 83820 is a 64-bit/32-bit part, * while the 83821 is 32-bit only. * * Many cards also use National gigE transceivers, such as the * DP83891, DP83861 and DP83862 gigPHYTER parts. The DP83861 datasheet * contains a full register description that applies to all of these * components: * * http://www.national.com/ds/DP/DP83861.pdf * * Written by Bill Paul * BSDi Open Source Solutions */ /* * The NatSemi DP83820 and 83821 controllers are enhanced versions * of the NatSemi MacPHYTER 10/100 devices. They support 10, 100 * and 1000Mbps speeds with 1000baseX (ten bit interface), MII and GMII * ports. Other features include 8K TX FIFO and 32K RX FIFO, TCP/IP * hardware checksum offload (IPv4 only), VLAN tagging and filtering, * priority TX and RX queues, a 2048 bit multicast hash filter, 4 RX pattern * matching buffers, one perfect address filter buffer and interrupt * moderation. The 83820 supports both 64-bit and 32-bit addressing * and data transfers: the 64-bit support can be toggled on or off * via software. This affects the size of certain fields in the DMA * descriptors. * * There are two bugs/misfeatures in the 83820/83821 that I have * discovered so far: * * - Receive buffers must be aligned on 64-bit boundaries, which means * you must resort to copying data in order to fix up the payload * alignment. * * - In order to transmit jumbo frames larger than 8170 bytes, you have * to turn off transmit checksum offloading, because the chip can't * compute the checksum on an outgoing frame unless it fits entirely * within the TX FIFO, which is only 8192 bytes in size. If you have * TX checksum offload enabled and you transmit attempt to transmit a * frame larger than 8170 bytes, the transmitter will wedge. * * To work around the latter problem, TX checksum offload is disabled * if the user selects an MTU larger than 8152 (8170 - 18). */ #include "opt_ifpoll.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* for vtophys */ #include /* for vtophys */ #include #include #include "pcidevs.h" #include #include #define NGE_USEIOSPACE #include "if_ngereg.h" /* "controller miibus0" required. See GENERIC if you get errors here. */ #include "miibus_if.h" #define NGE_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP) /* * Various supported device vendors/types and their names. */ static struct nge_type nge_devs[] = { { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83820, "National Semiconductor Gigabit Ethernet" }, { 0, 0, NULL } }; static int nge_probe(device_t); static int nge_attach(device_t); static int nge_detach(device_t); static int nge_alloc_jumbo_mem(struct nge_softc *); static struct nge_jslot *nge_jalloc(struct nge_softc *); static void nge_jfree(void *); static void nge_jref(void *); static int nge_newbuf(struct nge_softc *, struct nge_desc *, struct mbuf *); static int nge_encap(struct nge_softc *, struct mbuf *, uint32_t *); static void nge_rxeof(struct nge_softc *); static void nge_txeof(struct nge_softc *); static void nge_intr(void *); static void nge_tick(void *); static void nge_start(struct ifnet *, struct ifaltq_subque *); static int nge_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *); static void nge_init(void *); static void nge_stop(struct nge_softc *); static void nge_watchdog(struct ifnet *); static void nge_shutdown(device_t); static int nge_ifmedia_upd(struct ifnet *); static void nge_ifmedia_sts(struct ifnet *, struct ifmediareq *); static void nge_delay(struct nge_softc *); static void nge_eeprom_idle(struct nge_softc *); static void nge_eeprom_putbyte(struct nge_softc *, int); static void nge_eeprom_getword(struct nge_softc *, int, uint16_t *); static void nge_read_eeprom(struct nge_softc *, void *, int, int); static void nge_mii_sync(struct nge_softc *); static void nge_mii_send(struct nge_softc *, uint32_t, int); static int nge_mii_readreg(struct nge_softc *, struct nge_mii_frame *); static int nge_mii_writereg(struct nge_softc *, struct nge_mii_frame *); static int nge_miibus_readreg(device_t, int, int); static int nge_miibus_writereg(device_t, int, int, int); static void nge_miibus_statchg(device_t); static void nge_setmulti(struct nge_softc *); static void nge_reset(struct nge_softc *); static int nge_list_rx_init(struct nge_softc *); static int nge_list_tx_init(struct nge_softc *); #ifdef IFPOLL_ENABLE static void nge_npoll(struct ifnet *, struct ifpoll_info *); static void nge_npoll_compat(struct ifnet *, void *, int); #endif #ifdef NGE_USEIOSPACE #define NGE_RES SYS_RES_IOPORT #define NGE_RID NGE_PCI_LOIO #else #define NGE_RES SYS_RES_MEMORY #define NGE_RID NGE_PCI_LOMEM #endif static device_method_t nge_methods[] = { /* Device interface */ DEVMETHOD(device_probe, nge_probe), DEVMETHOD(device_attach, nge_attach), DEVMETHOD(device_detach, nge_detach), DEVMETHOD(device_shutdown, nge_shutdown), /* bus interface */ DEVMETHOD(bus_print_child, bus_generic_print_child), DEVMETHOD(bus_driver_added, bus_generic_driver_added), /* MII interface */ DEVMETHOD(miibus_readreg, nge_miibus_readreg), DEVMETHOD(miibus_writereg, nge_miibus_writereg), DEVMETHOD(miibus_statchg, nge_miibus_statchg), DEVMETHOD_END }; static DEFINE_CLASS_0(nge, nge_driver, nge_methods, sizeof(struct nge_softc)); static devclass_t nge_devclass; DECLARE_DUMMY_MODULE(if_nge); MODULE_DEPEND(if_nge, miibus, 1, 1, 1); DRIVER_MODULE(if_nge, pci, nge_driver, nge_devclass, NULL, NULL); DRIVER_MODULE(miibus, nge, miibus_driver, miibus_devclass, NULL, NULL); #define NGE_SETBIT(sc, reg, x) \ CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x)) #define NGE_CLRBIT(sc, reg, x) \ CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x)) #define SIO_SET(x) \ CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) | (x)) #define SIO_CLR(x) \ CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) & ~(x)) static void nge_delay(struct nge_softc *sc) { int idx; for (idx = (300 / 33) + 1; idx > 0; idx--) CSR_READ_4(sc, NGE_CSR); } static void nge_eeprom_idle(struct nge_softc *sc) { int i; SIO_SET(NGE_MEAR_EE_CSEL); nge_delay(sc); SIO_SET(NGE_MEAR_EE_CLK); nge_delay(sc); for (i = 0; i < 25; i++) { SIO_CLR(NGE_MEAR_EE_CLK); nge_delay(sc); SIO_SET(NGE_MEAR_EE_CLK); nge_delay(sc); } SIO_CLR(NGE_MEAR_EE_CLK); nge_delay(sc); SIO_CLR(NGE_MEAR_EE_CSEL); nge_delay(sc); CSR_WRITE_4(sc, NGE_MEAR, 0x00000000); } /* * Send a read command and address to the EEPROM, check for ACK. */ static void nge_eeprom_putbyte(struct nge_softc *sc, int addr) { int d, i; d = addr | NGE_EECMD_READ; /* * Feed in each bit and stobe the clock. */ for (i = 0x400; i; i >>= 1) { if (d & i) SIO_SET(NGE_MEAR_EE_DIN); else SIO_CLR(NGE_MEAR_EE_DIN); nge_delay(sc); SIO_SET(NGE_MEAR_EE_CLK); nge_delay(sc); SIO_CLR(NGE_MEAR_EE_CLK); nge_delay(sc); } } /* * Read a word of data stored in the EEPROM at address 'addr.' */ static void nge_eeprom_getword(struct nge_softc *sc, int addr, uint16_t *dest) { int i; uint16_t word = 0; /* Force EEPROM to idle state. */ nge_eeprom_idle(sc); /* Enter EEPROM access mode. */ nge_delay(sc); SIO_CLR(NGE_MEAR_EE_CLK); nge_delay(sc); SIO_SET(NGE_MEAR_EE_CSEL); nge_delay(sc); /* * Send address of word we want to read. */ nge_eeprom_putbyte(sc, addr); /* * Start reading bits from EEPROM. */ for (i = 0x8000; i; i >>= 1) { SIO_SET(NGE_MEAR_EE_CLK); nge_delay(sc); if (CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_EE_DOUT) word |= i; nge_delay(sc); SIO_CLR(NGE_MEAR_EE_CLK); nge_delay(sc); } /* Turn off EEPROM access mode. */ nge_eeprom_idle(sc); *dest = word; } /* * Read a sequence of words from the EEPROM. */ static void nge_read_eeprom(struct nge_softc *sc, void *dest, int off, int cnt) { int i; uint16_t word = 0, *ptr; for (i = 0; i < cnt; i++) { nge_eeprom_getword(sc, off + i, &word); ptr = (uint16_t *)((uint8_t *)dest + (i * 2)); *ptr = word; } } /* * Sync the PHYs by setting data bit and strobing the clock 32 times. */ static void nge_mii_sync(struct nge_softc *sc) { int i; SIO_SET(NGE_MEAR_MII_DIR | NGE_MEAR_MII_DATA); for (i = 0; i < 32; i++) { SIO_SET(NGE_MEAR_MII_CLK); DELAY(1); SIO_CLR(NGE_MEAR_MII_CLK); DELAY(1); } } /* * Clock a series of bits through the MII. */ static void nge_mii_send(struct nge_softc *sc, uint32_t bits, int cnt) { int i; SIO_CLR(NGE_MEAR_MII_CLK); for (i = (0x1 << (cnt - 1)); i; i >>= 1) { if (bits & i) SIO_SET(NGE_MEAR_MII_DATA); else SIO_CLR(NGE_MEAR_MII_DATA); DELAY(1); SIO_CLR(NGE_MEAR_MII_CLK); DELAY(1); SIO_SET(NGE_MEAR_MII_CLK); } } /* * Read an PHY register through the MII. */ static int nge_mii_readreg(struct nge_softc *sc, struct nge_mii_frame *frame) { int ack, i; /* * Set up frame for RX. */ frame->mii_stdelim = NGE_MII_STARTDELIM; frame->mii_opcode = NGE_MII_READOP; frame->mii_turnaround = 0; frame->mii_data = 0; CSR_WRITE_4(sc, NGE_MEAR, 0); /* * Turn on data xmit. */ SIO_SET(NGE_MEAR_MII_DIR); nge_mii_sync(sc); /* * Send command/address info. */ nge_mii_send(sc, frame->mii_stdelim, 2); nge_mii_send(sc, frame->mii_opcode, 2); nge_mii_send(sc, frame->mii_phyaddr, 5); nge_mii_send(sc, frame->mii_regaddr, 5); /* Idle bit */ SIO_CLR((NGE_MEAR_MII_CLK | NGE_MEAR_MII_DATA)); DELAY(1); SIO_SET(NGE_MEAR_MII_CLK); DELAY(1); /* Turn off xmit. */ SIO_CLR(NGE_MEAR_MII_DIR); /* Check for ack */ SIO_CLR(NGE_MEAR_MII_CLK); DELAY(1); ack = CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_MII_DATA; SIO_SET(NGE_MEAR_MII_CLK); DELAY(1); /* * Now try reading data bits. If the ack failed, we still * need to clock through 16 cycles to keep the PHY(s) in sync. */ if (ack) { for(i = 0; i < 16; i++) { SIO_CLR(NGE_MEAR_MII_CLK); DELAY(1); SIO_SET(NGE_MEAR_MII_CLK); DELAY(1); } goto fail; } for (i = 0x8000; i; i >>= 1) { SIO_CLR(NGE_MEAR_MII_CLK); DELAY(1); if (!ack) { if (CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_MII_DATA) frame->mii_data |= i; DELAY(1); } SIO_SET(NGE_MEAR_MII_CLK); DELAY(1); } fail: SIO_CLR(NGE_MEAR_MII_CLK); DELAY(1); SIO_SET(NGE_MEAR_MII_CLK); DELAY(1); if (ack) return(1); return(0); } /* * Write to a PHY register through the MII. */ static int nge_mii_writereg(struct nge_softc *sc, struct nge_mii_frame *frame) { /* * Set up frame for TX. */ frame->mii_stdelim = NGE_MII_STARTDELIM; frame->mii_opcode = NGE_MII_WRITEOP; frame->mii_turnaround = NGE_MII_TURNAROUND; /* * Turn on data output. */ SIO_SET(NGE_MEAR_MII_DIR); nge_mii_sync(sc); nge_mii_send(sc, frame->mii_stdelim, 2); nge_mii_send(sc, frame->mii_opcode, 2); nge_mii_send(sc, frame->mii_phyaddr, 5); nge_mii_send(sc, frame->mii_regaddr, 5); nge_mii_send(sc, frame->mii_turnaround, 2); nge_mii_send(sc, frame->mii_data, 16); /* Idle bit. */ SIO_SET(NGE_MEAR_MII_CLK); DELAY(1); SIO_CLR(NGE_MEAR_MII_CLK); DELAY(1); /* * Turn off xmit. */ SIO_CLR(NGE_MEAR_MII_DIR); return(0); } static int nge_miibus_readreg(device_t dev, int phy, int reg) { struct nge_softc *sc = device_get_softc(dev); struct nge_mii_frame frame; bzero((char *)&frame, sizeof(frame)); frame.mii_phyaddr = phy; frame.mii_regaddr = reg; nge_mii_readreg(sc, &frame); return(frame.mii_data); } static int nge_miibus_writereg(device_t dev, int phy, int reg, int data) { struct nge_softc *sc = device_get_softc(dev); struct nge_mii_frame frame; bzero((char *)&frame, sizeof(frame)); frame.mii_phyaddr = phy; frame.mii_regaddr = reg; frame.mii_data = data; nge_mii_writereg(sc, &frame); return(0); } static void nge_miibus_statchg(device_t dev) { struct nge_softc *sc = device_get_softc(dev); struct mii_data *mii; int status; if (sc->nge_tbi) { if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media) == IFM_AUTO) { status = CSR_READ_4(sc, NGE_TBI_ANLPAR); if (status == 0 || status & NGE_TBIANAR_FDX) { NGE_SETBIT(sc, NGE_TX_CFG, (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR)); NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX); } else { NGE_CLRBIT(sc, NGE_TX_CFG, (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR)); NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX); } } else if ((sc->nge_ifmedia.ifm_cur->ifm_media & IFM_GMASK) != IFM_FDX) { NGE_CLRBIT(sc, NGE_TX_CFG, (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR)); NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX); } else { NGE_SETBIT(sc, NGE_TX_CFG, (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR)); NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX); } } else { mii = device_get_softc(sc->nge_miibus); if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) { NGE_SETBIT(sc, NGE_TX_CFG, (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR)); NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX); } else { NGE_CLRBIT(sc, NGE_TX_CFG, (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR)); NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX); } /* If we have a 1000Mbps link, set the mode_1000 bit. */ if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T || IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX) { NGE_SETBIT(sc, NGE_CFG, NGE_CFG_MODE_1000); } else { NGE_CLRBIT(sc, NGE_CFG, NGE_CFG_MODE_1000); } } } static void nge_setmulti(struct nge_softc *sc) { struct ifnet *ifp = &sc->arpcom.ac_if; struct ifmultiaddr *ifma; uint32_t filtsave, h = 0, i; int bit, index; if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) { NGE_CLRBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_MCHASH | NGE_RXFILTCTL_UCHASH); NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLMULTI); return; } /* * We have to explicitly enable the multicast hash table * on the NatSemi chip if we want to use it, which we do. * We also have to tell it that we don't want to use the * hash table for matching unicast addresses. */ NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_MCHASH); NGE_CLRBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLMULTI | NGE_RXFILTCTL_UCHASH); filtsave = CSR_READ_4(sc, NGE_RXFILT_CTL); /* first, zot all the existing hash bits */ for (i = 0; i < NGE_MCAST_FILTER_LEN; i += 2) { CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_MCAST_LO + i); CSR_WRITE_4(sc, NGE_RXFILT_DATA, 0); } /* * From the 11 bits returned by the crc routine, the top 7 * bits represent the 16-bit word in the mcast hash table * that needs to be updated, and the lower 4 bits represent * which bit within that byte needs to be set. */ TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { if (ifma->ifma_addr->sa_family != AF_LINK) continue; h = ether_crc32_be(LLADDR((struct sockaddr_dl *) ifma->ifma_addr), ETHER_ADDR_LEN) >> 21; index = (h >> 4) & 0x7F; bit = h & 0xF; CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_MCAST_LO + (index * 2)); NGE_SETBIT(sc, NGE_RXFILT_DATA, (1 << bit)); } CSR_WRITE_4(sc, NGE_RXFILT_CTL, filtsave); } static void nge_reset(struct nge_softc *sc) { int i; NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RESET); for (i = 0; i < NGE_TIMEOUT; i++) { if ((CSR_READ_4(sc, NGE_CSR) & NGE_CSR_RESET) == 0) break; } if (i == NGE_TIMEOUT) kprintf("nge%d: reset never completed\n", sc->nge_unit); /* Wait a little while for the chip to get its brains in order. */ DELAY(1000); /* * If this is a NetSemi chip, make sure to clear * PME mode. */ CSR_WRITE_4(sc, NGE_CLKRUN, NGE_CLKRUN_PMESTS); CSR_WRITE_4(sc, NGE_CLKRUN, 0); } /* * Probe for an NatSemi chip. Check the PCI vendor and device * IDs against our list and return a device name if we find a match. */ static int nge_probe(device_t dev) { struct nge_type *t; uint16_t vendor, product; vendor = pci_get_vendor(dev); product = pci_get_device(dev); for (t = nge_devs; t->nge_name != NULL; t++) { if (vendor == t->nge_vid && product == t->nge_did) { device_set_desc(dev, t->nge_name); return(0); } } return(ENXIO); } /* * Attach the interface. Allocate softc structures, do ifmedia * setup and ethernet/BPF attach. */ static int nge_attach(device_t dev) { struct nge_softc *sc; struct ifnet *ifp; uint8_t eaddr[ETHER_ADDR_LEN]; uint32_t command; int error = 0, rid, unit; const char *sep = ""; sc = device_get_softc(dev); unit = device_get_unit(dev); callout_init(&sc->nge_stat_timer); lwkt_serialize_init(&sc->nge_jslot_serializer); /* * Handle power management nonsense. */ command = pci_read_config(dev, NGE_PCI_CAPID, 4) & 0x000000FF; if (command == 0x01) { command = pci_read_config(dev, NGE_PCI_PWRMGMTCTRL, 4); if (command & NGE_PSTATE_MASK) { uint32_t iobase, membase, irq; /* Save important PCI config data. */ iobase = pci_read_config(dev, NGE_PCI_LOIO, 4); membase = pci_read_config(dev, NGE_PCI_LOMEM, 4); irq = pci_read_config(dev, NGE_PCI_INTLINE, 4); /* Reset the power state. */ kprintf("nge%d: chip is in D%d power mode " "-- setting to D0\n", unit, command & NGE_PSTATE_MASK); command &= 0xFFFFFFFC; pci_write_config(dev, NGE_PCI_PWRMGMTCTRL, command, 4); /* Restore PCI config data. */ pci_write_config(dev, NGE_PCI_LOIO, iobase, 4); pci_write_config(dev, NGE_PCI_LOMEM, membase, 4); pci_write_config(dev, NGE_PCI_INTLINE, irq, 4); } } /* * Map control/status registers. */ command = pci_read_config(dev, PCIR_COMMAND, 4); command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN); pci_write_config(dev, PCIR_COMMAND, command, 4); command = pci_read_config(dev, PCIR_COMMAND, 4); #ifdef NGE_USEIOSPACE if (!(command & PCIM_CMD_PORTEN)) { kprintf("nge%d: failed to enable I/O ports!\n", unit); error = ENXIO; return(error); } #else if (!(command & PCIM_CMD_MEMEN)) { kprintf("nge%d: failed to enable memory mapping!\n", unit); error = ENXIO; return(error); } #endif rid = NGE_RID; sc->nge_res = bus_alloc_resource_any(dev, NGE_RES, &rid, RF_ACTIVE); if (sc->nge_res == NULL) { kprintf("nge%d: couldn't map ports/memory\n", unit); error = ENXIO; return(error); } sc->nge_btag = rman_get_bustag(sc->nge_res); sc->nge_bhandle = rman_get_bushandle(sc->nge_res); /* Allocate interrupt */ rid = 0; sc->nge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_SHAREABLE | RF_ACTIVE); if (sc->nge_irq == NULL) { kprintf("nge%d: couldn't map interrupt\n", unit); error = ENXIO; goto fail; } /* Reset the adapter. */ nge_reset(sc); /* * Get station address from the EEPROM. */ nge_read_eeprom(sc, &eaddr[4], NGE_EE_NODEADDR, 1); nge_read_eeprom(sc, &eaddr[2], NGE_EE_NODEADDR + 1, 1); nge_read_eeprom(sc, &eaddr[0], NGE_EE_NODEADDR + 2, 1); sc->nge_unit = unit; sc->nge_ldata = contigmalloc(sizeof(struct nge_list_data), M_DEVBUF, M_WAITOK | M_ZERO, 0, 0xffffffff, PAGE_SIZE, 0); if (sc->nge_ldata == NULL) { kprintf("nge%d: no memory for list buffers!\n", unit); error = ENXIO; goto fail; } /* Try to allocate memory for jumbo buffers. */ if (nge_alloc_jumbo_mem(sc)) { kprintf("nge%d: jumbo buffer allocation failed\n", sc->nge_unit); error = ENXIO; goto fail; } ifp = &sc->arpcom.ac_if; ifp->if_softc = sc; if_initname(ifp, "nge", unit); ifp->if_mtu = ETHERMTU; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = nge_ioctl; ifp->if_start = nge_start; #ifdef IFPOLL_ENABLE ifp->if_npoll = nge_npoll; #endif ifp->if_watchdog = nge_watchdog; ifp->if_init = nge_init; ifp->if_baudrate = 1000000000; ifq_set_maxlen(&ifp->if_snd, NGE_TX_LIST_CNT - 1); ifq_set_ready(&ifp->if_snd); ifp->if_hwassist = NGE_CSUM_FEATURES; ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING; ifp->if_capenable = ifp->if_capabilities; /* * Do MII setup. */ if (mii_phy_probe(dev, &sc->nge_miibus, nge_ifmedia_upd, nge_ifmedia_sts)) { if (CSR_READ_4(sc, NGE_CFG) & NGE_CFG_TBI_EN) { sc->nge_tbi = 1; device_printf(dev, "Using TBI\n"); sc->nge_miibus = dev; ifmedia_init(&sc->nge_ifmedia, 0, nge_ifmedia_upd, nge_ifmedia_sts); #define ADD(m, c) ifmedia_add(&sc->nge_ifmedia, (m), (c), NULL) #define PRINT(s) kprintf("%s%s", sep, s); sep = ", " ADD(IFM_MAKEWORD(IFM_ETHER, IFM_NONE, 0, 0), 0); device_printf(dev, " "); ADD(IFM_MAKEWORD(IFM_ETHER, IFM_1000_SX, 0, 0), 0); PRINT("1000baseSX"); ADD(IFM_MAKEWORD(IFM_ETHER, IFM_1000_SX, IFM_FDX, 0),0); PRINT("1000baseSX-FDX"); ADD(IFM_MAKEWORD(IFM_ETHER, IFM_AUTO, 0, 0), 0); PRINT("auto"); kprintf("\n"); #undef ADD #undef PRINT ifmedia_set(&sc->nge_ifmedia, IFM_MAKEWORD(IFM_ETHER, IFM_AUTO, 0, 0)); CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO) | NGE_GPIO_GP4_OUT | NGE_GPIO_GP1_OUTENB | NGE_GPIO_GP2_OUTENB | NGE_GPIO_GP3_OUTENB | NGE_GPIO_GP3_IN | NGE_GPIO_GP4_IN); } else { kprintf("nge%d: MII without any PHY!\n", sc->nge_unit); error = ENXIO; goto fail; } } /* * Call MI attach routine. */ ether_ifattach(ifp, eaddr, NULL); ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(sc->nge_irq)); #ifdef IFPOLL_ENABLE ifpoll_compat_setup(&sc->nge_npoll, NULL, NULL, device_get_unit(dev), ifp->if_serializer); #endif error = bus_setup_intr(dev, sc->nge_irq, INTR_MPSAFE, nge_intr, sc, &sc->nge_intrhand, ifp->if_serializer); if (error) { ether_ifdetach(ifp); device_printf(dev, "couldn't set up irq\n"); goto fail; } return(0); fail: nge_detach(dev); return(error); } static int nge_detach(device_t dev) { struct nge_softc *sc = device_get_softc(dev); struct ifnet *ifp = &sc->arpcom.ac_if; if (device_is_attached(dev)) { lwkt_serialize_enter(ifp->if_serializer); nge_reset(sc); nge_stop(sc); bus_teardown_intr(dev, sc->nge_irq, sc->nge_intrhand); lwkt_serialize_exit(ifp->if_serializer); ether_ifdetach(ifp); } if (sc->nge_miibus) device_delete_child(dev, sc->nge_miibus); bus_generic_detach(dev); if (sc->nge_irq) bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq); if (sc->nge_res) bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res); if (sc->nge_ldata) { contigfree(sc->nge_ldata, sizeof(struct nge_list_data), M_DEVBUF); } if (sc->nge_cdata.nge_jumbo_buf) contigfree(sc->nge_cdata.nge_jumbo_buf, NGE_JMEM, M_DEVBUF); return(0); } /* * Initialize the transmit descriptors. */ static int nge_list_tx_init(struct nge_softc *sc) { struct nge_list_data *ld; struct nge_ring_data *cd; int i; cd = &sc->nge_cdata; ld = sc->nge_ldata; for (i = 0; i < NGE_TX_LIST_CNT; i++) { if (i == (NGE_TX_LIST_CNT - 1)) { ld->nge_tx_list[i].nge_nextdesc = &ld->nge_tx_list[0]; ld->nge_tx_list[i].nge_next = vtophys(&ld->nge_tx_list[0]); } else { ld->nge_tx_list[i].nge_nextdesc = &ld->nge_tx_list[i + 1]; ld->nge_tx_list[i].nge_next = vtophys(&ld->nge_tx_list[i + 1]); } ld->nge_tx_list[i].nge_mbuf = NULL; ld->nge_tx_list[i].nge_ptr = 0; ld->nge_tx_list[i].nge_ctl = 0; } cd->nge_tx_prod = cd->nge_tx_cons = cd->nge_tx_cnt = 0; return(0); } /* * Initialize the RX descriptors and allocate mbufs for them. Note that * we arrange the descriptors in a closed ring, so that the last descriptor * points back to the first. */ static int nge_list_rx_init(struct nge_softc *sc) { struct nge_list_data *ld; struct nge_ring_data *cd; int i; ld = sc->nge_ldata; cd = &sc->nge_cdata; for (i = 0; i < NGE_RX_LIST_CNT; i++) { if (nge_newbuf(sc, &ld->nge_rx_list[i], NULL) == ENOBUFS) return(ENOBUFS); if (i == (NGE_RX_LIST_CNT - 1)) { ld->nge_rx_list[i].nge_nextdesc = &ld->nge_rx_list[0]; ld->nge_rx_list[i].nge_next = vtophys(&ld->nge_rx_list[0]); } else { ld->nge_rx_list[i].nge_nextdesc = &ld->nge_rx_list[i + 1]; ld->nge_rx_list[i].nge_next = vtophys(&ld->nge_rx_list[i + 1]); } } cd->nge_rx_prod = 0; return(0); } /* * Initialize an RX descriptor and attach an MBUF cluster. */ static int nge_newbuf(struct nge_softc *sc, struct nge_desc *c, struct mbuf *m) { struct mbuf *m_new = NULL; struct nge_jslot *buf; if (m == NULL) { MGETHDR(m_new, M_NOWAIT, MT_DATA); if (m_new == NULL) { kprintf("nge%d: no memory for rx list " "-- packet dropped!\n", sc->nge_unit); return(ENOBUFS); } /* Allocate the jumbo buffer */ buf = nge_jalloc(sc); if (buf == NULL) { #ifdef NGE_VERBOSE kprintf("nge%d: jumbo allocation failed " "-- packet dropped!\n", sc->nge_unit); #endif m_freem(m_new); return(ENOBUFS); } /* Attach the buffer to the mbuf */ m_new->m_ext.ext_arg = buf; m_new->m_ext.ext_buf = buf->nge_buf; m_new->m_ext.ext_free = nge_jfree; m_new->m_ext.ext_ref = nge_jref; m_new->m_ext.ext_size = NGE_JUMBO_FRAMELEN; m_new->m_data = m_new->m_ext.ext_buf; m_new->m_flags |= M_EXT; m_new->m_len = m_new->m_pkthdr.len = m_new->m_ext.ext_size; } else { m_new = m; m_new->m_len = m_new->m_pkthdr.len = NGE_JLEN; m_new->m_data = m_new->m_ext.ext_buf; } m_adj(m_new, sizeof(uint64_t)); c->nge_mbuf = m_new; c->nge_ptr = vtophys(mtod(m_new, caddr_t)); c->nge_ctl = m_new->m_len; c->nge_extsts = 0; return(0); } static int nge_alloc_jumbo_mem(struct nge_softc *sc) { caddr_t ptr; int i; struct nge_jslot *entry; /* Grab a big chunk o' storage. */ sc->nge_cdata.nge_jumbo_buf = contigmalloc(NGE_JMEM, M_DEVBUF, M_WAITOK, 0, 0xffffffff, PAGE_SIZE, 0); if (sc->nge_cdata.nge_jumbo_buf == NULL) { kprintf("nge%d: no memory for jumbo buffers!\n", sc->nge_unit); return(ENOBUFS); } SLIST_INIT(&sc->nge_jfree_listhead); /* * Now divide it up into 9K pieces and save the addresses * in an array. */ ptr = sc->nge_cdata.nge_jumbo_buf; for (i = 0; i < NGE_JSLOTS; i++) { entry = &sc->nge_cdata.nge_jslots[i]; entry->nge_sc = sc; entry->nge_buf = ptr; entry->nge_inuse = 0; entry->nge_slot = i; SLIST_INSERT_HEAD(&sc->nge_jfree_listhead, entry, jslot_link); ptr += NGE_JLEN; } return(0); } /* * Allocate a jumbo buffer. */ static struct nge_jslot * nge_jalloc(struct nge_softc *sc) { struct nge_jslot *entry; lwkt_serialize_enter(&sc->nge_jslot_serializer); entry = SLIST_FIRST(&sc->nge_jfree_listhead); if (entry) { SLIST_REMOVE_HEAD(&sc->nge_jfree_listhead, jslot_link); entry->nge_inuse = 1; } else { #ifdef NGE_VERBOSE kprintf("nge%d: no free jumbo buffers\n", sc->nge_unit); #endif } lwkt_serialize_exit(&sc->nge_jslot_serializer); return(entry); } /* * Adjust usage count on a jumbo buffer. In general this doesn't * get used much because our jumbo buffers don't get passed around * a lot, but it's implemented for correctness. */ static void nge_jref(void *arg) { struct nge_jslot *entry = (struct nge_jslot *)arg; struct nge_softc *sc = entry->nge_sc; if (sc == NULL) panic("nge_jref: can't find softc pointer!"); if (&sc->nge_cdata.nge_jslots[entry->nge_slot] != entry) panic("nge_jref: asked to reference buffer " "that we don't manage!"); else if (entry->nge_inuse == 0) panic("nge_jref: buffer already free!"); else atomic_add_int(&entry->nge_inuse, 1); } /* * Release a jumbo buffer. */ static void nge_jfree(void *arg) { struct nge_jslot *entry = (struct nge_jslot *)arg; struct nge_softc *sc = entry->nge_sc; if (sc == NULL) panic("nge_jref: can't find softc pointer!"); if (&sc->nge_cdata.nge_jslots[entry->nge_slot] != entry) { panic("nge_jref: asked to reference buffer " "that we don't manage!"); } else if (entry->nge_inuse == 0) { panic("nge_jref: buffer already free!"); } else { lwkt_serialize_enter(&sc->nge_jslot_serializer); atomic_subtract_int(&entry->nge_inuse, 1); if (entry->nge_inuse == 0) { SLIST_INSERT_HEAD(&sc->nge_jfree_listhead, entry, jslot_link); } lwkt_serialize_exit(&sc->nge_jslot_serializer); } } /* * A frame has been uploaded: pass the resulting mbuf chain up to * the higher level protocols. */ static void nge_rxeof(struct nge_softc *sc) { struct mbuf *m; struct ifnet *ifp = &sc->arpcom.ac_if; struct nge_desc *cur_rx; int i, total_len = 0; uint32_t rxstat; i = sc->nge_cdata.nge_rx_prod; while(NGE_OWNDESC(&sc->nge_ldata->nge_rx_list[i])) { struct mbuf *m0 = NULL; uint32_t extsts; #ifdef IFPOLL_ENABLE if (ifp->if_flags & IFF_NPOLLING) { if (sc->rxcycles <= 0) break; sc->rxcycles--; } #endif /* IFPOLL_ENABLE */ cur_rx = &sc->nge_ldata->nge_rx_list[i]; rxstat = cur_rx->nge_rxstat; extsts = cur_rx->nge_extsts; m = cur_rx->nge_mbuf; cur_rx->nge_mbuf = NULL; total_len = NGE_RXBYTES(cur_rx); NGE_INC(i, NGE_RX_LIST_CNT); /* * If an error occurs, update stats, clear the * status word and leave the mbuf cluster in place: * it should simply get re-used next time this descriptor * comes up in the ring. */ if ((rxstat & NGE_CMDSTS_PKT_OK) == 0) { IFNET_STAT_INC(ifp, ierrors, 1); nge_newbuf(sc, cur_rx, m); continue; } /* * Ok. NatSemi really screwed up here. This is the * only gigE chip I know of with alignment constraints * on receive buffers. RX buffers must be 64-bit aligned. */ #ifdef __x86_64__ /* * By popular demand, ignore the alignment problems * on the Intel x86 platform. The performance hit * incurred due to unaligned accesses is much smaller * than the hit produced by forcing buffer copies all * the time, especially with jumbo frames. We still * need to fix up the alignment everywhere else though. */ if (nge_newbuf(sc, cur_rx, NULL) == ENOBUFS) { #endif m0 = m_devget(mtod(m, char *) - ETHER_ALIGN, total_len + ETHER_ALIGN, 0, ifp); nge_newbuf(sc, cur_rx, m); if (m0 == NULL) { kprintf("nge%d: no receive buffers " "available -- packet dropped!\n", sc->nge_unit); IFNET_STAT_INC(ifp, ierrors, 1); continue; } m_adj(m0, ETHER_ALIGN); m = m0; #ifdef __x86_64__ } else { m->m_pkthdr.rcvif = ifp; m->m_pkthdr.len = m->m_len = total_len; } #endif IFNET_STAT_INC(ifp, ipackets, 1); /* Do IP checksum checking. */ if (extsts & NGE_RXEXTSTS_IPPKT) m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; if (!(extsts & NGE_RXEXTSTS_IPCSUMERR)) m->m_pkthdr.csum_flags |= CSUM_IP_VALID; if ((extsts & NGE_RXEXTSTS_TCPPKT && (extsts & NGE_RXEXTSTS_TCPCSUMERR) == 0) || (extsts & NGE_RXEXTSTS_UDPPKT && (extsts & NGE_RXEXTSTS_UDPCSUMERR) == 0)) { m->m_pkthdr.csum_flags |= CSUM_DATA_VALID|CSUM_PSEUDO_HDR| CSUM_FRAG_NOT_CHECKED; m->m_pkthdr.csum_data = 0xffff; } /* * If we received a packet with a vlan tag, pass it * to vlan_input() instead of ether_input(). */ if (extsts & NGE_RXEXTSTS_VLANPKT) { m->m_flags |= M_VLANTAG; m->m_pkthdr.ether_vlantag = (extsts & NGE_RXEXTSTS_VTCI); } ifp->if_input(ifp, m, NULL, -1); } sc->nge_cdata.nge_rx_prod = i; } /* * A frame was downloaded to the chip. It's safe for us to clean up * the list buffers. */ static void nge_txeof(struct nge_softc *sc) { struct ifnet *ifp = &sc->arpcom.ac_if; struct nge_desc *cur_tx = NULL; uint32_t idx; /* Clear the timeout timer. */ ifp->if_timer = 0; /* * Go through our tx list and free mbufs for those * frames that have been transmitted. */ idx = sc->nge_cdata.nge_tx_cons; while (idx != sc->nge_cdata.nge_tx_prod) { cur_tx = &sc->nge_ldata->nge_tx_list[idx]; if (NGE_OWNDESC(cur_tx)) break; if (cur_tx->nge_ctl & NGE_CMDSTS_MORE) { sc->nge_cdata.nge_tx_cnt--; NGE_INC(idx, NGE_TX_LIST_CNT); continue; } if (!(cur_tx->nge_ctl & NGE_CMDSTS_PKT_OK)) { IFNET_STAT_INC(ifp, oerrors, 1); if (cur_tx->nge_txstat & NGE_TXSTAT_EXCESSCOLLS) IFNET_STAT_INC(ifp, collisions, 1); if (cur_tx->nge_txstat & NGE_TXSTAT_OUTOFWINCOLL) IFNET_STAT_INC(ifp, collisions, 1); } IFNET_STAT_INC(ifp, collisions, (cur_tx->nge_txstat & NGE_TXSTAT_COLLCNT) >> 16); IFNET_STAT_INC(ifp, opackets, 1); if (cur_tx->nge_mbuf != NULL) { m_freem(cur_tx->nge_mbuf); cur_tx->nge_mbuf = NULL; } sc->nge_cdata.nge_tx_cnt--; NGE_INC(idx, NGE_TX_LIST_CNT); ifp->if_timer = 0; } sc->nge_cdata.nge_tx_cons = idx; if (cur_tx != NULL) ifq_clr_oactive(&ifp->if_snd); } static void nge_tick(void *xsc) { struct nge_softc *sc = xsc; struct ifnet *ifp = &sc->arpcom.ac_if; struct mii_data *mii; lwkt_serialize_enter(ifp->if_serializer); if (sc->nge_tbi) { if (sc->nge_link == 0) { if (CSR_READ_4(sc, NGE_TBI_BMSR) & NGE_TBIBMSR_ANEG_DONE) { kprintf("nge%d: gigabit link up\n", sc->nge_unit); nge_miibus_statchg(sc->nge_miibus); sc->nge_link++; if (!ifq_is_empty(&ifp->if_snd)) if_devstart(ifp); } } } else { mii = device_get_softc(sc->nge_miibus); mii_tick(mii); if (sc->nge_link == 0) { if (mii->mii_media_status & IFM_ACTIVE && IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) { sc->nge_link++; if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) kprintf("nge%d: gigabit link up\n", sc->nge_unit); if (!ifq_is_empty(&ifp->if_snd)) if_devstart(ifp); } } } callout_reset(&sc->nge_stat_timer, hz, nge_tick, sc); lwkt_serialize_exit(ifp->if_serializer); } #ifdef IFPOLL_ENABLE static void nge_npoll_compat(struct ifnet *ifp, void *arg __unused, int count) { struct nge_softc *sc = ifp->if_softc; ASSERT_SERIALIZED(ifp->if_serializer); /* * On the nge, reading the status register also clears it. * So before returning to intr mode we must make sure that all * possible pending sources of interrupts have been served. * In practice this means run to completion the *eof routines, * and then call the interrupt routine */ sc->rxcycles = count; nge_rxeof(sc); nge_txeof(sc); if (!ifq_is_empty(&ifp->if_snd)) if_devstart(ifp); if (sc->nge_npoll.ifpc_stcount-- == 0) { uint32_t status; sc->nge_npoll.ifpc_stcount = sc->nge_npoll.ifpc_stfrac; /* Reading the ISR register clears all interrupts. */ status = CSR_READ_4(sc, NGE_ISR); if (status & (NGE_ISR_RX_ERR|NGE_ISR_RX_OFLOW)) nge_rxeof(sc); if (status & (NGE_ISR_RX_IDLE)) NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE); if (status & NGE_ISR_SYSERR) { nge_reset(sc); nge_init(sc); } } } static void nge_npoll(struct ifnet *ifp, struct ifpoll_info *info) { struct nge_softc *sc = ifp->if_softc; ASSERT_SERIALIZED(ifp->if_serializer); if (info != NULL) { int cpuid = sc->nge_npoll.ifpc_cpuid; info->ifpi_rx[cpuid].poll_func = nge_npoll_compat; info->ifpi_rx[cpuid].arg = NULL; info->ifpi_rx[cpuid].serializer = ifp->if_serializer; if (ifp->if_flags & IFF_RUNNING) { /* disable interrupts */ CSR_WRITE_4(sc, NGE_IER, 0); sc->nge_npoll.ifpc_stcount = 0; } ifq_set_cpuid(&ifp->if_snd, cpuid); } else { if (ifp->if_flags & IFF_RUNNING) { /* enable interrupts */ CSR_WRITE_4(sc, NGE_IER, 1); } ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(sc->nge_irq)); } } #endif /* IFPOLL_ENABLE */ static void nge_intr(void *arg) { struct nge_softc *sc = arg; struct ifnet *ifp = &sc->arpcom.ac_if; uint32_t status; /* Supress unwanted interrupts */ if (!(ifp->if_flags & IFF_UP)) { nge_stop(sc); return; } /* Disable interrupts. */ CSR_WRITE_4(sc, NGE_IER, 0); /* Data LED on for TBI mode */ if(sc->nge_tbi) CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO) | NGE_GPIO_GP3_OUT); for (;;) { /* Reading the ISR register clears all interrupts. */ status = CSR_READ_4(sc, NGE_ISR); if ((status & NGE_INTRS) == 0) break; if ((status & NGE_ISR_TX_DESC_OK) || (status & NGE_ISR_TX_ERR) || (status & NGE_ISR_TX_OK) || (status & NGE_ISR_TX_IDLE)) nge_txeof(sc); if ((status & NGE_ISR_RX_DESC_OK) || (status & NGE_ISR_RX_ERR) || (status & NGE_ISR_RX_OFLOW) || (status & NGE_ISR_RX_FIFO_OFLOW) || (status & NGE_ISR_RX_IDLE) || (status & NGE_ISR_RX_OK)) nge_rxeof(sc); if ((status & NGE_ISR_RX_IDLE)) NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE); if (status & NGE_ISR_SYSERR) { nge_reset(sc); ifp->if_flags &= ~IFF_RUNNING; nge_init(sc); } #ifdef notyet /* mii_tick should only be called once per second */ if (status & NGE_ISR_PHY_INTR) { sc->nge_link = 0; nge_tick_serialized(sc); } #endif } /* Re-enable interrupts. */ CSR_WRITE_4(sc, NGE_IER, 1); if (!ifq_is_empty(&ifp->if_snd)) if_devstart(ifp); /* Data LED off for TBI mode */ if(sc->nge_tbi) CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO) & ~NGE_GPIO_GP3_OUT); } /* * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data * pointers to the fragment pointers. */ static int nge_encap(struct nge_softc *sc, struct mbuf *m_head, uint32_t *txidx) { struct nge_desc *f = NULL; struct mbuf *m; int frag, cur, cnt = 0; /* * Start packing the mbufs in this chain into * the fragment pointers. Stop when we run out * of fragments or hit the end of the mbuf chain. */ cur = frag = *txidx; for (m = m_head; m != NULL; m = m->m_next) { if (m->m_len != 0) { if ((NGE_TX_LIST_CNT - (sc->nge_cdata.nge_tx_cnt + cnt)) < 2) break; f = &sc->nge_ldata->nge_tx_list[frag]; f->nge_ctl = NGE_CMDSTS_MORE | m->m_len; f->nge_ptr = vtophys(mtod(m, vm_offset_t)); if (cnt != 0) f->nge_ctl |= NGE_CMDSTS_OWN; cur = frag; NGE_INC(frag, NGE_TX_LIST_CNT); cnt++; } } /* Caller should make sure that 'm_head' is not excessive fragmented */ KASSERT(m == NULL, ("too many fragments")); sc->nge_ldata->nge_tx_list[*txidx].nge_extsts = 0; if (m_head->m_pkthdr.csum_flags) { if (m_head->m_pkthdr.csum_flags & CSUM_IP) sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |= NGE_TXEXTSTS_IPCSUM; if (m_head->m_pkthdr.csum_flags & CSUM_TCP) sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |= NGE_TXEXTSTS_TCPCSUM; if (m_head->m_pkthdr.csum_flags & CSUM_UDP) sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |= NGE_TXEXTSTS_UDPCSUM; } if (m_head->m_flags & M_VLANTAG) { sc->nge_ldata->nge_tx_list[cur].nge_extsts |= (NGE_TXEXTSTS_VLANPKT|m_head->m_pkthdr.ether_vlantag); } sc->nge_ldata->nge_tx_list[cur].nge_mbuf = m_head; sc->nge_ldata->nge_tx_list[cur].nge_ctl &= ~NGE_CMDSTS_MORE; sc->nge_ldata->nge_tx_list[*txidx].nge_ctl |= NGE_CMDSTS_OWN; sc->nge_cdata.nge_tx_cnt += cnt; *txidx = frag; return(0); } /* * Main transmit routine. To avoid having to do mbuf copies, we put pointers * to the mbuf data regions directly in the transmit lists. We also save a * copy of the pointers since the transmit list fragment pointers are * physical addresses. */ static void nge_start(struct ifnet *ifp, struct ifaltq_subque *ifsq) { struct nge_softc *sc = ifp->if_softc; struct mbuf *m_head = NULL, *m_defragged; uint32_t idx; int need_trans; ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq); if (!sc->nge_link) { ifq_purge(&ifp->if_snd); return; } idx = sc->nge_cdata.nge_tx_prod; if ((ifp->if_flags & IFF_RUNNING) == 0 || ifq_is_oactive(&ifp->if_snd)) return; need_trans = 0; while (sc->nge_ldata->nge_tx_list[idx].nge_mbuf == NULL) { struct mbuf *m; int cnt; m_defragged = NULL; m_head = ifq_dequeue(&ifp->if_snd); if (m_head == NULL) break; again: cnt = 0; for (m = m_head; m != NULL; m = m->m_next) ++cnt; if ((NGE_TX_LIST_CNT - (sc->nge_cdata.nge_tx_cnt + cnt)) < 2) { if (m_defragged != NULL) { /* * Even after defragmentation, there * are still too many fragments, so * drop this packet. */ m_freem(m_head); ifq_set_oactive(&ifp->if_snd); break; } m_defragged = m_defrag(m_head, M_NOWAIT); if (m_defragged == NULL) { m_freem(m_head); continue; } m_head = m_defragged; /* Recount # of fragments */ goto again; } nge_encap(sc, m_head, &idx); need_trans = 1; ETHER_BPF_MTAP(ifp, m_head); } if (!need_trans) return; /* Transmit */ sc->nge_cdata.nge_tx_prod = idx; NGE_SETBIT(sc, NGE_CSR, NGE_CSR_TX_ENABLE); /* * Set a timeout in case the chip goes out to lunch. */ ifp->if_timer = 5; } static void nge_init(void *xsc) { struct nge_softc *sc = xsc; struct ifnet *ifp = &sc->arpcom.ac_if; struct mii_data *mii; if (ifp->if_flags & IFF_RUNNING) { return; } /* * Cancel pending I/O and free all RX/TX buffers. */ nge_stop(sc); callout_reset(&sc->nge_stat_timer, hz, nge_tick, sc); if (sc->nge_tbi) mii = NULL; else mii = device_get_softc(sc->nge_miibus); /* Set MAC address */ CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR0); CSR_WRITE_4(sc, NGE_RXFILT_DATA, ((uint16_t *)sc->arpcom.ac_enaddr)[0]); CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR1); CSR_WRITE_4(sc, NGE_RXFILT_DATA, ((uint16_t *)sc->arpcom.ac_enaddr)[1]); CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR2); CSR_WRITE_4(sc, NGE_RXFILT_DATA, ((uint16_t *)sc->arpcom.ac_enaddr)[2]); /* Init circular RX list. */ if (nge_list_rx_init(sc) == ENOBUFS) { kprintf("nge%d: initialization failed: no " "memory for rx buffers\n", sc->nge_unit); nge_stop(sc); return; } /* * Init tx descriptors. */ nge_list_tx_init(sc); /* * For the NatSemi chip, we have to explicitly enable the * reception of ARP frames, as well as turn on the 'perfect * match' filter where we store the station address, otherwise * we won't receive unicasts meant for this host. */ NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ARP); NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_PERFECT); /* If we want promiscuous mode, set the allframes bit. */ if (ifp->if_flags & IFF_PROMISC) NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLPHYS); else NGE_CLRBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLPHYS); /* * Set the capture broadcast bit to capture broadcast frames. */ if (ifp->if_flags & IFF_BROADCAST) NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_BROAD); else NGE_CLRBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_BROAD); /* * Load the multicast filter. */ nge_setmulti(sc); /* Turn the receive filter on */ NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ENABLE); /* * Load the address of the RX and TX lists. */ CSR_WRITE_4(sc, NGE_RX_LISTPTR, vtophys(&sc->nge_ldata->nge_rx_list[0])); CSR_WRITE_4(sc, NGE_TX_LISTPTR, vtophys(&sc->nge_ldata->nge_tx_list[0])); /* Set RX configuration */ CSR_WRITE_4(sc, NGE_RX_CFG, NGE_RXCFG); /* * Enable hardware checksum validation for all IPv4 * packets, do not reject packets with bad checksums. */ CSR_WRITE_4(sc, NGE_VLAN_IP_RXCTL, NGE_VIPRXCTL_IPCSUM_ENB); /* * Tell the chip to detect and strip VLAN tag info from * received frames. The tag will be provided in the extsts * field in the RX descriptors. */ NGE_SETBIT(sc, NGE_VLAN_IP_RXCTL, NGE_VIPRXCTL_TAG_DETECT_ENB|NGE_VIPRXCTL_TAG_STRIP_ENB); /* Set TX configuration */ CSR_WRITE_4(sc, NGE_TX_CFG, NGE_TXCFG); /* * Enable TX IPv4 checksumming on a per-packet basis. */ CSR_WRITE_4(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_CSUM_PER_PKT); /* * Tell the chip to insert VLAN tags on a per-packet basis as * dictated by the code in the frame encapsulation routine. */ NGE_SETBIT(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_TAG_PER_PKT); /* Set full/half duplex mode. */ if (sc->nge_tbi) { if ((sc->nge_ifmedia.ifm_cur->ifm_media & IFM_GMASK) == IFM_FDX) { NGE_SETBIT(sc, NGE_TX_CFG, (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR)); NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX); } else { NGE_CLRBIT(sc, NGE_TX_CFG, (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR)); NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX); } } else { if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) { NGE_SETBIT(sc, NGE_TX_CFG, (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR)); NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX); } else { NGE_CLRBIT(sc, NGE_TX_CFG, (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR)); NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX); } } /* * Enable the delivery of PHY interrupts based on * link/speed/duplex status changes. Also enable the * extsts field in the DMA descriptors (needed for * TCP/IP checksum offload on transmit). */ NGE_SETBIT(sc, NGE_CFG, NGE_CFG_PHYINTR_SPD | NGE_CFG_PHYINTR_LNK | NGE_CFG_PHYINTR_DUP | NGE_CFG_EXTSTS_ENB); /* * Configure interrupt holdoff (moderation). We can * have the chip delay interrupt delivery for a certain * period. Units are in 100us, and the max setting * is 25500us (0xFF x 100us). Default is a 100us holdoff. */ CSR_WRITE_4(sc, NGE_IHR, 0x01); /* * Enable interrupts. */ CSR_WRITE_4(sc, NGE_IMR, NGE_INTRS); #ifdef IFPOLL_ENABLE /* * ... only enable interrupts if we are not polling, make sure * they are off otherwise. */ if (ifp->if_flags & IFF_NPOLLING) { CSR_WRITE_4(sc, NGE_IER, 0); sc->nge_npoll.ifpc_stcount = 0; } else #endif /* IFPOLL_ENABLE */ CSR_WRITE_4(sc, NGE_IER, 1); /* Enable receiver and transmitter. */ NGE_CLRBIT(sc, NGE_CSR, NGE_CSR_TX_DISABLE | NGE_CSR_RX_DISABLE); NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE); nge_ifmedia_upd(ifp); ifp->if_flags |= IFF_RUNNING; ifq_clr_oactive(&ifp->if_snd); } /* * Set media options. */ static int nge_ifmedia_upd(struct ifnet *ifp) { struct nge_softc *sc = ifp->if_softc; struct mii_data *mii; if (sc->nge_tbi) { if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media) == IFM_AUTO) { CSR_WRITE_4(sc, NGE_TBI_ANAR, CSR_READ_4(sc, NGE_TBI_ANAR) | NGE_TBIANAR_HDX | NGE_TBIANAR_FDX | NGE_TBIANAR_PS1 | NGE_TBIANAR_PS2); CSR_WRITE_4(sc, NGE_TBI_BMCR, NGE_TBIBMCR_ENABLE_ANEG | NGE_TBIBMCR_RESTART_ANEG); CSR_WRITE_4(sc, NGE_TBI_BMCR, NGE_TBIBMCR_ENABLE_ANEG); } else if ((sc->nge_ifmedia.ifm_cur->ifm_media & IFM_GMASK) == IFM_FDX) { NGE_SETBIT(sc, NGE_TX_CFG, (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR)); NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX); CSR_WRITE_4(sc, NGE_TBI_ANAR, 0); CSR_WRITE_4(sc, NGE_TBI_BMCR, 0); } else { NGE_CLRBIT(sc, NGE_TX_CFG, (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR)); NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX); CSR_WRITE_4(sc, NGE_TBI_ANAR, 0); CSR_WRITE_4(sc, NGE_TBI_BMCR, 0); } CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO) & ~NGE_GPIO_GP3_OUT); } else { mii = device_get_softc(sc->nge_miibus); sc->nge_link = 0; if (mii->mii_instance) { struct mii_softc *miisc; for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL; miisc = LIST_NEXT(miisc, mii_list)) mii_phy_reset(miisc); } mii_mediachg(mii); } return(0); } /* * Report current media status. */ static void nge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) { struct nge_softc *sc = ifp->if_softc; struct mii_data *mii; if (sc->nge_tbi) { ifmr->ifm_status = IFM_AVALID; ifmr->ifm_active = IFM_ETHER; if (CSR_READ_4(sc, NGE_TBI_BMSR) & NGE_TBIBMSR_ANEG_DONE) ifmr->ifm_status |= IFM_ACTIVE; if (CSR_READ_4(sc, NGE_TBI_BMCR) & NGE_TBIBMCR_LOOPBACK) ifmr->ifm_active |= IFM_LOOP; if (!(CSR_READ_4(sc, NGE_TBI_BMSR) & NGE_TBIBMSR_ANEG_DONE)) { ifmr->ifm_active |= IFM_NONE; ifmr->ifm_status = 0; return; } ifmr->ifm_active |= IFM_1000_SX; if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media) == IFM_AUTO) { ifmr->ifm_active |= IFM_AUTO; if (CSR_READ_4(sc, NGE_TBI_ANLPAR) & NGE_TBIANAR_FDX) { ifmr->ifm_active |= IFM_FDX; }else if (CSR_READ_4(sc, NGE_TBI_ANLPAR) & NGE_TBIANAR_HDX) { ifmr->ifm_active |= IFM_HDX; } } else if ((sc->nge_ifmedia.ifm_cur->ifm_media & IFM_GMASK) == IFM_FDX) ifmr->ifm_active |= IFM_FDX; else ifmr->ifm_active |= IFM_HDX; } else { mii = device_get_softc(sc->nge_miibus); mii_pollstat(mii); ifmr->ifm_active = mii->mii_media_active; ifmr->ifm_status = mii->mii_media_status; } } static int nge_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr) { struct nge_softc *sc = ifp->if_softc; struct ifreq *ifr = (struct ifreq *) data; struct mii_data *mii; int error = 0; switch(command) { case SIOCSIFMTU: if (ifr->ifr_mtu > NGE_JUMBO_MTU) { error = EINVAL; } else { ifp->if_mtu = ifr->ifr_mtu; /* * Workaround: if the MTU is larger than * 8152 (TX FIFO size minus 64 minus 18), turn off * TX checksum offloading. */ if (ifr->ifr_mtu >= 8152) ifp->if_hwassist = 0; else ifp->if_hwassist = NGE_CSUM_FEATURES; } break; case SIOCSIFFLAGS: if (ifp->if_flags & IFF_UP) { if (ifp->if_flags & IFF_RUNNING && ifp->if_flags & IFF_PROMISC && !(sc->nge_if_flags & IFF_PROMISC)) { NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLPHYS| NGE_RXFILTCTL_ALLMULTI); } else if (ifp->if_flags & IFF_RUNNING && !(ifp->if_flags & IFF_PROMISC) && sc->nge_if_flags & IFF_PROMISC) { NGE_CLRBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLPHYS); if (!(ifp->if_flags & IFF_ALLMULTI)) NGE_CLRBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLMULTI); } else { ifp->if_flags &= ~IFF_RUNNING; nge_init(sc); } } else { if (ifp->if_flags & IFF_RUNNING) nge_stop(sc); } sc->nge_if_flags = ifp->if_flags; error = 0; break; case SIOCADDMULTI: case SIOCDELMULTI: nge_setmulti(sc); error = 0; break; case SIOCGIFMEDIA: case SIOCSIFMEDIA: if (sc->nge_tbi) { error = ifmedia_ioctl(ifp, ifr, &sc->nge_ifmedia, command); } else { mii = device_get_softc(sc->nge_miibus); error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); } break; default: error = ether_ioctl(ifp, command, data); break; } return(error); } static void nge_watchdog(struct ifnet *ifp) { struct nge_softc *sc = ifp->if_softc; IFNET_STAT_INC(ifp, oerrors, 1); kprintf("nge%d: watchdog timeout\n", sc->nge_unit); nge_stop(sc); nge_reset(sc); ifp->if_flags &= ~IFF_RUNNING; nge_init(sc); if (!ifq_is_empty(&ifp->if_snd)) if_devstart(ifp); } /* * Stop the adapter and free any mbufs allocated to the * RX and TX lists. */ static void nge_stop(struct nge_softc *sc) { struct ifnet *ifp = &sc->arpcom.ac_if; struct ifmedia_entry *ifm; struct mii_data *mii; int i, itmp, mtmp, dtmp; ifp->if_timer = 0; if (sc->nge_tbi) mii = NULL; else mii = device_get_softc(sc->nge_miibus); callout_stop(&sc->nge_stat_timer); CSR_WRITE_4(sc, NGE_IER, 0); CSR_WRITE_4(sc, NGE_IMR, 0); NGE_SETBIT(sc, NGE_CSR, NGE_CSR_TX_DISABLE|NGE_CSR_RX_DISABLE); DELAY(1000); CSR_WRITE_4(sc, NGE_TX_LISTPTR, 0); CSR_WRITE_4(sc, NGE_RX_LISTPTR, 0); /* * Isolate/power down the PHY, but leave the media selection * unchanged so that things will be put back to normal when * we bring the interface back up. */ itmp = ifp->if_flags; ifp->if_flags |= IFF_UP; if (sc->nge_tbi) ifm = sc->nge_ifmedia.ifm_cur; else ifm = mii->mii_media.ifm_cur; mtmp = ifm->ifm_media; dtmp = ifm->ifm_data; ifm->ifm_media = IFM_ETHER|IFM_NONE; ifm->ifm_data = MII_MEDIA_NONE; if (!sc->nge_tbi) mii_mediachg(mii); ifm->ifm_media = mtmp; ifm->ifm_data = dtmp; ifp->if_flags = itmp; sc->nge_link = 0; /* * Free data in the RX lists. */ for (i = 0; i < NGE_RX_LIST_CNT; i++) { if (sc->nge_ldata->nge_rx_list[i].nge_mbuf != NULL) { m_freem(sc->nge_ldata->nge_rx_list[i].nge_mbuf); sc->nge_ldata->nge_rx_list[i].nge_mbuf = NULL; } } bzero(&sc->nge_ldata->nge_rx_list, sizeof(sc->nge_ldata->nge_rx_list)); /* * Free the TX list buffers. */ for (i = 0; i < NGE_TX_LIST_CNT; i++) { if (sc->nge_ldata->nge_tx_list[i].nge_mbuf != NULL) { m_freem(sc->nge_ldata->nge_tx_list[i].nge_mbuf); sc->nge_ldata->nge_tx_list[i].nge_mbuf = NULL; } } bzero(&sc->nge_ldata->nge_tx_list, sizeof(sc->nge_ldata->nge_tx_list)); ifp->if_flags &= ~IFF_RUNNING; ifq_clr_oactive(&ifp->if_snd); } /* * Stop all chip I/O so that the kernel's probe routines don't * get confused by errant DMAs when rebooting. */ static void nge_shutdown(device_t dev) { struct nge_softc *sc = device_get_softc(dev); struct ifnet *ifp = &sc->arpcom.ac_if; lwkt_serialize_enter(ifp->if_serializer); nge_reset(sc); nge_stop(sc); lwkt_serialize_exit(ifp->if_serializer); }