/* * Copyright (c) 1997, 1998 * Bill Paul . All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Bill Paul. * 4. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. * * $FreeBSD: src/sys/pci/if_vr.c,v 1.26.2.13 2003/02/06 04:46:20 silby Exp $ */ /* * VIA Rhine fast ethernet PCI NIC driver * * Supports various network adapters based on the VIA Rhine * and Rhine II PCI controllers, including the D-Link DFE530TX. * Datasheets are available at http://www.via.com.tw. * * Written by Bill Paul * Electrical Engineering Department * Columbia University, New York City */ /* * The VIA Rhine controllers are similar in some respects to the * the DEC tulip chips, except less complicated. The controller * uses an MII bus and an external physical layer interface. The * receiver has a one entry perfect filter and a 64-bit hash table * multicast filter. Transmit and receive descriptors are similar * to the tulip. * * The Rhine has a serious flaw in its transmit DMA mechanism: * transmit buffers must be longword aligned. Unfortunately, * FreeBSD doesn't guarantee that mbufs will be filled in starting * at longword boundaries, so we have to do a buffer copy before * transmission. */ #include "opt_ifpoll.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* for vtophys */ #include /* for vtophys */ #include #include #include "pcidevs.h" #include #include #define VR_USEIOSPACE #include /* "controller miibus0" required. See GENERIC if you get errors here. */ #include "miibus_if.h" #undef VR_USESWSHIFT /* * Various supported device vendors/types and their names. */ static struct vr_type vr_devs[] = { { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT3043, "VIA VT3043 Rhine I 10/100BaseTX" }, { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT86C100A, "VIA VT86C100A Rhine II 10/100BaseTX" }, { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6102, "VIA VT6102 Rhine II 10/100BaseTX" }, { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6105, "VIA VT6105 Rhine III 10/100BaseTX" }, { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6105M, "VIA VT6105M Rhine III 10/100BaseTX" }, { PCI_VENDOR_DELTA, PCI_PRODUCT_DELTA_RHINEII, "Delta Electronics Rhine II 10/100BaseTX" }, { PCI_VENDOR_ADDTRON, PCI_PRODUCT_ADDTRON_RHINEII, "Addtron Technology Rhine II 10/100BaseTX" }, { 0, 0, NULL } }; static int vr_probe(device_t); static int vr_attach(device_t); static int vr_detach(device_t); static int vr_newbuf(struct vr_softc *, struct vr_chain_onefrag *, struct mbuf *); static int vr_encap(struct vr_softc *, int, struct mbuf * ); static void vr_rxeof(struct vr_softc *); static void vr_rxeoc(struct vr_softc *); static void vr_txeof(struct vr_softc *); static void vr_txeoc(struct vr_softc *); static void vr_tick(void *); static void vr_intr(void *); static void vr_start(struct ifnet *, struct ifaltq_subque *); static int vr_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *); static void vr_init(void *); static void vr_stop(struct vr_softc *); static void vr_watchdog(struct ifnet *); static void vr_shutdown(device_t); static int vr_ifmedia_upd(struct ifnet *); static void vr_ifmedia_sts(struct ifnet *, struct ifmediareq *); #ifdef VR_USESWSHIFT static void vr_mii_sync(struct vr_softc *); static void vr_mii_send(struct vr_softc *, uint32_t, int); #endif static int vr_mii_readreg(struct vr_softc *, struct vr_mii_frame *); static int vr_mii_writereg(struct vr_softc *, struct vr_mii_frame *); static int vr_miibus_readreg(device_t, int, int); static int vr_miibus_writereg(device_t, int, int, int); static void vr_miibus_statchg(device_t); static void vr_setcfg(struct vr_softc *, int); static void vr_setmulti(struct vr_softc *); static void vr_reset(struct vr_softc *); static int vr_list_rx_init(struct vr_softc *); static int vr_list_tx_init(struct vr_softc *); #ifdef IFPOLL_ENABLE static void vr_npoll(struct ifnet *, struct ifpoll_info *); static void vr_npoll_compat(struct ifnet *, void *, int); #endif #ifdef VR_USEIOSPACE #define VR_RES SYS_RES_IOPORT #define VR_RID VR_PCI_LOIO #else #define VR_RES SYS_RES_MEMORY #define VR_RID VR_PCI_LOMEM #endif static device_method_t vr_methods[] = { /* Device interface */ DEVMETHOD(device_probe, vr_probe), DEVMETHOD(device_attach, vr_attach), DEVMETHOD(device_detach, vr_detach), DEVMETHOD(device_shutdown, vr_shutdown), /* bus interface */ DEVMETHOD(bus_print_child, bus_generic_print_child), DEVMETHOD(bus_driver_added, bus_generic_driver_added), /* MII interface */ DEVMETHOD(miibus_readreg, vr_miibus_readreg), DEVMETHOD(miibus_writereg, vr_miibus_writereg), DEVMETHOD(miibus_statchg, vr_miibus_statchg), DEVMETHOD_END }; static driver_t vr_driver = { "vr", vr_methods, sizeof(struct vr_softc) }; static devclass_t vr_devclass; DECLARE_DUMMY_MODULE(if_vr); DRIVER_MODULE(if_vr, pci, vr_driver, vr_devclass, NULL, NULL); DRIVER_MODULE(miibus, vr, miibus_driver, miibus_devclass, NULL, NULL); #define VR_SETBIT(sc, reg, x) \ CSR_WRITE_1(sc, reg, \ CSR_READ_1(sc, reg) | (x)) #define VR_CLRBIT(sc, reg, x) \ CSR_WRITE_1(sc, reg, \ CSR_READ_1(sc, reg) & ~(x)) #define VR_SETBIT16(sc, reg, x) \ CSR_WRITE_2(sc, reg, \ CSR_READ_2(sc, reg) | (x)) #define VR_CLRBIT16(sc, reg, x) \ CSR_WRITE_2(sc, reg, \ CSR_READ_2(sc, reg) & ~(x)) #define VR_SETBIT32(sc, reg, x) \ CSR_WRITE_4(sc, reg, \ CSR_READ_4(sc, reg) | (x)) #define VR_CLRBIT32(sc, reg, x) \ CSR_WRITE_4(sc, reg, \ CSR_READ_4(sc, reg) & ~(x)) #define SIO_SET(x) \ CSR_WRITE_1(sc, VR_MIICMD, \ CSR_READ_1(sc, VR_MIICMD) | (x)) #define SIO_CLR(x) \ CSR_WRITE_1(sc, VR_MIICMD, \ CSR_READ_1(sc, VR_MIICMD) & ~(x)) #ifdef VR_USESWSHIFT /* * Sync the PHYs by setting data bit and strobing the clock 32 times. */ static void vr_mii_sync(struct vr_softc *sc) { int i; SIO_SET(VR_MIICMD_DIR|VR_MIICMD_DATAIN); for (i = 0; i < 32; i++) { SIO_SET(VR_MIICMD_CLK); DELAY(1); SIO_CLR(VR_MIICMD_CLK); DELAY(1); } } /* * Clock a series of bits through the MII. */ static void vr_mii_send(struct vr_softc *sc, uint32_t bits, int cnt) { int i; SIO_CLR(VR_MIICMD_CLK); for (i = (0x1 << (cnt - 1)); i; i >>= 1) { if (bits & i) SIO_SET(VR_MIICMD_DATAIN); else SIO_CLR(VR_MIICMD_DATAIN); DELAY(1); SIO_CLR(VR_MIICMD_CLK); DELAY(1); SIO_SET(VR_MIICMD_CLK); } } #endif /* * Read an PHY register through the MII. */ static int vr_mii_readreg(struct vr_softc *sc, struct vr_mii_frame *frame) #ifdef VR_USESWSHIFT { int i, ack; /* Set up frame for RX. */ frame->mii_stdelim = VR_MII_STARTDELIM; frame->mii_opcode = VR_MII_READOP; frame->mii_turnaround = 0; frame->mii_data = 0; CSR_WRITE_1(sc, VR_MIICMD, 0); VR_SETBIT(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM); /* Turn on data xmit. */ SIO_SET(VR_MIICMD_DIR); vr_mii_sync(sc); /* Send command/address info. */ vr_mii_send(sc, frame->mii_stdelim, 2); vr_mii_send(sc, frame->mii_opcode, 2); vr_mii_send(sc, frame->mii_phyaddr, 5); vr_mii_send(sc, frame->mii_regaddr, 5); /* Idle bit. */ SIO_CLR((VR_MIICMD_CLK|VR_MIICMD_DATAIN)); DELAY(1); SIO_SET(VR_MIICMD_CLK); DELAY(1); /* Turn off xmit. */ SIO_CLR(VR_MIICMD_DIR); /* Check for ack */ SIO_CLR(VR_MIICMD_CLK); DELAY(1); ack = CSR_READ_4(sc, VR_MIICMD) & VR_MIICMD_DATAOUT; SIO_SET(VR_MIICMD_CLK); DELAY(1); /* * Now try reading data bits. If the ack failed, we still * need to clock through 16 cycles to keep the PHY(s) in sync. */ if (ack) { for(i = 0; i < 16; i++) { SIO_CLR(VR_MIICMD_CLK); DELAY(1); SIO_SET(VR_MIICMD_CLK); DELAY(1); } goto fail; } for (i = 0x8000; i; i >>= 1) { SIO_CLR(VR_MIICMD_CLK); DELAY(1); if (!ack) { if (CSR_READ_4(sc, VR_MIICMD) & VR_MIICMD_DATAOUT) frame->mii_data |= i; DELAY(1); } SIO_SET(VR_MIICMD_CLK); DELAY(1); } fail: SIO_CLR(VR_MIICMD_CLK); DELAY(1); SIO_SET(VR_MIICMD_CLK); DELAY(1); if (ack) return(1); return(0); } #else { int i; /* Set the PHY address. */ CSR_WRITE_1(sc, VR_PHYADDR, (CSR_READ_1(sc, VR_PHYADDR)& 0xe0)| frame->mii_phyaddr); /* Set the register address. */ CSR_WRITE_1(sc, VR_MIIADDR, frame->mii_regaddr); VR_SETBIT(sc, VR_MIICMD, VR_MIICMD_READ_ENB); for (i = 0; i < 10000; i++) { if ((CSR_READ_1(sc, VR_MIICMD) & VR_MIICMD_READ_ENB) == 0) break; DELAY(1); } frame->mii_data = CSR_READ_2(sc, VR_MIIDATA); return(0); } #endif /* * Write to a PHY register through the MII. */ static int vr_mii_writereg(struct vr_softc *sc, struct vr_mii_frame *frame) #ifdef VR_USESWSHIFT { CSR_WRITE_1(sc, VR_MIICMD, 0); VR_SETBIT(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM); /* Set up frame for TX. */ frame->mii_stdelim = VR_MII_STARTDELIM; frame->mii_opcode = VR_MII_WRITEOP; frame->mii_turnaround = VR_MII_TURNAROUND; /* Turn on data output. */ SIO_SET(VR_MIICMD_DIR); vr_mii_sync(sc); vr_mii_send(sc, frame->mii_stdelim, 2); vr_mii_send(sc, frame->mii_opcode, 2); vr_mii_send(sc, frame->mii_phyaddr, 5); vr_mii_send(sc, frame->mii_regaddr, 5); vr_mii_send(sc, frame->mii_turnaround, 2); vr_mii_send(sc, frame->mii_data, 16); /* Idle bit. */ SIO_SET(VR_MIICMD_CLK); DELAY(1); SIO_CLR(VR_MIICMD_CLK); DELAY(1); /* Turn off xmit. */ SIO_CLR(VR_MIICMD_DIR); return(0); } #else { int i; /* Set the PHY-adress */ CSR_WRITE_1(sc, VR_PHYADDR, (CSR_READ_1(sc, VR_PHYADDR)& 0xe0)| frame->mii_phyaddr); /* Set the register address and data to write. */ CSR_WRITE_1(sc, VR_MIIADDR, frame->mii_regaddr); CSR_WRITE_2(sc, VR_MIIDATA, frame->mii_data); VR_SETBIT(sc, VR_MIICMD, VR_MIICMD_WRITE_ENB); for (i = 0; i < 10000; i++) { if ((CSR_READ_1(sc, VR_MIICMD) & VR_MIICMD_WRITE_ENB) == 0) break; DELAY(1); } return(0); } #endif static int vr_miibus_readreg(device_t dev, int phy, int reg) { struct vr_mii_frame frame; struct vr_softc *sc; sc = device_get_softc(dev); switch (sc->vr_revid) { case REV_ID_VT6102_APOLLO: if (phy != 1) return(0); break; default: break; } bzero(&frame, sizeof(frame)); frame.mii_phyaddr = phy; frame.mii_regaddr = reg; vr_mii_readreg(sc, &frame); return(frame.mii_data); } static int vr_miibus_writereg(device_t dev, int phy, int reg, int data) { struct vr_mii_frame frame; struct vr_softc *sc; sc = device_get_softc(dev); switch (sc->vr_revid) { case REV_ID_VT6102_APOLLO: if (phy != 1) return 0; break; default: break; } bzero(&frame, sizeof(frame)); frame.mii_phyaddr = phy; frame.mii_regaddr = reg; frame.mii_data = data; vr_mii_writereg(sc, &frame); return(0); } static void vr_miibus_statchg(device_t dev) { struct mii_data *mii; struct vr_softc *sc; sc = device_get_softc(dev); mii = device_get_softc(sc->vr_miibus); vr_setcfg(sc, mii->mii_media_active); } /* * Program the 64-bit multicast hash filter. */ static void vr_setmulti(struct vr_softc *sc) { struct ifnet *ifp; uint32_t hashes[2] = { 0, 0 }; struct ifmultiaddr *ifma; uint8_t rxfilt; int mcnt = 0; ifp = &sc->arpcom.ac_if; rxfilt = CSR_READ_1(sc, VR_RXCFG); if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) { rxfilt |= VR_RXCFG_RX_MULTI; CSR_WRITE_1(sc, VR_RXCFG, rxfilt); CSR_WRITE_4(sc, VR_MAR0, 0xFFFFFFFF); CSR_WRITE_4(sc, VR_MAR1, 0xFFFFFFFF); return; } /* First, zero out all the existing hash bits. */ CSR_WRITE_4(sc, VR_MAR0, 0); CSR_WRITE_4(sc, VR_MAR1, 0); /* Now program new ones. */ TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { int h; if (ifma->ifma_addr->sa_family != AF_LINK) continue; /* use the lower 6 bits */ h = (ether_crc32_be( LLADDR((struct sockaddr_dl *)ifma->ifma_addr), ETHER_ADDR_LEN) >> 26) & 0x0000003F; if (h < 32) hashes[0] |= (1 << h); else hashes[1] |= (1 << (h - 32)); mcnt++; } if (mcnt) rxfilt |= VR_RXCFG_RX_MULTI; else rxfilt &= ~VR_RXCFG_RX_MULTI; CSR_WRITE_4(sc, VR_MAR0, hashes[0]); CSR_WRITE_4(sc, VR_MAR1, hashes[1]); CSR_WRITE_1(sc, VR_RXCFG, rxfilt); } /* * In order to fiddle with the * 'full-duplex' and '100Mbps' bits in the netconfig register, we * first have to put the transmit and/or receive logic in the idle state. */ static void vr_setcfg(struct vr_softc *sc, int media) { int restart = 0; if (CSR_READ_2(sc, VR_COMMAND) & (VR_CMD_TX_ON|VR_CMD_RX_ON)) { restart = 1; VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_TX_ON|VR_CMD_RX_ON)); } if ((media & IFM_GMASK) == IFM_FDX) VR_SETBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX); else VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX); if (restart) VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_RX_ON); } static void vr_reset(struct vr_softc *sc) { int i; VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RESET); for (i = 0; i < VR_TIMEOUT; i++) { DELAY(10); if (!(CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RESET)) break; } if (i == VR_TIMEOUT) { struct ifnet *ifp = &sc->arpcom.ac_if; if (sc->vr_revid < REV_ID_VT3065_A) { if_printf(ifp, "reset never completed!\n"); } else { /* Use newer force reset command */ if_printf(ifp, "Using force reset command.\n"); VR_SETBIT(sc, VR_MISC_CR1, VR_MISCCR1_FORSRST); } } /* Wait a little while for the chip to get its brains in order. */ DELAY(1000); } /* * Probe for a VIA Rhine chip. Check the PCI vendor and device * IDs against our list and return a device name if we find a match. */ static int vr_probe(device_t dev) { struct vr_type *t; uint16_t vid, did; vid = pci_get_vendor(dev); did = pci_get_device(dev); for (t = vr_devs; t->vr_name != NULL; ++t) { if (vid == t->vr_vid && did == t->vr_did) { device_set_desc(dev, t->vr_name); return(0); } } return(ENXIO); } /* * Attach the interface. Allocate softc structures, do ifmedia * setup and ethernet/BPF attach. */ static int vr_attach(device_t dev) { int i; uint8_t eaddr[ETHER_ADDR_LEN]; struct vr_softc *sc; struct ifnet *ifp; int error = 0, rid; sc = device_get_softc(dev); callout_init(&sc->vr_stat_timer); /* * Handle power management nonsense. */ if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) { uint32_t iobase, membase, irq; /* Save important PCI config data. */ iobase = pci_read_config(dev, VR_PCI_LOIO, 4); membase = pci_read_config(dev, VR_PCI_LOMEM, 4); irq = pci_read_config(dev, VR_PCI_INTLINE, 4); /* Reset the power state. */ device_printf(dev, "chip is in D%d power mode " "-- setting to D0\n", pci_get_powerstate(dev)); pci_set_powerstate(dev, PCI_POWERSTATE_D0); /* Restore PCI config data. */ pci_write_config(dev, VR_PCI_LOIO, iobase, 4); pci_write_config(dev, VR_PCI_LOMEM, membase, 4); pci_write_config(dev, VR_PCI_INTLINE, irq, 4); } pci_enable_busmaster(dev); sc->vr_revid = pci_get_revid(dev); rid = VR_RID; sc->vr_res = bus_alloc_resource_any(dev, VR_RES, &rid, RF_ACTIVE); if (sc->vr_res == NULL) { device_printf(dev, "couldn't map ports/memory\n"); return ENXIO; } sc->vr_btag = rman_get_bustag(sc->vr_res); sc->vr_bhandle = rman_get_bushandle(sc->vr_res); /* Allocate interrupt */ rid = 0; sc->vr_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_SHAREABLE | RF_ACTIVE); if (sc->vr_irq == NULL) { device_printf(dev, "couldn't map interrupt\n"); error = ENXIO; goto fail; } /* * Windows may put the chip in suspend mode when it * shuts down. Be sure to kick it in the head to wake it * up again. */ VR_CLRBIT(sc, VR_STICKHW, (VR_STICKHW_DS0|VR_STICKHW_DS1)); ifp = &sc->arpcom.ac_if; if_initname(ifp, device_get_name(dev), device_get_unit(dev)); /* Reset the adapter. */ vr_reset(sc); /* * Turn on bit2 (MIION) in PCI configuration register 0x53 during * initialization and disable AUTOPOLL. */ pci_write_config(dev, VR_PCI_MODE, pci_read_config(dev, VR_PCI_MODE, 4) | (VR_MODE3_MIION << 24), 4); VR_CLRBIT(sc, VR_MIICMD, VR_MIICMD_AUTOPOLL); /* * Get station address. The way the Rhine chips work, * you're not allowed to directly access the EEPROM once * they've been programmed a special way. Consequently, * we need to read the node address from the PAR0 and PAR1 * registers. */ VR_SETBIT(sc, VR_EECSR, VR_EECSR_LOAD); DELAY(200); for (i = 0; i < ETHER_ADDR_LEN; i++) eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i); sc->vr_ldata = contigmalloc(sizeof(struct vr_list_data), M_DEVBUF, M_WAITOK | M_ZERO, 0, 0xffffffff, PAGE_SIZE, 0); if (sc->vr_ldata == NULL) { device_printf(dev, "no memory for list buffers!\n"); error = ENXIO; goto fail; } /* Initialize TX buffer */ sc->vr_cdata.vr_tx_buf = contigmalloc(VR_TX_BUF_SIZE, M_DEVBUF, M_WAITOK, 0, 0xffffffff, PAGE_SIZE, 0); if (sc->vr_cdata.vr_tx_buf == NULL) { device_printf(dev, "can't allocate tx buffer!\n"); error = ENXIO; goto fail; } /* Set various TX indexes to invalid value */ sc->vr_cdata.vr_tx_free_idx = -1; sc->vr_cdata.vr_tx_tail_idx = -1; sc->vr_cdata.vr_tx_head_idx = -1; ifp->if_softc = sc; ifp->if_mtu = ETHERMTU; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = vr_ioctl; ifp->if_start = vr_start; #ifdef IFPOLL_ENABLE ifp->if_npoll = vr_npoll; #endif ifp->if_watchdog = vr_watchdog; ifp->if_init = vr_init; ifp->if_baudrate = 10000000; ifq_set_maxlen(&ifp->if_snd, VR_TX_LIST_CNT - 1); ifq_set_ready(&ifp->if_snd); /* * Do MII setup. */ if (mii_phy_probe(dev, &sc->vr_miibus, vr_ifmedia_upd, vr_ifmedia_sts)) { if_printf(ifp, "MII without any phy!\n"); error = ENXIO; goto fail; } /* Call MI attach routine. */ ether_ifattach(ifp, eaddr, NULL); ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(sc->vr_irq)); #ifdef IFPOLL_ENABLE ifpoll_compat_setup(&sc->vr_npoll, NULL, NULL, device_get_unit(dev), ifp->if_serializer); #endif error = bus_setup_intr(dev, sc->vr_irq, INTR_MPSAFE, vr_intr, sc, &sc->vr_intrhand, ifp->if_serializer); if (error) { device_printf(dev, "couldn't set up irq\n"); ether_ifdetach(ifp); goto fail; } return 0; fail: vr_detach(dev); return(error); } static int vr_detach(device_t dev) { struct vr_softc *sc = device_get_softc(dev); struct ifnet *ifp = &sc->arpcom.ac_if; if (device_is_attached(dev)) { lwkt_serialize_enter(ifp->if_serializer); vr_stop(sc); bus_teardown_intr(dev, sc->vr_irq, sc->vr_intrhand); lwkt_serialize_exit(ifp->if_serializer); ether_ifdetach(ifp); } if (sc->vr_miibus != NULL) device_delete_child(dev, sc->vr_miibus); bus_generic_detach(dev); if (sc->vr_irq != NULL) bus_release_resource(dev, SYS_RES_IRQ, 0, sc->vr_irq); if (sc->vr_res != NULL) bus_release_resource(dev, VR_RES, VR_RID, sc->vr_res); if (sc->vr_ldata != NULL) contigfree(sc->vr_ldata, sizeof(struct vr_list_data), M_DEVBUF); if (sc->vr_cdata.vr_tx_buf != NULL) contigfree(sc->vr_cdata.vr_tx_buf, VR_TX_BUF_SIZE, M_DEVBUF); return(0); } /* * Initialize the transmit descriptors. */ static int vr_list_tx_init(struct vr_softc *sc) { struct vr_chain_data *cd; struct vr_list_data *ld; struct vr_chain *tx_chain; int i; cd = &sc->vr_cdata; ld = sc->vr_ldata; tx_chain = cd->vr_tx_chain; for (i = 0; i < VR_TX_LIST_CNT; i++) { tx_chain[i].vr_ptr = &ld->vr_tx_list[i]; if (i == (VR_TX_LIST_CNT - 1)) tx_chain[i].vr_next_idx = 0; else tx_chain[i].vr_next_idx = i + 1; } for (i = 0; i < VR_TX_LIST_CNT; ++i) { void *tx_buf; int next_idx; tx_buf = VR_TX_BUF(sc, i); next_idx = tx_chain[i].vr_next_idx; tx_chain[i].vr_next_desc_paddr = vtophys(tx_chain[next_idx].vr_ptr); tx_chain[i].vr_buf_paddr = vtophys(tx_buf); } cd->vr_tx_free_idx = 0; cd->vr_tx_tail_idx = cd->vr_tx_head_idx = -1; return 0; } /* * Initialize the RX descriptors and allocate mbufs for them. Note that * we arrange the descriptors in a closed ring, so that the last descriptor * points back to the first. */ static int vr_list_rx_init(struct vr_softc *sc) { struct vr_chain_data *cd; struct vr_list_data *ld; int i, nexti; cd = &sc->vr_cdata; ld = sc->vr_ldata; for (i = 0; i < VR_RX_LIST_CNT; i++) { cd->vr_rx_chain[i].vr_ptr = (struct vr_desc *)&ld->vr_rx_list[i]; if (vr_newbuf(sc, &cd->vr_rx_chain[i], NULL) == ENOBUFS) return(ENOBUFS); if (i == (VR_RX_LIST_CNT - 1)) nexti = 0; else nexti = i + 1; cd->vr_rx_chain[i].vr_nextdesc = &cd->vr_rx_chain[nexti]; ld->vr_rx_list[i].vr_next = vtophys(&ld->vr_rx_list[nexti]); } cd->vr_rx_head = &cd->vr_rx_chain[0]; return(0); } /* * Initialize an RX descriptor and attach an MBUF cluster. * Note: the length fields are only 11 bits wide, which means the * largest size we can specify is 2047. This is important because * MCLBYTES is 2048, so we have to subtract one otherwise we'll * overflow the field and make a mess. */ static int vr_newbuf(struct vr_softc *sc, struct vr_chain_onefrag *c, struct mbuf *m) { struct mbuf *m_new = NULL; if (m == NULL) { m_new = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); if (m_new == NULL) return (ENOBUFS); m_new->m_len = m_new->m_pkthdr.len = MCLBYTES; } else { m_new = m; m_new->m_len = m_new->m_pkthdr.len = MCLBYTES; m_new->m_data = m_new->m_ext.ext_buf; } m_adj(m_new, sizeof(uint64_t)); c->vr_mbuf = m_new; c->vr_ptr->vr_status = VR_RXSTAT; c->vr_ptr->vr_data = vtophys(mtod(m_new, caddr_t)); c->vr_ptr->vr_ctl = VR_RXCTL | VR_RXLEN; return(0); } /* * A frame has been uploaded: pass the resulting mbuf chain up to * the higher level protocols. */ static void vr_rxeof(struct vr_softc *sc) { struct mbuf *m; struct ifnet *ifp; struct vr_chain_onefrag *cur_rx; int total_len = 0; uint32_t rxstat; ifp = &sc->arpcom.ac_if; while(!((rxstat = sc->vr_cdata.vr_rx_head->vr_ptr->vr_status) & VR_RXSTAT_OWN)) { struct mbuf *m0 = NULL; cur_rx = sc->vr_cdata.vr_rx_head; sc->vr_cdata.vr_rx_head = cur_rx->vr_nextdesc; m = cur_rx->vr_mbuf; /* * If an error occurs, update stats, clear the * status word and leave the mbuf cluster in place: * it should simply get re-used next time this descriptor * comes up in the ring. */ if (rxstat & VR_RXSTAT_RXERR) { IFNET_STAT_INC(ifp, ierrors, 1); if_printf(ifp, "rx error (%02x):", rxstat & 0x000000ff); if (rxstat & VR_RXSTAT_CRCERR) kprintf(" crc error"); if (rxstat & VR_RXSTAT_FRAMEALIGNERR) kprintf(" frame alignment error\n"); if (rxstat & VR_RXSTAT_FIFOOFLOW) kprintf(" FIFO overflow"); if (rxstat & VR_RXSTAT_GIANT) kprintf(" received giant packet"); if (rxstat & VR_RXSTAT_RUNT) kprintf(" received runt packet"); if (rxstat & VR_RXSTAT_BUSERR) kprintf(" system bus error"); if (rxstat & VR_RXSTAT_BUFFERR) kprintf("rx buffer error"); kprintf("\n"); vr_newbuf(sc, cur_rx, m); continue; } /* No errors; receive the packet. */ total_len = VR_RXBYTES(cur_rx->vr_ptr->vr_status); /* * XXX The VIA Rhine chip includes the CRC with every * received frame, and there's no way to turn this * behavior off (at least, I can't find anything in * the manual that explains how to do it) so we have * to trim off the CRC manually. */ total_len -= ETHER_CRC_LEN; m0 = m_devget(mtod(m, char *) - ETHER_ALIGN, total_len + ETHER_ALIGN, 0, ifp); vr_newbuf(sc, cur_rx, m); if (m0 == NULL) { IFNET_STAT_INC(ifp, ierrors, 1); continue; } m_adj(m0, ETHER_ALIGN); m = m0; IFNET_STAT_INC(ifp, ipackets, 1); ifp->if_input(ifp, m, NULL, -1); } } static void vr_rxeoc(struct vr_softc *sc) { struct ifnet *ifp; int i; ifp = &sc->arpcom.ac_if; IFNET_STAT_INC(ifp, ierrors, 1); VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_RX_ON); DELAY(10000); /* Wait for receiver to stop */ for (i = 0x400; i && (CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RX_ON); i--) ; /* Wait for receiver to stop */ if (i == 0) { if_printf(ifp, "rx shutdown error!\n"); sc->vr_flags |= VR_F_RESTART; return; } vr_rxeof(sc); CSR_WRITE_4(sc, VR_RXADDR, vtophys(sc->vr_cdata.vr_rx_head->vr_ptr)); VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_ON); VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_GO); } /* * A frame was downloaded to the chip. It's safe for us to clean up * the list buffers. */ static void vr_txeof(struct vr_softc *sc) { struct vr_chain_data *cd; struct vr_chain *tx_chain; struct ifnet *ifp; ifp = &sc->arpcom.ac_if; cd = &sc->vr_cdata; /* Reset the timeout timer; if_txeoc will clear it. */ ifp->if_timer = 5; /* Sanity check. */ if (cd->vr_tx_head_idx == -1) return; tx_chain = cd->vr_tx_chain; /* * Go through our tx list and free mbufs for those * frames that have been transmitted. */ while(tx_chain[cd->vr_tx_head_idx].vr_buf != NULL) { struct vr_chain *cur_tx; uint32_t txstat; int i; cur_tx = &tx_chain[cd->vr_tx_head_idx]; txstat = cur_tx->vr_ptr->vr_status; if ((txstat & VR_TXSTAT_ABRT) || (txstat & VR_TXSTAT_UDF)) { for (i = 0x400; i && (CSR_READ_2(sc, VR_COMMAND) & VR_CMD_TX_ON); i--) ; /* Wait for chip to shutdown */ if (i == 0) { if_printf(ifp, "tx shutdown timeout\n"); sc->vr_flags |= VR_F_RESTART; break; } VR_TXOWN(cur_tx) = VR_TXSTAT_OWN; CSR_WRITE_4(sc, VR_TXADDR, vtophys(cur_tx->vr_ptr)); break; } if (txstat & VR_TXSTAT_OWN) break; if (txstat & VR_TXSTAT_ERRSUM) { IFNET_STAT_INC(ifp, oerrors, 1); if (txstat & VR_TXSTAT_DEFER) IFNET_STAT_INC(ifp, collisions, 1); if (txstat & VR_TXSTAT_LATECOLL) IFNET_STAT_INC(ifp, collisions, 1); } IFNET_STAT_INC(ifp, collisions, (txstat & VR_TXSTAT_COLLCNT) >> 3); IFNET_STAT_INC(ifp, opackets, 1); cur_tx->vr_buf = NULL; if (cd->vr_tx_head_idx == cd->vr_tx_tail_idx) { cd->vr_tx_head_idx = -1; cd->vr_tx_tail_idx = -1; break; } cd->vr_tx_head_idx = cur_tx->vr_next_idx; } } /* * TX 'end of channel' interrupt handler. */ static void vr_txeoc(struct vr_softc *sc) { struct ifnet *ifp; ifp = &sc->arpcom.ac_if; if (sc->vr_cdata.vr_tx_head_idx == -1) { ifq_clr_oactive(&ifp->if_snd); sc->vr_cdata.vr_tx_tail_idx = -1; ifp->if_timer = 0; } } static void vr_tick(void *xsc) { struct vr_softc *sc = xsc; struct ifnet *ifp = &sc->arpcom.ac_if; struct mii_data *mii; lwkt_serialize_enter(ifp->if_serializer); if (sc->vr_flags & VR_F_RESTART) { if_printf(&sc->arpcom.ac_if, "restarting\n"); vr_stop(sc); vr_reset(sc); vr_init(sc); sc->vr_flags &= ~VR_F_RESTART; } mii = device_get_softc(sc->vr_miibus); mii_tick(mii); callout_reset(&sc->vr_stat_timer, hz, vr_tick, sc); lwkt_serialize_exit(ifp->if_serializer); } static void vr_intr(void *arg) { struct vr_softc *sc; struct ifnet *ifp; uint16_t status; sc = arg; ifp = &sc->arpcom.ac_if; /* Supress unwanted interrupts. */ if (!(ifp->if_flags & IFF_UP)) { vr_stop(sc); return; } /* Disable interrupts. */ if ((ifp->if_flags & IFF_NPOLLING) == 0) CSR_WRITE_2(sc, VR_IMR, 0x0000); for (;;) { status = CSR_READ_2(sc, VR_ISR); if (status) CSR_WRITE_2(sc, VR_ISR, status); if ((status & VR_INTRS) == 0) break; if (status & VR_ISR_RX_OK) vr_rxeof(sc); if (status & VR_ISR_RX_DROPPED) { if_printf(ifp, "rx packet lost\n"); IFNET_STAT_INC(ifp, ierrors, 1); } if ((status & VR_ISR_RX_ERR) || (status & VR_ISR_RX_NOBUF) || (status & VR_ISR_RX_OFLOW)) { if_printf(ifp, "receive error (%04x)", status); if (status & VR_ISR_RX_NOBUF) kprintf(" no buffers"); if (status & VR_ISR_RX_OFLOW) kprintf(" overflow"); if (status & VR_ISR_RX_DROPPED) kprintf(" packet lost"); kprintf("\n"); vr_rxeoc(sc); } if ((status & VR_ISR_BUSERR) || (status & VR_ISR_TX_UNDERRUN)) { vr_reset(sc); vr_init(sc); break; } if ((status & VR_ISR_TX_OK) || (status & VR_ISR_TX_ABRT) || (status & VR_ISR_TX_ABRT2) || (status & VR_ISR_UDFI)) { vr_txeof(sc); if ((status & VR_ISR_UDFI) || (status & VR_ISR_TX_ABRT2) || (status & VR_ISR_TX_ABRT)) { IFNET_STAT_INC(ifp, oerrors, 1); if (sc->vr_cdata.vr_tx_head_idx != -1) { VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON); VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_GO); } } else { vr_txeoc(sc); } } } /* Re-enable interrupts. */ if ((ifp->if_flags & IFF_NPOLLING) == 0) CSR_WRITE_2(sc, VR_IMR, VR_INTRS); if (!ifq_is_empty(&ifp->if_snd)) if_devstart(ifp); } /* * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data * pointers to the fragment pointers. */ static int vr_encap(struct vr_softc *sc, int chain_idx, struct mbuf *m_head) { struct vr_chain *c; struct vr_desc *f; caddr_t tx_buf; int len; KASSERT(chain_idx >= 0 && chain_idx < VR_TX_LIST_CNT, ("%s: chain idx(%d) out of range 0-%d", sc->arpcom.ac_if.if_xname, chain_idx, VR_TX_LIST_CNT)); /* * The VIA Rhine wants packet buffers to be longword * aligned, but very often our mbufs aren't. Rather than * waste time trying to decide when to copy and when not * to copy, just do it all the time. */ tx_buf = VR_TX_BUF(sc, chain_idx); m_copydata(m_head, 0, m_head->m_pkthdr.len, tx_buf); len = m_head->m_pkthdr.len; /* * The Rhine chip doesn't auto-pad, so we have to make * sure to pad short frames out to the minimum frame length * ourselves. */ if (len < VR_MIN_FRAMELEN) { bzero(tx_buf + len, VR_MIN_FRAMELEN - len); len = VR_MIN_FRAMELEN; } c = &sc->vr_cdata.vr_tx_chain[chain_idx]; c->vr_buf = tx_buf; f = c->vr_ptr; f->vr_data = c->vr_buf_paddr; f->vr_ctl = len; f->vr_ctl |= (VR_TXCTL_TLINK | VR_TXCTL_FIRSTFRAG); f->vr_ctl |= (VR_TXCTL_LASTFRAG | VR_TXCTL_FINT); f->vr_status = 0; f->vr_next = c->vr_next_desc_paddr; return(0); } /* * Main transmit routine. To avoid having to do mbuf copies, we put pointers * to the mbuf data regions directly in the transmit lists. We also save a * copy of the pointers since the transmit list fragment pointers are * physical addresses. */ static void vr_start(struct ifnet *ifp, struct ifaltq_subque *ifsq) { struct vr_softc *sc; struct vr_chain_data *cd; struct vr_chain *tx_chain; int cur_tx_idx, start_tx_idx, prev_tx_idx; ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq); if ((ifp->if_flags & IFF_RUNNING) == 0 || ifq_is_oactive(&ifp->if_snd)) return; sc = ifp->if_softc; cd = &sc->vr_cdata; tx_chain = cd->vr_tx_chain; start_tx_idx = cd->vr_tx_free_idx; cur_tx_idx = prev_tx_idx = -1; /* Check for an available queue slot. If there are none, punt. */ if (tx_chain[start_tx_idx].vr_buf != NULL) { ifq_set_oactive(&ifp->if_snd); return; } while (tx_chain[cd->vr_tx_free_idx].vr_buf == NULL) { struct mbuf *m_head; struct vr_chain *cur_tx; m_head = ifq_dequeue(&ifp->if_snd); if (m_head == NULL) break; /* Pick a descriptor off the free list. */ cur_tx_idx = cd->vr_tx_free_idx; cur_tx = &tx_chain[cur_tx_idx]; /* Pack the data into the descriptor. */ if (vr_encap(sc, cur_tx_idx, m_head)) { ifq_set_oactive(&ifp->if_snd); cur_tx_idx = prev_tx_idx; break; } /* XXX */ if (cur_tx_idx != start_tx_idx) VR_TXOWN(cur_tx) = VR_TXSTAT_OWN; BPF_MTAP(ifp, m_head); m_freem(m_head); VR_TXOWN(cur_tx) = VR_TXSTAT_OWN; VR_SETBIT16(sc, VR_COMMAND, /*VR_CMD_TX_ON|*/VR_CMD_TX_GO); /* Iff everything went OK, we bump up free index. */ prev_tx_idx = cur_tx_idx; cd->vr_tx_free_idx = cur_tx->vr_next_idx; } /* If there are no frames queued, bail. */ if (cur_tx_idx == -1) return; sc->vr_cdata.vr_tx_tail_idx = cur_tx_idx; if (sc->vr_cdata.vr_tx_head_idx == -1) sc->vr_cdata.vr_tx_head_idx = start_tx_idx; /* * Set a timeout in case the chip goes out to lunch. */ ifp->if_timer = 5; } static void vr_init(void *xsc) { struct vr_softc *sc = xsc; struct ifnet *ifp = &sc->arpcom.ac_if; struct mii_data *mii; int i; mii = device_get_softc(sc->vr_miibus); /* Cancel pending I/O and free all RX/TX buffers. */ vr_stop(sc); vr_reset(sc); /* Set our station address. */ for (i = 0; i < ETHER_ADDR_LEN; i++) CSR_WRITE_1(sc, VR_PAR0 + i, sc->arpcom.ac_enaddr[i]); /* Set DMA size. */ VR_CLRBIT(sc, VR_BCR0, VR_BCR0_DMA_LENGTH); VR_SETBIT(sc, VR_BCR0, VR_BCR0_DMA_STORENFWD); /* * BCR0 and BCR1 can override the RXCFG and TXCFG registers, * so we must set both. */ VR_CLRBIT(sc, VR_BCR0, VR_BCR0_RX_THRESH); VR_SETBIT(sc, VR_BCR0, VR_BCR0_RXTHRESH128BYTES); VR_CLRBIT(sc, VR_BCR1, VR_BCR1_TX_THRESH); VR_SETBIT(sc, VR_BCR1, VR_BCR1_TXTHRESHSTORENFWD); VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_THRESH); VR_SETBIT(sc, VR_RXCFG, VR_RXTHRESH_128BYTES); VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TX_THRESH); VR_SETBIT(sc, VR_TXCFG, VR_TXTHRESH_STORENFWD); /* Init circular RX list. */ if (vr_list_rx_init(sc) == ENOBUFS) { vr_stop(sc); if_printf(ifp, "initialization failed: no memory for rx buffers\n"); return; } /* Init tx descriptors. */ vr_list_tx_init(sc); /* If we want promiscuous mode, set the allframes bit. */ if (ifp->if_flags & IFF_PROMISC) VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC); else VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC); /* Set capture broadcast bit to capture broadcast frames. */ if (ifp->if_flags & IFF_BROADCAST) VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD); else VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD); /* * Program the multicast filter, if necessary. */ vr_setmulti(sc); /* * Load the address of the RX list. */ CSR_WRITE_4(sc, VR_RXADDR, vtophys(sc->vr_cdata.vr_rx_head->vr_ptr)); /* Enable receiver and transmitter. */ CSR_WRITE_2(sc, VR_COMMAND, VR_CMD_TX_NOPOLL|VR_CMD_START| VR_CMD_TX_ON|VR_CMD_RX_ON| VR_CMD_RX_GO); CSR_WRITE_4(sc, VR_TXADDR, vtophys(&sc->vr_ldata->vr_tx_list[0])); /* * Enable interrupts, unless we are polling. */ CSR_WRITE_2(sc, VR_ISR, 0xFFFF); #ifdef IFPOLL_ENABLE if ((ifp->if_flags & IFF_NPOLLING) == 0) #endif CSR_WRITE_2(sc, VR_IMR, VR_INTRS); mii_mediachg(mii); ifp->if_flags |= IFF_RUNNING; ifq_clr_oactive(&ifp->if_snd); callout_reset(&sc->vr_stat_timer, hz, vr_tick, sc); } /* * Set media options. */ static int vr_ifmedia_upd(struct ifnet *ifp) { struct vr_softc *sc; sc = ifp->if_softc; if (ifp->if_flags & IFF_UP) vr_init(sc); return(0); } /* * Report current media status. */ static void vr_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) { struct vr_softc *sc; struct mii_data *mii; sc = ifp->if_softc; mii = device_get_softc(sc->vr_miibus); mii_pollstat(mii); ifmr->ifm_active = mii->mii_media_active; ifmr->ifm_status = mii->mii_media_status; } static int vr_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr) { struct vr_softc *sc = ifp->if_softc; struct ifreq *ifr = (struct ifreq *) data; struct mii_data *mii; int error = 0; switch(command) { case SIOCSIFFLAGS: if (ifp->if_flags & IFF_UP) { vr_init(sc); } else { if (ifp->if_flags & IFF_RUNNING) vr_stop(sc); } error = 0; break; case SIOCADDMULTI: case SIOCDELMULTI: vr_setmulti(sc); error = 0; break; case SIOCGIFMEDIA: case SIOCSIFMEDIA: mii = device_get_softc(sc->vr_miibus); error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); break; default: error = ether_ioctl(ifp, command, data); break; } return(error); } #ifdef IFPOLL_ENABLE static void vr_npoll_compat(struct ifnet *ifp, void *arg __unused, int count __unused) { struct vr_softc *sc = ifp->if_softc; ASSERT_SERIALIZED(ifp->if_serializer); vr_intr(sc); } static void vr_npoll(struct ifnet *ifp, struct ifpoll_info *info) { struct vr_softc *sc = ifp->if_softc; ASSERT_SERIALIZED(ifp->if_serializer); if (info != NULL) { int cpuid = sc->vr_npoll.ifpc_cpuid; info->ifpi_rx[cpuid].poll_func = vr_npoll_compat; info->ifpi_rx[cpuid].arg = NULL; info->ifpi_rx[cpuid].serializer = ifp->if_serializer; if (ifp->if_flags & IFF_RUNNING) { /* disable interrupts */ CSR_WRITE_2(sc, VR_IMR, 0x0000); } ifq_set_cpuid(&ifp->if_snd, cpuid); } else { if (ifp->if_flags & IFF_RUNNING) { /* enable interrupts */ CSR_WRITE_2(sc, VR_IMR, VR_INTRS); } ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(sc->vr_irq)); } } #endif /* IFPOLL_ENABLE */ static void vr_watchdog(struct ifnet *ifp) { struct vr_softc *sc; sc = ifp->if_softc; IFNET_STAT_INC(ifp, oerrors, 1); if_printf(ifp, "watchdog timeout\n"); vr_stop(sc); vr_reset(sc); vr_init(sc); if (!ifq_is_empty(&ifp->if_snd)) if_devstart(ifp); } /* * Stop the adapter and free any mbufs allocated to the * RX and TX lists. */ static void vr_stop(struct vr_softc *sc) { int i; struct ifnet *ifp; ifp = &sc->arpcom.ac_if; ifp->if_timer = 0; callout_stop(&sc->vr_stat_timer); VR_SETBIT16(sc, VR_COMMAND, VR_CMD_STOP); VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_RX_ON|VR_CMD_TX_ON)); CSR_WRITE_2(sc, VR_IMR, 0x0000); CSR_WRITE_4(sc, VR_TXADDR, 0x00000000); CSR_WRITE_4(sc, VR_RXADDR, 0x00000000); /* * Free data in the RX lists. */ for (i = 0; i < VR_RX_LIST_CNT; i++) { if (sc->vr_cdata.vr_rx_chain[i].vr_mbuf != NULL) { m_freem(sc->vr_cdata.vr_rx_chain[i].vr_mbuf); sc->vr_cdata.vr_rx_chain[i].vr_mbuf = NULL; } } bzero(&sc->vr_ldata->vr_rx_list, sizeof(sc->vr_ldata->vr_rx_list)); /* * Reset the TX list buffer pointers. */ for (i = 0; i < VR_TX_LIST_CNT; i++) sc->vr_cdata.vr_tx_chain[i].vr_buf = NULL; bzero(&sc->vr_ldata->vr_tx_list, sizeof(sc->vr_ldata->vr_tx_list)); ifp->if_flags &= ~IFF_RUNNING; ifq_clr_oactive(&ifp->if_snd); } /* * Stop all chip I/O so that the kernel's probe routines don't * get confused by errant DMAs when rebooting. */ static void vr_shutdown(device_t dev) { struct vr_softc *sc; sc = device_get_softc(dev); vr_stop(sc); }