/* * Copyright (c) 2000 Berkeley Software Design, Inc. * Copyright (c) 1997, 1998, 1999, 2000 * Bill Paul . All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Bill Paul. * 4. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. * * $FreeBSD: src/sys/pci/if_pcn.c,v 1.5.2.10 2003/03/05 18:42:33 njl Exp $ */ /* * AMD Am79c972 fast ethernet PCI NIC driver. Datatheets are available * from http://www.amd.com. * * Written by Bill Paul */ /* * The AMD PCnet/PCI controllers are more advanced and functional * versions of the venerable 7990 LANCE. The PCnet/PCI chips retain * backwards compatibility with the LANCE and thus can be made * to work with older LANCE drivers. This is in fact how the * PCnet/PCI chips were supported in FreeBSD originally. The trouble * is that the PCnet/PCI devices offer several performance enhancements * which can't be exploited in LANCE compatibility mode. Chief among * these enhancements is the ability to perform PCI DMA operations * using 32-bit addressing (which eliminates the need for ISA * bounce-buffering), and special receive buffer alignment (which * allows the receive handler to pass packets to the upper protocol * layers without copying on both the x86 and alpha platforms). */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* for vtophys */ #include /* for vtophys */ #include /* for DELAY */ #include "../mii_layer/mii.h" #include "../mii_layer/miivar.h" #include "pcidevs.h" #include #include #define PCN_USEIOSPACE #include "if_pcnreg.h" /* "controller miibus0" required. See GENERIC if you get errors here. */ #include "miibus_if.h" /* * Various supported device vendors/types and their names. */ static struct pcn_type pcn_devs[] = { { PCI_VENDOR_AMD, PCI_PRODUCT_AMD_PCNET_PCI, "AMD PCnet/PCI 10/100BaseTX" }, { PCI_VENDOR_AMD, PCI_PRODUCT_AMD_PCNET_HOME, "AMD PCnet/Home HomePNA" }, { 0, 0, NULL } }; static u_int32_t pcn_csr_read (struct pcn_softc *, int); static u_int16_t pcn_csr_read16 (struct pcn_softc *, int); static u_int16_t pcn_bcr_read16 (struct pcn_softc *, int); static void pcn_csr_write (struct pcn_softc *, int, int); static u_int32_t pcn_bcr_read (struct pcn_softc *, int); static void pcn_bcr_write (struct pcn_softc *, int, int); static int pcn_probe (device_t); static int pcn_attach (device_t); static int pcn_detach (device_t); static int pcn_newbuf (struct pcn_softc *, int, struct mbuf *); static int pcn_encap (struct pcn_softc *, struct mbuf *, u_int32_t *); static void pcn_rxeof (struct pcn_softc *); static void pcn_txeof (struct pcn_softc *); static void pcn_intr (void *); static void pcn_tick (void *); static void pcn_start (struct ifnet *, struct ifaltq_subque *); static int pcn_ioctl (struct ifnet *, u_long, caddr_t, struct ucred *); static void pcn_init (void *); static void pcn_stop (struct pcn_softc *); static void pcn_watchdog (struct ifnet *); static void pcn_shutdown (device_t); static int pcn_ifmedia_upd (struct ifnet *); static void pcn_ifmedia_sts (struct ifnet *, struct ifmediareq *); static int pcn_miibus_readreg (device_t, int, int); static int pcn_miibus_writereg (device_t, int, int, int); static void pcn_miibus_statchg (device_t); static void pcn_setfilt (struct ifnet *); static void pcn_setmulti (struct pcn_softc *); static u_int32_t pcn_crc (caddr_t); static void pcn_reset (struct pcn_softc *); static int pcn_list_rx_init (struct pcn_softc *); static int pcn_list_tx_init (struct pcn_softc *); #ifdef PCN_USEIOSPACE #define PCN_RES SYS_RES_IOPORT #define PCN_RID PCN_PCI_LOIO #else #define PCN_RES SYS_RES_MEMORY #define PCN_RID PCN_PCI_LOMEM #endif static device_method_t pcn_methods[] = { /* Device interface */ DEVMETHOD(device_probe, pcn_probe), DEVMETHOD(device_attach, pcn_attach), DEVMETHOD(device_detach, pcn_detach), DEVMETHOD(device_shutdown, pcn_shutdown), /* bus interface */ DEVMETHOD(bus_print_child, bus_generic_print_child), DEVMETHOD(bus_driver_added, bus_generic_driver_added), /* MII interface */ DEVMETHOD(miibus_readreg, pcn_miibus_readreg), DEVMETHOD(miibus_writereg, pcn_miibus_writereg), DEVMETHOD(miibus_statchg, pcn_miibus_statchg), DEVMETHOD_END }; static driver_t pcn_driver = { "pcn", pcn_methods, sizeof(struct pcn_softc) }; static devclass_t pcn_devclass; DECLARE_DUMMY_MODULE(if_pcn); DRIVER_MODULE(if_pcn, pci, pcn_driver, pcn_devclass, NULL, NULL); DRIVER_MODULE(miibus, pcn, miibus_driver, miibus_devclass, NULL, NULL); #define PCN_CSR_SETBIT(sc, reg, x) \ pcn_csr_write(sc, reg, pcn_csr_read(sc, reg) | (x)) #define PCN_CSR_CLRBIT(sc, reg, x) \ pcn_csr_write(sc, reg, pcn_csr_read(sc, reg) & ~(x)) #define PCN_BCR_SETBIT(sc, reg, x) \ pcn_bcr_write(sc, reg, pcn_bcr_read(sc, reg) | (x)) #define PCN_BCR_CLRBIT(sc, reg, x) \ pcn_bcr_write(sc, reg, pcn_bcr_read(sc, reg) & ~(x)) static u_int32_t pcn_csr_read(struct pcn_softc *sc, int reg) { CSR_WRITE_4(sc, PCN_IO32_RAP, reg); return(CSR_READ_4(sc, PCN_IO32_RDP)); } static u_int16_t pcn_csr_read16(struct pcn_softc *sc, int reg) { CSR_WRITE_2(sc, PCN_IO16_RAP, reg); return(CSR_READ_2(sc, PCN_IO16_RDP)); } static void pcn_csr_write(struct pcn_softc *sc, int reg, int val) { CSR_WRITE_4(sc, PCN_IO32_RAP, reg); CSR_WRITE_4(sc, PCN_IO32_RDP, val); return; } static u_int32_t pcn_bcr_read(struct pcn_softc *sc, int reg) { CSR_WRITE_4(sc, PCN_IO32_RAP, reg); return(CSR_READ_4(sc, PCN_IO32_BDP)); } static u_int16_t pcn_bcr_read16(struct pcn_softc *sc, int reg) { CSR_WRITE_2(sc, PCN_IO16_RAP, reg); return(CSR_READ_2(sc, PCN_IO16_BDP)); } static void pcn_bcr_write(struct pcn_softc *sc, int reg, int val) { CSR_WRITE_4(sc, PCN_IO32_RAP, reg); CSR_WRITE_4(sc, PCN_IO32_BDP, val); return; } static int pcn_miibus_readreg(device_t dev, int phy, int reg) { struct pcn_softc *sc; int val; sc = device_get_softc(dev); if (sc->pcn_phyaddr && phy > sc->pcn_phyaddr) return(0); pcn_bcr_write(sc, PCN_BCR_MIIADDR, reg | (phy << 5)); val = pcn_bcr_read(sc, PCN_BCR_MIIDATA) & 0xFFFF; if (val == 0xFFFF) return(0); sc->pcn_phyaddr = phy; return(val); } static int pcn_miibus_writereg(device_t dev, int phy, int reg, int data) { struct pcn_softc *sc; sc = device_get_softc(dev); pcn_bcr_write(sc, PCN_BCR_MIIADDR, reg | (phy << 5)); pcn_bcr_write(sc, PCN_BCR_MIIDATA, data); return(0); } static void pcn_miibus_statchg(device_t dev) { struct pcn_softc *sc; struct mii_data *mii; sc = device_get_softc(dev); mii = device_get_softc(sc->pcn_miibus); if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) { PCN_BCR_SETBIT(sc, PCN_BCR_DUPLEX, PCN_DUPLEX_FDEN); } else { PCN_BCR_CLRBIT(sc, PCN_BCR_DUPLEX, PCN_DUPLEX_FDEN); } return; } #define DC_POLY 0xEDB88320 static u_int32_t pcn_crc(caddr_t addr) { u_int32_t idx, bit, data, crc; /* Compute CRC for the address value. */ crc = 0xFFFFFFFF; /* initial value */ for (idx = 0; idx < 6; idx++) { for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1) crc = (crc >> 1) ^ (((crc ^ data) & 1) ? DC_POLY : 0); } return ((crc >> 26) & 0x3F); } static void pcn_setmulti(struct pcn_softc *sc) { struct ifnet *ifp; struct ifmultiaddr *ifma; u_int32_t h, i; u_int16_t hashes[4] = { 0, 0, 0, 0 }; ifp = &sc->arpcom.ac_if; PCN_CSR_SETBIT(sc, PCN_CSR_EXTCTL1, PCN_EXTCTL1_SPND); if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) { for (i = 0; i < 4; i++) pcn_csr_write(sc, PCN_CSR_MAR0 + i, 0xFFFF); PCN_CSR_CLRBIT(sc, PCN_CSR_EXTCTL1, PCN_EXTCTL1_SPND); return; } /* first, zot all the existing hash bits */ for (i = 0; i < 4; i++) pcn_csr_write(sc, PCN_CSR_MAR0 + i, 0); /* now program new ones */ TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { if (ifma->ifma_addr->sa_family != AF_LINK) continue; h = pcn_crc(LLADDR((struct sockaddr_dl *)ifma->ifma_addr)); hashes[h >> 4] |= 1 << (h & 0xF); } for (i = 0; i < 4; i++) pcn_csr_write(sc, PCN_CSR_MAR0 + i, hashes[i]); PCN_CSR_CLRBIT(sc, PCN_CSR_EXTCTL1, PCN_EXTCTL1_SPND); return; } static void pcn_reset(struct pcn_softc *sc) { /* * Issue a reset by reading from the RESET register. * Note that we don't know if the chip is operating in * 16-bit or 32-bit mode at this point, so we attempt * to reset the chip both ways. If one fails, the other * will succeed. */ CSR_READ_2(sc, PCN_IO16_RESET); CSR_READ_4(sc, PCN_IO32_RESET); /* Wait a little while for the chip to get its brains in order. */ DELAY(1000); /* Select 32-bit (DWIO) mode */ CSR_WRITE_4(sc, PCN_IO32_RDP, 0); /* Select software style 3. */ pcn_bcr_write(sc, PCN_BCR_SSTYLE, PCN_SWSTYLE_PCNETPCI_BURST); return; } /* * Probe for an AMD chip. Check the PCI vendor and device * IDs against our list and return a device name if we find a match. */ static int pcn_probe(device_t dev) { struct pcn_type *t; struct pcn_softc *sc; int rid; u_int32_t chip_id; t = pcn_devs; sc = device_get_softc(dev); while(t->pcn_name != NULL) { if ((pci_get_vendor(dev) == t->pcn_vid) && (pci_get_device(dev) == t->pcn_did)) { /* * Temporarily map the I/O space * so we can read the chip ID register. */ rid = PCN_RID; sc->pcn_res = bus_alloc_resource_any(dev, PCN_RES, &rid, RF_ACTIVE); if (sc->pcn_res == NULL) { device_printf(dev, "couldn't map ports/memory\n"); return(ENXIO); } sc->pcn_btag = rman_get_bustag(sc->pcn_res); sc->pcn_bhandle = rman_get_bushandle(sc->pcn_res); /* * Note: we can *NOT* put the chip into * 32-bit mode yet. The lnc driver will only * work in 16-bit mode, and once the chip * goes into 32-bit mode, the only way to * get it out again is with a hardware reset. * So if pcn_probe() is called before the * lnc driver's probe routine, the chip will * be locked into 32-bit operation and the lnc * driver will be unable to attach to it. * Note II: if the chip happens to already * be in 32-bit mode, we still need to check * the chip ID, but first we have to detect * 32-bit mode using only 16-bit operations. * The safest way to do this is to read the * PCI subsystem ID from BCR23/24 and compare * that with the value read from PCI config * space. */ chip_id = pcn_bcr_read16(sc, PCN_BCR_PCISUBSYSID); chip_id <<= 16; chip_id |= pcn_bcr_read16(sc, PCN_BCR_PCISUBVENID); /* * Note III: the test for 0x10001000 is a hack to * pacify VMware, who's pseudo-PCnet interface is * broken. Reading the subsystem register from PCI * config space yeilds 0x00000000 while reading the * same value from I/O space yeilds 0x10001000. It's * not supposed to be that way. */ if (chip_id == pci_read_config(dev, PCIR_SUBVEND_0, 4) || chip_id == 0x10001000) { /* We're in 16-bit mode. */ chip_id = pcn_csr_read16(sc, PCN_CSR_CHIPID1); chip_id <<= 16; chip_id |= pcn_csr_read16(sc, PCN_CSR_CHIPID0); } else { /* We're in 32-bit mode. */ chip_id = pcn_csr_read(sc, PCN_CSR_CHIPID1); chip_id <<= 16; chip_id |= pcn_csr_read(sc, PCN_CSR_CHIPID0); } bus_release_resource(dev, PCN_RES, PCN_RID, sc->pcn_res); chip_id >>= 12; sc->pcn_type = chip_id & PART_MASK; switch(sc->pcn_type) { case Am79C971: case Am79C972: case Am79C973: case Am79C975: case Am79C976: case Am79C978: break; default: return(ENXIO); break; } device_set_desc(dev, t->pcn_name); return(0); } t++; } return(ENXIO); } /* * Attach the interface. Allocate softc structures, do ifmedia * setup and ethernet/BPF attach. */ static int pcn_attach(device_t dev) { uint8_t eaddr[ETHER_ADDR_LEN]; u_int32_t command; struct pcn_softc *sc; struct ifnet *ifp; int unit, error = 0, rid; sc = device_get_softc(dev); unit = device_get_unit(dev); /* * Handle power management nonsense. */ command = pci_read_config(dev, PCN_PCI_CAPID, 4) & 0x000000FF; if (command == 0x01) { command = pci_read_config(dev, PCN_PCI_PWRMGMTCTRL, 4); if (command & PCN_PSTATE_MASK) { u_int32_t iobase, membase, irq; /* Save important PCI config data. */ iobase = pci_read_config(dev, PCN_PCI_LOIO, 4); membase = pci_read_config(dev, PCN_PCI_LOMEM, 4); irq = pci_read_config(dev, PCN_PCI_INTLINE, 4); /* Reset the power state. */ kprintf("pcn%d: chip is in D%d power mode " "-- setting to D0\n", unit, command & PCN_PSTATE_MASK); command &= 0xFFFFFFFC; pci_write_config(dev, PCN_PCI_PWRMGMTCTRL, command, 4); /* Restore PCI config data. */ pci_write_config(dev, PCN_PCI_LOIO, iobase, 4); pci_write_config(dev, PCN_PCI_LOMEM, membase, 4); pci_write_config(dev, PCN_PCI_INTLINE, irq, 4); } } /* * Map control/status registers. */ command = pci_read_config(dev, PCIR_COMMAND, 4); command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN); pci_write_config(dev, PCIR_COMMAND, command, 4); command = pci_read_config(dev, PCIR_COMMAND, 4); #ifdef PCN_USEIOSPACE if (!(command & PCIM_CMD_PORTEN)) { kprintf("pcn%d: failed to enable I/O ports!\n", unit); error = ENXIO; return(error); } #else if (!(command & PCIM_CMD_MEMEN)) { kprintf("pcn%d: failed to enable memory mapping!\n", unit); error = ENXIO; return(error); } #endif rid = PCN_RID; sc->pcn_res = bus_alloc_resource_any(dev, PCN_RES, &rid, RF_ACTIVE); if (sc->pcn_res == NULL) { kprintf("pcn%d: couldn't map ports/memory\n", unit); error = ENXIO; return(error); } sc->pcn_btag = rman_get_bustag(sc->pcn_res); sc->pcn_bhandle = rman_get_bushandle(sc->pcn_res); /* Allocate interrupt */ rid = 0; sc->pcn_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_SHAREABLE | RF_ACTIVE); if (sc->pcn_irq == NULL) { kprintf("pcn%d: couldn't map interrupt\n", unit); error = ENXIO; goto fail; } /* Reset the adapter. */ pcn_reset(sc); /* * Get station address from the EEPROM. */ *(uint32_t *)eaddr = CSR_READ_4(sc, PCN_IO32_APROM00); *(uint16_t *)(eaddr + 4) = CSR_READ_2(sc, PCN_IO32_APROM01); sc->pcn_unit = unit; callout_init(&sc->pcn_stat_timer); sc->pcn_ldata = contigmalloc(sizeof(struct pcn_list_data), M_DEVBUF, M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0); if (sc->pcn_ldata == NULL) { kprintf("pcn%d: no memory for list buffers!\n", unit); error = ENXIO; goto fail; } bzero(sc->pcn_ldata, sizeof(struct pcn_list_data)); ifp = &sc->arpcom.ac_if; ifp->if_softc = sc; if_initname(ifp, "pcn", unit); ifp->if_mtu = ETHERMTU; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = pcn_ioctl; ifp->if_start = pcn_start; ifp->if_watchdog = pcn_watchdog; ifp->if_init = pcn_init; ifp->if_baudrate = 10000000; ifq_set_maxlen(&ifp->if_snd, PCN_TX_LIST_CNT - 1); ifq_set_ready(&ifp->if_snd); /* * Do MII setup. */ if (mii_phy_probe(dev, &sc->pcn_miibus, pcn_ifmedia_upd, pcn_ifmedia_sts)) { kprintf("pcn%d: MII without any PHY!\n", sc->pcn_unit); error = ENXIO; goto fail; } /* * Call MI attach routine. */ ether_ifattach(ifp, eaddr, NULL); ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(sc->pcn_irq)); error = bus_setup_intr(dev, sc->pcn_irq, INTR_MPSAFE, pcn_intr, sc, &sc->pcn_intrhand, ifp->if_serializer); if (error) { ether_ifdetach(ifp); device_printf(dev, "couldn't set up irq\n"); goto fail; } return (0); fail: pcn_detach(dev); return(error); } static int pcn_detach(device_t dev) { struct pcn_softc *sc = device_get_softc(dev); struct ifnet *ifp = &sc->arpcom.ac_if; if (device_is_attached(dev)) { lwkt_serialize_enter(ifp->if_serializer); pcn_reset(sc); pcn_stop(sc); bus_teardown_intr(dev, sc->pcn_irq, sc->pcn_intrhand); lwkt_serialize_exit(ifp->if_serializer); ether_ifdetach(ifp); } if (sc->pcn_miibus != NULL) device_delete_child(dev, sc->pcn_miibus); bus_generic_detach(dev); if (sc->pcn_irq) bus_release_resource(dev, SYS_RES_IRQ, 0, sc->pcn_irq); if (sc->pcn_res) bus_release_resource(dev, PCN_RES, PCN_RID, sc->pcn_res); if (sc->pcn_ldata) { contigfree(sc->pcn_ldata, sizeof(struct pcn_list_data), M_DEVBUF); } return(0); } /* * Initialize the transmit descriptors. */ static int pcn_list_tx_init(struct pcn_softc *sc) { struct pcn_list_data *ld; struct pcn_ring_data *cd; int i; cd = &sc->pcn_cdata; ld = sc->pcn_ldata; for (i = 0; i < PCN_TX_LIST_CNT; i++) { cd->pcn_tx_chain[i] = NULL; ld->pcn_tx_list[i].pcn_tbaddr = 0; ld->pcn_tx_list[i].pcn_txctl = 0; ld->pcn_tx_list[i].pcn_txstat = 0; } cd->pcn_tx_prod = cd->pcn_tx_cons = cd->pcn_tx_cnt = 0; return(0); } /* * Initialize the RX descriptors and allocate mbufs for them. */ static int pcn_list_rx_init(struct pcn_softc *sc) { struct pcn_ring_data *cd; int i; cd = &sc->pcn_cdata; for (i = 0; i < PCN_RX_LIST_CNT; i++) { if (pcn_newbuf(sc, i, NULL) == ENOBUFS) return(ENOBUFS); } cd->pcn_rx_prod = 0; return(0); } /* * Initialize an RX descriptor and attach an MBUF cluster. */ static int pcn_newbuf(struct pcn_softc *sc, int idx, struct mbuf *m) { struct mbuf *m_new = NULL; struct pcn_rx_desc *c; c = &sc->pcn_ldata->pcn_rx_list[idx]; if (m == NULL) { MGETHDR(m_new, M_NOWAIT, MT_DATA); if (m_new == NULL) return(ENOBUFS); MCLGET(m_new, M_NOWAIT); if (!(m_new->m_flags & M_EXT)) { m_freem(m_new); return(ENOBUFS); } m_new->m_len = m_new->m_pkthdr.len = MCLBYTES; } else { m_new = m; m_new->m_len = m_new->m_pkthdr.len = MCLBYTES; m_new->m_data = m_new->m_ext.ext_buf; } m_adj(m_new, ETHER_ALIGN); sc->pcn_cdata.pcn_rx_chain[idx] = m_new; c->pcn_rbaddr = vtophys(mtod(m_new, caddr_t)); c->pcn_bufsz = (~(PCN_RXLEN) + 1) & PCN_RXLEN_BUFSZ; c->pcn_bufsz |= PCN_RXLEN_MBO; c->pcn_rxstat = PCN_RXSTAT_STP|PCN_RXSTAT_ENP|PCN_RXSTAT_OWN; return(0); } /* * A frame has been uploaded: pass the resulting mbuf chain up to * the higher level protocols. */ static void pcn_rxeof(struct pcn_softc *sc) { struct mbuf *m; struct ifnet *ifp; struct pcn_rx_desc *cur_rx; int i; ifp = &sc->arpcom.ac_if; i = sc->pcn_cdata.pcn_rx_prod; while(PCN_OWN_RXDESC(&sc->pcn_ldata->pcn_rx_list[i])) { cur_rx = &sc->pcn_ldata->pcn_rx_list[i]; m = sc->pcn_cdata.pcn_rx_chain[i]; sc->pcn_cdata.pcn_rx_chain[i] = NULL; /* * If an error occurs, update stats, clear the * status word and leave the mbuf cluster in place: * it should simply get re-used next time this descriptor * comes up in the ring. */ if (cur_rx->pcn_rxstat & PCN_RXSTAT_ERR) { IFNET_STAT_INC(ifp, ierrors, 1); pcn_newbuf(sc, i, m); PCN_INC(i, PCN_RX_LIST_CNT); continue; } if (pcn_newbuf(sc, i, NULL)) { /* Ran out of mbufs; recycle this one. */ pcn_newbuf(sc, i, m); IFNET_STAT_INC(ifp, ierrors, 1); PCN_INC(i, PCN_RX_LIST_CNT); continue; } PCN_INC(i, PCN_RX_LIST_CNT); /* No errors; receive the packet. */ IFNET_STAT_INC(ifp, ipackets, 1); m->m_len = m->m_pkthdr.len = cur_rx->pcn_rxlen - ETHER_CRC_LEN; m->m_pkthdr.rcvif = ifp; ifp->if_input(ifp, m, NULL, -1); } sc->pcn_cdata.pcn_rx_prod = i; return; } /* * A frame was downloaded to the chip. It's safe for us to clean up * the list buffers. */ static void pcn_txeof(struct pcn_softc *sc) { struct pcn_tx_desc *cur_tx = NULL; struct ifnet *ifp; u_int32_t idx; ifp = &sc->arpcom.ac_if; /* * Go through our tx list and free mbufs for those * frames that have been transmitted. */ idx = sc->pcn_cdata.pcn_tx_cons; while (idx != sc->pcn_cdata.pcn_tx_prod) { cur_tx = &sc->pcn_ldata->pcn_tx_list[idx]; if (!PCN_OWN_TXDESC(cur_tx)) break; if (!(cur_tx->pcn_txctl & PCN_TXCTL_ENP)) { sc->pcn_cdata.pcn_tx_cnt--; PCN_INC(idx, PCN_TX_LIST_CNT); continue; } if (cur_tx->pcn_txctl & PCN_TXCTL_ERR) { IFNET_STAT_INC(ifp, oerrors, 1); if (cur_tx->pcn_txstat & PCN_TXSTAT_EXDEF) IFNET_STAT_INC(ifp, collisions, 1); if (cur_tx->pcn_txstat & PCN_TXSTAT_RTRY) IFNET_STAT_INC(ifp, collisions, 1); } IFNET_STAT_INC(ifp, collisions, cur_tx->pcn_txstat & PCN_TXSTAT_TRC); IFNET_STAT_INC(ifp, opackets, 1); if (sc->pcn_cdata.pcn_tx_chain[idx] != NULL) { m_freem(sc->pcn_cdata.pcn_tx_chain[idx]); sc->pcn_cdata.pcn_tx_chain[idx] = NULL; } sc->pcn_cdata.pcn_tx_cnt--; PCN_INC(idx, PCN_TX_LIST_CNT); } if (idx != sc->pcn_cdata.pcn_tx_cons) { /* Some buffers have been freed. */ sc->pcn_cdata.pcn_tx_cons = idx; ifq_clr_oactive(&ifp->if_snd); } ifp->if_timer = (sc->pcn_cdata.pcn_tx_cnt == 0) ? 0 : 5; return; } static void pcn_tick(void *xsc) { struct pcn_softc *sc = xsc; struct mii_data *mii; struct ifnet *ifp = &sc->arpcom.ac_if; lwkt_serialize_enter(ifp->if_serializer); mii = device_get_softc(sc->pcn_miibus); mii_tick(mii); if (sc->pcn_link && !(mii->mii_media_status & IFM_ACTIVE)) sc->pcn_link = 0; if (!sc->pcn_link) { mii_pollstat(mii); if (mii->mii_media_status & IFM_ACTIVE && IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) { sc->pcn_link++; if (!ifq_is_empty(&ifp->if_snd)) if_devstart(ifp); } } callout_reset(&sc->pcn_stat_timer, hz, pcn_tick, sc); lwkt_serialize_exit(ifp->if_serializer); } static void pcn_intr(void *arg) { struct pcn_softc *sc; struct ifnet *ifp; u_int32_t status; sc = arg; ifp = &sc->arpcom.ac_if; /* Supress unwanted interrupts */ if (!(ifp->if_flags & IFF_UP)) { pcn_stop(sc); return; } CSR_WRITE_4(sc, PCN_IO32_RAP, PCN_CSR_CSR); while ((status = CSR_READ_4(sc, PCN_IO32_RDP)) & PCN_CSR_INTR) { CSR_WRITE_4(sc, PCN_IO32_RDP, status); if (status & PCN_CSR_RINT) pcn_rxeof(sc); if (status & PCN_CSR_TINT) pcn_txeof(sc); if (status & PCN_CSR_ERR) { pcn_init(sc); break; } } if (!ifq_is_empty(&ifp->if_snd)) if_devstart(ifp); } /* * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data * pointers to the fragment pointers. */ static int pcn_encap(struct pcn_softc *sc, struct mbuf *m_head, u_int32_t *txidx) { struct pcn_tx_desc *f = NULL; struct mbuf *m; int frag, cur, cnt = 0; /* * Start packing the mbufs in this chain into * the fragment pointers. Stop when we run out * of fragments or hit the end of the mbuf chain. */ cur = frag = *txidx; for (m = m_head; m != NULL; m = m->m_next) { if (m->m_len != 0) { if ((PCN_TX_LIST_CNT - (sc->pcn_cdata.pcn_tx_cnt + cnt)) < 2) break; f = &sc->pcn_ldata->pcn_tx_list[frag]; f->pcn_txctl = (~(m->m_len) + 1) & PCN_TXCTL_BUFSZ; f->pcn_txctl |= PCN_TXCTL_MBO; f->pcn_tbaddr = vtophys(mtod(m, vm_offset_t)); if (cnt == 0) f->pcn_txctl |= PCN_TXCTL_STP; else f->pcn_txctl |= PCN_TXCTL_OWN; cur = frag; PCN_INC(frag, PCN_TX_LIST_CNT); cnt++; } } /* Caller should make sure that 'm_head' is not excessive fragmented */ KASSERT(m == NULL, ("too many fragments")); sc->pcn_cdata.pcn_tx_chain[cur] = m_head; sc->pcn_ldata->pcn_tx_list[cur].pcn_txctl |= PCN_TXCTL_ENP|PCN_TXCTL_ADD_FCS|PCN_TXCTL_MORE_LTINT; sc->pcn_ldata->pcn_tx_list[*txidx].pcn_txctl |= PCN_TXCTL_OWN; sc->pcn_cdata.pcn_tx_cnt += cnt; *txidx = frag; return(0); } /* * Main transmit routine. To avoid having to do mbuf copies, we put pointers * to the mbuf data regions directly in the transmit lists. We also save a * copy of the pointers since the transmit list fragment pointers are * physical addresses. */ static void pcn_start(struct ifnet *ifp, struct ifaltq_subque *ifsq) { struct pcn_softc *sc; struct mbuf *m_head = NULL, *m_defragged; u_int32_t idx; int need_trans; ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq); sc = ifp->if_softc; if (!sc->pcn_link) { ifq_purge(&ifp->if_snd); return; } idx = sc->pcn_cdata.pcn_tx_prod; if ((ifp->if_flags & IFF_RUNNING) == 0 || ifq_is_oactive(&ifp->if_snd)) return; need_trans = 0; while (sc->pcn_cdata.pcn_tx_chain[idx] == NULL) { struct mbuf *m; int cnt; m_defragged = NULL; m_head = ifq_dequeue(&ifp->if_snd); if (m_head == NULL) break; again: cnt = 0; for (m = m_head; m != NULL; m = m->m_next) ++cnt; if ((PCN_TX_LIST_CNT - (sc->pcn_cdata.pcn_tx_cnt + cnt)) < 2) { if (m_defragged != NULL) { /* * Even after defragmentation, there * are still too many fragments, so * drop this packet. */ m_freem(m_head); ifq_set_oactive(&ifp->if_snd); break; } m_defragged = m_defrag(m_head, M_NOWAIT); if (m_defragged == NULL) { m_freem(m_head); continue; } m_head = m_defragged; /* Recount # of fragments */ goto again; } pcn_encap(sc, m_head, &idx); need_trans = 1; BPF_MTAP(ifp, m_head); } if (!need_trans) return; /* Transmit */ sc->pcn_cdata.pcn_tx_prod = idx; pcn_csr_write(sc, PCN_CSR_CSR, PCN_CSR_TX|PCN_CSR_INTEN); /* * Set a timeout in case the chip goes out to lunch. */ ifp->if_timer = 5; } static void pcn_setfilt(struct ifnet *ifp) { struct pcn_softc *sc; sc = ifp->if_softc; /* If we want promiscuous mode, set the allframes bit. */ if (ifp->if_flags & IFF_PROMISC) { PCN_CSR_SETBIT(sc, PCN_CSR_MODE, PCN_MODE_PROMISC); } else { PCN_CSR_CLRBIT(sc, PCN_CSR_MODE, PCN_MODE_PROMISC); } /* Set the capture broadcast bit to capture broadcast frames. */ if (ifp->if_flags & IFF_BROADCAST) { PCN_CSR_CLRBIT(sc, PCN_CSR_MODE, PCN_MODE_RXNOBROAD); } else { PCN_CSR_SETBIT(sc, PCN_CSR_MODE, PCN_MODE_RXNOBROAD); } return; } static void pcn_init(void *xsc) { struct pcn_softc *sc = xsc; struct ifnet *ifp = &sc->arpcom.ac_if; struct mii_data *mii = NULL; /* * Cancel pending I/O and free all RX/TX buffers. */ pcn_stop(sc); pcn_reset(sc); mii = device_get_softc(sc->pcn_miibus); /* Set MAC address */ pcn_csr_write(sc, PCN_CSR_PAR0, ((u_int16_t *)sc->arpcom.ac_enaddr)[0]); pcn_csr_write(sc, PCN_CSR_PAR1, ((u_int16_t *)sc->arpcom.ac_enaddr)[1]); pcn_csr_write(sc, PCN_CSR_PAR2, ((u_int16_t *)sc->arpcom.ac_enaddr)[2]); /* Init circular RX list. */ if (pcn_list_rx_init(sc) == ENOBUFS) { kprintf("pcn%d: initialization failed: no " "memory for rx buffers\n", sc->pcn_unit); pcn_stop(sc); return; } /* Set up RX filter. */ pcn_setfilt(ifp); /* * Init tx descriptors. */ pcn_list_tx_init(sc); /* Set up the mode register. */ pcn_csr_write(sc, PCN_CSR_MODE, PCN_PORT_MII); /* * Load the multicast filter. */ pcn_setmulti(sc); /* * Load the addresses of the RX and TX lists. */ pcn_csr_write(sc, PCN_CSR_RXADDR0, vtophys(&sc->pcn_ldata->pcn_rx_list[0]) & 0xFFFF); pcn_csr_write(sc, PCN_CSR_RXADDR1, (vtophys(&sc->pcn_ldata->pcn_rx_list[0]) >> 16) & 0xFFFF); pcn_csr_write(sc, PCN_CSR_TXADDR0, vtophys(&sc->pcn_ldata->pcn_tx_list[0]) & 0xFFFF); pcn_csr_write(sc, PCN_CSR_TXADDR1, (vtophys(&sc->pcn_ldata->pcn_tx_list[0]) >> 16) & 0xFFFF); /* Set the RX and TX ring sizes. */ pcn_csr_write(sc, PCN_CSR_RXRINGLEN, (~PCN_RX_LIST_CNT) + 1); pcn_csr_write(sc, PCN_CSR_TXRINGLEN, (~PCN_TX_LIST_CNT) + 1); /* We're not using the initialization block. */ pcn_csr_write(sc, PCN_CSR_IAB1, 0); /* Enable fast suspend mode. */ PCN_CSR_SETBIT(sc, PCN_CSR_EXTCTL2, PCN_EXTCTL2_FASTSPNDE); /* * Enable burst read and write. Also set the no underflow * bit. This will avoid transmit underruns in certain * conditions while still providing decent performance. */ PCN_BCR_SETBIT(sc, PCN_BCR_BUSCTL, PCN_BUSCTL_NOUFLOW| PCN_BUSCTL_BREAD|PCN_BUSCTL_BWRITE); /* Enable graceful recovery from underflow. */ PCN_CSR_SETBIT(sc, PCN_CSR_IMR, PCN_IMR_DXSUFLO); /* Enable auto-padding of short TX frames. */ PCN_CSR_SETBIT(sc, PCN_CSR_TFEAT, PCN_TFEAT_PAD_TX); /* Disable MII autoneg (we handle this ourselves). */ PCN_BCR_SETBIT(sc, PCN_BCR_MIICTL, PCN_MIICTL_DANAS); if (sc->pcn_type == Am79C978) pcn_bcr_write(sc, PCN_BCR_PHYSEL, PCN_PHYSEL_PCNET|PCN_PHY_HOMEPNA); /* Enable interrupts and start the controller running. */ pcn_csr_write(sc, PCN_CSR_CSR, PCN_CSR_INTEN|PCN_CSR_START); mii_mediachg(mii); ifp->if_flags |= IFF_RUNNING; ifq_clr_oactive(&ifp->if_snd); callout_reset(&sc->pcn_stat_timer, hz, pcn_tick, sc); } /* * Set media options. */ static int pcn_ifmedia_upd(struct ifnet *ifp) { struct pcn_softc *sc; struct mii_data *mii; sc = ifp->if_softc; mii = device_get_softc(sc->pcn_miibus); sc->pcn_link = 0; if (mii->mii_instance) { struct mii_softc *miisc; for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL; miisc = LIST_NEXT(miisc, mii_list)) mii_phy_reset(miisc); } mii_mediachg(mii); return(0); } /* * Report current media status. */ static void pcn_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) { struct pcn_softc *sc; struct mii_data *mii; sc = ifp->if_softc; mii = device_get_softc(sc->pcn_miibus); mii_pollstat(mii); ifmr->ifm_active = mii->mii_media_active; ifmr->ifm_status = mii->mii_media_status; return; } static int pcn_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr) { struct pcn_softc *sc = ifp->if_softc; struct ifreq *ifr = (struct ifreq *) data; struct mii_data *mii = NULL; int error = 0; switch(command) { case SIOCSIFFLAGS: if (ifp->if_flags & IFF_UP) { if (ifp->if_flags & IFF_RUNNING && ifp->if_flags & IFF_PROMISC && !(sc->pcn_if_flags & IFF_PROMISC)) { PCN_CSR_SETBIT(sc, PCN_CSR_EXTCTL1, PCN_EXTCTL1_SPND); pcn_setfilt(ifp); PCN_CSR_CLRBIT(sc, PCN_CSR_EXTCTL1, PCN_EXTCTL1_SPND); pcn_csr_write(sc, PCN_CSR_CSR, PCN_CSR_INTEN|PCN_CSR_START); } else if (ifp->if_flags & IFF_RUNNING && !(ifp->if_flags & IFF_PROMISC) && sc->pcn_if_flags & IFF_PROMISC) { PCN_CSR_SETBIT(sc, PCN_CSR_EXTCTL1, PCN_EXTCTL1_SPND); pcn_setfilt(ifp); PCN_CSR_CLRBIT(sc, PCN_CSR_EXTCTL1, PCN_EXTCTL1_SPND); pcn_csr_write(sc, PCN_CSR_CSR, PCN_CSR_INTEN|PCN_CSR_START); } else if (!(ifp->if_flags & IFF_RUNNING)) pcn_init(sc); } else { if (ifp->if_flags & IFF_RUNNING) pcn_stop(sc); } sc->pcn_if_flags = ifp->if_flags; error = 0; break; case SIOCADDMULTI: case SIOCDELMULTI: pcn_setmulti(sc); error = 0; break; case SIOCGIFMEDIA: case SIOCSIFMEDIA: mii = device_get_softc(sc->pcn_miibus); error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); break; default: error = ether_ioctl(ifp, command, data); break; } return(error); } static void pcn_watchdog(struct ifnet *ifp) { struct pcn_softc *sc; sc = ifp->if_softc; IFNET_STAT_INC(ifp, oerrors, 1); kprintf("pcn%d: watchdog timeout\n", sc->pcn_unit); pcn_stop(sc); pcn_reset(sc); pcn_init(sc); if (!ifq_is_empty(&ifp->if_snd)) if_devstart(ifp); } /* * Stop the adapter and free any mbufs allocated to the * RX and TX lists. */ static void pcn_stop(struct pcn_softc *sc) { int i; struct ifnet *ifp; ifp = &sc->arpcom.ac_if; ifp->if_timer = 0; callout_stop(&sc->pcn_stat_timer); PCN_CSR_SETBIT(sc, PCN_CSR_CSR, PCN_CSR_STOP); sc->pcn_link = 0; /* * Free data in the RX lists. */ for (i = 0; i < PCN_RX_LIST_CNT; i++) { if (sc->pcn_cdata.pcn_rx_chain[i] != NULL) { m_freem(sc->pcn_cdata.pcn_rx_chain[i]); sc->pcn_cdata.pcn_rx_chain[i] = NULL; } } bzero((char *)&sc->pcn_ldata->pcn_rx_list, sizeof(sc->pcn_ldata->pcn_rx_list)); /* * Free the TX list buffers. */ for (i = 0; i < PCN_TX_LIST_CNT; i++) { if (sc->pcn_cdata.pcn_tx_chain[i] != NULL) { m_freem(sc->pcn_cdata.pcn_tx_chain[i]); sc->pcn_cdata.pcn_tx_chain[i] = NULL; } } bzero((char *)&sc->pcn_ldata->pcn_tx_list, sizeof(sc->pcn_ldata->pcn_tx_list)); ifp->if_flags &= ~IFF_RUNNING; ifq_clr_oactive(&ifp->if_snd); return; } /* * Stop all chip I/O so that the kernel's probe routines don't * get confused by errant DMAs when rebooting. */ static void pcn_shutdown(device_t dev) { struct pcn_softc *sc = device_get_softc(dev); struct ifnet *ifp = &sc->arpcom.ac_if; lwkt_serialize_enter(ifp->if_serializer); pcn_reset(sc); pcn_stop(sc); lwkt_serialize_exit(ifp->if_serializer); }