/*- * Copyright (c) 2011-2015 LSI Corp. * Copyright (c) 2013-2016 Avago Technologies * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * Avago Technologies (LSI) MPT-Fusion Host Adapter FreeBSD * * $FreeBSD: head/sys/dev/mpr/mpr_sas_lsi.c 331228 2018-03-19 23:21:45Z mav $ */ /* Communications core for Avago Technologies (LSI) MPT3 */ /* TODO Move headers to mprvar */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* For Hashed SAS Address creation for SATA Drives */ #define MPT2SAS_SN_LEN 20 #define MPT2SAS_MN_LEN 40 struct mpr_fw_event_work { u16 event; void *event_data; TAILQ_ENTRY(mpr_fw_event_work) ev_link; }; union _sata_sas_address { u8 wwid[8]; struct { u32 high; u32 low; } word; }; /* * define the IDENTIFY DEVICE structure */ struct _ata_identify_device_data { u16 reserved1[10]; /* 0-9 */ u16 serial_number[10]; /* 10-19 */ u16 reserved2[7]; /* 20-26 */ u16 model_number[20]; /* 27-46*/ u16 reserved3[170]; /* 47-216 */ u16 rotational_speed; /* 217 */ u16 reserved4[38]; /* 218-255 */ }; static u32 event_count; static void mprsas_fw_work(struct mpr_softc *sc, struct mpr_fw_event_work *fw_event); static void mprsas_fw_event_free(struct mpr_softc *, struct mpr_fw_event_work *); static int mprsas_add_device(struct mpr_softc *sc, u16 handle, u8 linkrate); static int mprsas_add_pcie_device(struct mpr_softc *sc, u16 handle, u8 linkrate); static int mprsas_get_sata_identify(struct mpr_softc *sc, u16 handle, Mpi2SataPassthroughReply_t *mpi_reply, char *id_buffer, int sz, u32 devinfo); static void mprsas_ata_id_timeout(void *data); int mprsas_get_sas_address_for_sata_disk(struct mpr_softc *sc, u64 *sas_address, u16 handle, u32 device_info, u8 *is_SATA_SSD); static int mprsas_volume_add(struct mpr_softc *sc, u16 handle); static void mprsas_SSU_to_SATA_devices(struct mpr_softc *sc); static void mprsas_stop_unit_done(struct cam_periph *periph, union ccb *done_ccb); void mprsas_evt_handler(struct mpr_softc *sc, uintptr_t data, MPI2_EVENT_NOTIFICATION_REPLY *event) { struct mpr_fw_event_work *fw_event; u16 sz; mpr_dprint(sc, MPR_TRACE, "%s\n", __func__); MPR_DPRINT_EVENT(sc, sas, event); mprsas_record_event(sc, event); fw_event = kmalloc(sizeof(struct mpr_fw_event_work), M_MPR, M_ZERO|M_NOWAIT); if (!fw_event) { kprintf("%s: allocate failed for fw_event\n", __func__); return; } sz = le16toh(event->EventDataLength) * 4; fw_event->event_data = kmalloc(sz, M_MPR, M_ZERO|M_NOWAIT); if (!fw_event->event_data) { kprintf("%s: allocate failed for event_data\n", __func__); kfree(fw_event, M_MPR); return; } bcopy(event->EventData, fw_event->event_data, sz); fw_event->event = event->Event; if ((event->Event == MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST || event->Event == MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST || event->Event == MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE || event->Event == MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST) && sc->track_mapping_events) sc->pending_map_events++; /* * When wait_for_port_enable flag is set, make sure that all the events * are processed. Increment the startup_refcount and decrement it after * events are processed. */ if ((event->Event == MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST || event->Event == MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST || event->Event == MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST) && sc->wait_for_port_enable) mprsas_startup_increment(sc->sassc); TAILQ_INSERT_TAIL(&sc->sassc->ev_queue, fw_event, ev_link); taskqueue_enqueue(sc->sassc->ev_tq, &sc->sassc->ev_task); } static void mprsas_fw_event_free(struct mpr_softc *sc, struct mpr_fw_event_work *fw_event) { kfree(fw_event->event_data, M_MPR); kfree(fw_event, M_MPR); } /** * _mpr_fw_work - delayed task for processing firmware events * @sc: per adapter object * @fw_event: The fw_event_work object * Context: user. * * Return nothing. */ static void mprsas_fw_work(struct mpr_softc *sc, struct mpr_fw_event_work *fw_event) { struct mprsas_softc *sassc; sassc = sc->sassc; mpr_dprint(sc, MPR_EVENT, "(%d)->(%s) Working on Event: [%x]\n", event_count++, __func__, fw_event->event); switch (fw_event->event) { case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST: { MPI2_EVENT_DATA_SAS_TOPOLOGY_CHANGE_LIST *data; MPI2_EVENT_SAS_TOPO_PHY_ENTRY *phy; uint8_t i; data = (MPI2_EVENT_DATA_SAS_TOPOLOGY_CHANGE_LIST *) fw_event->event_data; mpr_mapping_topology_change_event(sc, fw_event->event_data); for (i = 0; i < data->NumEntries; i++) { phy = &data->PHY[i]; switch (phy->PhyStatus & MPI2_EVENT_SAS_TOPO_RC_MASK) { case MPI2_EVENT_SAS_TOPO_RC_TARG_ADDED: if (mprsas_add_device(sc, le16toh(phy->AttachedDevHandle), phy->LinkRate)) { mpr_dprint(sc, MPR_ERROR, "%s: " "failed to add device with handle " "0x%x\n", __func__, le16toh(phy->AttachedDevHandle)); mprsas_prepare_remove(sassc, le16toh( phy->AttachedDevHandle)); } break; case MPI2_EVENT_SAS_TOPO_RC_TARG_NOT_RESPONDING: mprsas_prepare_remove(sassc, le16toh( phy->AttachedDevHandle)); break; case MPI2_EVENT_SAS_TOPO_RC_PHY_CHANGED: case MPI2_EVENT_SAS_TOPO_RC_NO_CHANGE: case MPI2_EVENT_SAS_TOPO_RC_DELAY_NOT_RESPONDING: default: break; } } /* * refcount was incremented for this event in * mprsas_evt_handler. Decrement it here because the event has * been processed. */ mprsas_startup_decrement(sassc); break; } case MPI2_EVENT_SAS_DISCOVERY: { MPI2_EVENT_DATA_SAS_DISCOVERY *data; data = (MPI2_EVENT_DATA_SAS_DISCOVERY *)fw_event->event_data; if (data->ReasonCode & MPI2_EVENT_SAS_DISC_RC_STARTED) mpr_dprint(sc, MPR_TRACE,"SAS discovery start event\n"); if (data->ReasonCode & MPI2_EVENT_SAS_DISC_RC_COMPLETED) { mpr_dprint(sc, MPR_TRACE,"SAS discovery stop event\n"); sassc->flags &= ~MPRSAS_IN_DISCOVERY; mprsas_discovery_end(sassc); } break; } case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE: { Mpi2EventDataSasEnclDevStatusChange_t *data; data = (Mpi2EventDataSasEnclDevStatusChange_t *) fw_event->event_data; mpr_mapping_enclosure_dev_status_change_event(sc, fw_event->event_data); break; } case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST: { Mpi2EventIrConfigElement_t *element; int i; u8 foreign_config, reason; u16 elementType; Mpi2EventDataIrConfigChangeList_t *event_data; struct mprsas_target *targ; unsigned int id; event_data = fw_event->event_data; foreign_config = (le32toh(event_data->Flags) & MPI2_EVENT_IR_CHANGE_FLAGS_FOREIGN_CONFIG) ? 1 : 0; element = (Mpi2EventIrConfigElement_t *)&event_data->ConfigElement[0]; id = mpr_mapping_get_raid_tid_from_handle(sc, element->VolDevHandle); mpr_mapping_ir_config_change_event(sc, event_data); for (i = 0; i < event_data->NumElements; i++, element++) { reason = element->ReasonCode; elementType = le16toh(element->ElementFlags) & MPI2_EVENT_IR_CHANGE_EFLAGS_ELEMENT_TYPE_MASK; /* * check for element type of Phys Disk or Hot Spare */ if ((elementType != MPI2_EVENT_IR_CHANGE_EFLAGS_VOLPHYSDISK_ELEMENT) && (elementType != MPI2_EVENT_IR_CHANGE_EFLAGS_HOTSPARE_ELEMENT)) // do next element goto skip_fp_send; /* * check for reason of Hide, Unhide, PD Created, or PD * Deleted */ if ((reason != MPI2_EVENT_IR_CHANGE_RC_HIDE) && (reason != MPI2_EVENT_IR_CHANGE_RC_UNHIDE) && (reason != MPI2_EVENT_IR_CHANGE_RC_PD_CREATED) && (reason != MPI2_EVENT_IR_CHANGE_RC_PD_DELETED)) goto skip_fp_send; // check for a reason of Hide or PD Created if ((reason == MPI2_EVENT_IR_CHANGE_RC_HIDE) || (reason == MPI2_EVENT_IR_CHANGE_RC_PD_CREATED)) { // build RAID Action message Mpi2RaidActionRequest_t *action; Mpi2RaidActionReply_t *reply = NULL; struct mpr_command *cm; int error = 0; if ((cm = mpr_alloc_command(sc)) == NULL) { kprintf("%s: command alloc failed\n", __func__); return; } mpr_dprint(sc, MPR_EVENT, "Sending FP action " "from " "MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST " ":\n"); action = (MPI2_RAID_ACTION_REQUEST *)cm->cm_req; action->Function = MPI2_FUNCTION_RAID_ACTION; action->Action = MPI2_RAID_ACTION_PHYSDISK_HIDDEN; action->PhysDiskNum = element->PhysDiskNum; cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; error = mpr_request_polled(sc, &cm); if (cm != NULL) reply = (Mpi2RaidActionReply_t *) cm->cm_reply; if (error || (reply == NULL)) { /* FIXME */ /* * If the poll returns error then we * need to do diag reset */ kprintf("%s: poll for page completed " "with error %d", __func__, error); } if (reply && (le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) != MPI2_IOCSTATUS_SUCCESS) { mpr_dprint(sc, MPR_ERROR, "%s: error " "sending RaidActionPage; " "iocstatus = 0x%x\n", __func__, le16toh(reply->IOCStatus)); } if (cm) mpr_free_command(sc, cm); } skip_fp_send: mpr_dprint(sc, MPR_EVENT, "Received " "MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST Reason " "code %x:\n", element->ReasonCode); switch (element->ReasonCode) { case MPI2_EVENT_IR_CHANGE_RC_VOLUME_CREATED: case MPI2_EVENT_IR_CHANGE_RC_ADDED: if (!foreign_config) { if (mprsas_volume_add(sc, le16toh(element->VolDevHandle))) { kprintf("%s: failed to add RAID " "volume with handle 0x%x\n", __func__, le16toh(element-> VolDevHandle)); } } break; case MPI2_EVENT_IR_CHANGE_RC_VOLUME_DELETED: case MPI2_EVENT_IR_CHANGE_RC_REMOVED: /* * Rescan after volume is deleted or removed. */ if (!foreign_config) { if (id == MPR_MAP_BAD_ID) { kprintf("%s: could not get ID " "for volume with handle " "0x%04x\n", __func__, le16toh(element-> VolDevHandle)); break; } targ = &sassc->targets[id]; targ->handle = 0x0; targ->encl_slot = 0x0; targ->encl_handle = 0x0; targ->encl_level_valid = 0x0; targ->encl_level = 0x0; targ->connector_name[0] = ' '; targ->connector_name[1] = ' '; targ->connector_name[2] = ' '; targ->connector_name[3] = ' '; targ->exp_dev_handle = 0x0; targ->phy_num = 0x0; targ->linkrate = 0x0; mprsas_rescan_target(sc, targ); kprintf("RAID target id 0x%x removed\n", targ->tid); } break; case MPI2_EVENT_IR_CHANGE_RC_PD_CREATED: case MPI2_EVENT_IR_CHANGE_RC_HIDE: /* * Phys Disk of a volume has been created. Hide * it from the OS. */ targ = mprsas_find_target_by_handle(sassc, 0, element->PhysDiskDevHandle); if (targ == NULL) break; targ->flags |= MPR_TARGET_FLAGS_RAID_COMPONENT; mprsas_rescan_target(sc, targ); break; case MPI2_EVENT_IR_CHANGE_RC_PD_DELETED: /* * Phys Disk of a volume has been deleted. * Expose it to the OS. */ if (mprsas_add_device(sc, le16toh(element->PhysDiskDevHandle), 0)) { kprintf("%s: failed to add device with " "handle 0x%x\n", __func__, le16toh(element-> PhysDiskDevHandle)); mprsas_prepare_remove(sassc, le16toh(element-> PhysDiskDevHandle)); } break; } } /* * refcount was incremented for this event in * mprsas_evt_handler. Decrement it here because the event has * been processed. */ mprsas_startup_decrement(sassc); break; } case MPI2_EVENT_IR_VOLUME: { Mpi2EventDataIrVolume_t *event_data = fw_event->event_data; /* * Informational only. */ mpr_dprint(sc, MPR_EVENT, "Received IR Volume event:\n"); switch (event_data->ReasonCode) { case MPI2_EVENT_IR_VOLUME_RC_SETTINGS_CHANGED: mpr_dprint(sc, MPR_EVENT, " Volume Settings " "changed from 0x%x to 0x%x for Volome with " "handle 0x%x", le32toh(event_data->PreviousValue), le32toh(event_data->NewValue), le16toh(event_data->VolDevHandle)); break; case MPI2_EVENT_IR_VOLUME_RC_STATUS_FLAGS_CHANGED: mpr_dprint(sc, MPR_EVENT, " Volume Status " "changed from 0x%x to 0x%x for Volome with " "handle 0x%x", le32toh(event_data->PreviousValue), le32toh(event_data->NewValue), le16toh(event_data->VolDevHandle)); break; case MPI2_EVENT_IR_VOLUME_RC_STATE_CHANGED: mpr_dprint(sc, MPR_EVENT, " Volume State " "changed from 0x%x to 0x%x for Volome with " "handle 0x%x", le32toh(event_data->PreviousValue), le32toh(event_data->NewValue), le16toh(event_data->VolDevHandle)); u32 state; struct mprsas_target *targ; state = le32toh(event_data->NewValue); switch (state) { case MPI2_RAID_VOL_STATE_MISSING: case MPI2_RAID_VOL_STATE_FAILED: mprsas_prepare_volume_remove(sassc, event_data->VolDevHandle); break; case MPI2_RAID_VOL_STATE_ONLINE: case MPI2_RAID_VOL_STATE_DEGRADED: case MPI2_RAID_VOL_STATE_OPTIMAL: targ = mprsas_find_target_by_handle(sassc, 0, event_data->VolDevHandle); if (targ) { kprintf("%s %d: Volume handle " "0x%x is already added \n", __func__, __LINE__, event_data->VolDevHandle); break; } if (mprsas_volume_add(sc, le16toh(event_data-> VolDevHandle))) { kprintf("%s: failed to add RAID " "volume with handle 0x%x\n", __func__, le16toh( event_data->VolDevHandle)); } break; default: break; } break; default: break; } break; } case MPI2_EVENT_IR_PHYSICAL_DISK: { Mpi2EventDataIrPhysicalDisk_t *event_data = fw_event->event_data; struct mprsas_target *targ; /* * Informational only. */ mpr_dprint(sc, MPR_EVENT, "Received IR Phys Disk event:\n"); switch (event_data->ReasonCode) { case MPI2_EVENT_IR_PHYSDISK_RC_SETTINGS_CHANGED: mpr_dprint(sc, MPR_EVENT, " Phys Disk Settings " "changed from 0x%x to 0x%x for Phys Disk Number " "%d and handle 0x%x at Enclosure handle 0x%x, Slot " "%d", le32toh(event_data->PreviousValue), le32toh(event_data->NewValue), event_data->PhysDiskNum, le16toh(event_data->PhysDiskDevHandle), le16toh(event_data->EnclosureHandle), le16toh(event_data->Slot)); break; case MPI2_EVENT_IR_PHYSDISK_RC_STATUS_FLAGS_CHANGED: mpr_dprint(sc, MPR_EVENT, " Phys Disk Status changed " "from 0x%x to 0x%x for Phys Disk Number %d and " "handle 0x%x at Enclosure handle 0x%x, Slot %d", le32toh(event_data->PreviousValue), le32toh(event_data->NewValue), event_data->PhysDiskNum, le16toh(event_data->PhysDiskDevHandle), le16toh(event_data->EnclosureHandle), le16toh(event_data->Slot)); break; case MPI2_EVENT_IR_PHYSDISK_RC_STATE_CHANGED: mpr_dprint(sc, MPR_EVENT, " Phys Disk State changed " "from 0x%x to 0x%x for Phys Disk Number %d and " "handle 0x%x at Enclosure handle 0x%x, Slot %d", le32toh(event_data->PreviousValue), le32toh(event_data->NewValue), event_data->PhysDiskNum, le16toh(event_data->PhysDiskDevHandle), le16toh(event_data->EnclosureHandle), le16toh(event_data->Slot)); switch (event_data->NewValue) { case MPI2_RAID_PD_STATE_ONLINE: case MPI2_RAID_PD_STATE_DEGRADED: case MPI2_RAID_PD_STATE_REBUILDING: case MPI2_RAID_PD_STATE_OPTIMAL: case MPI2_RAID_PD_STATE_HOT_SPARE: targ = mprsas_find_target_by_handle( sassc, 0, event_data->PhysDiskDevHandle); if (targ) { targ->flags |= MPR_TARGET_FLAGS_RAID_COMPONENT; kprintf("%s %d: Found Target " "for handle 0x%x.\n", __func__, __LINE__ , event_data-> PhysDiskDevHandle); } break; case MPI2_RAID_PD_STATE_OFFLINE: case MPI2_RAID_PD_STATE_NOT_CONFIGURED: case MPI2_RAID_PD_STATE_NOT_COMPATIBLE: default: targ = mprsas_find_target_by_handle( sassc, 0, event_data->PhysDiskDevHandle); if (targ) { targ->flags |= ~MPR_TARGET_FLAGS_RAID_COMPONENT; kprintf("%s %d: Found Target " "for handle 0x%x. \n", __func__, __LINE__ , event_data-> PhysDiskDevHandle); } break; } default: break; } break; } case MPI2_EVENT_IR_OPERATION_STATUS: { Mpi2EventDataIrOperationStatus_t *event_data = fw_event->event_data; /* * Informational only. */ mpr_dprint(sc, MPR_EVENT, "Received IR Op Status event:\n"); mpr_dprint(sc, MPR_EVENT, " RAID Operation of %d is %d " "percent complete for Volume with handle 0x%x", event_data->RAIDOperation, event_data->PercentComplete, le16toh(event_data->VolDevHandle)); break; } case MPI2_EVENT_TEMP_THRESHOLD: { pMpi2EventDataTemperature_t temp_event; temp_event = (pMpi2EventDataTemperature_t)fw_event->event_data; /* * The Temp Sensor Count must be greater than the event's Sensor * Num to be valid. If valid, print the temp thresholds that * have been exceeded. */ if (sc->iounit_pg8.NumSensors > temp_event->SensorNum) { mpr_dprint(sc, MPR_FAULT, "Temperature Threshold flags " "%s %s %s %s exceeded for Sensor: %d !!!\n", ((temp_event->Status & 0x01) == 1) ? "0 " : " ", ((temp_event->Status & 0x02) == 2) ? "1 " : " ", ((temp_event->Status & 0x04) == 4) ? "2 " : " ", ((temp_event->Status & 0x08) == 8) ? "3 " : " ", temp_event->SensorNum); mpr_dprint(sc, MPR_FAULT, "Current Temp in Celsius: " "%d\n", temp_event->CurrentTemperature); } break; } case MPI2_EVENT_ACTIVE_CABLE_EXCEPTION: { pMpi26EventDataActiveCableExcept_t ace_event_data; ace_event_data = (pMpi26EventDataActiveCableExcept_t)fw_event->event_data; switch(ace_event_data->ReasonCode) { case MPI26_EVENT_ACTIVE_CABLE_INSUFFICIENT_POWER: { mpr_printf(sc, "Currently a cable with " "ReceptacleID %d cannot be powered and device " "connected to this active cable will not be seen. " "This active cable requires %d mW of power.\n", ace_event_data->ReceptacleID, ace_event_data->ActiveCablePowerRequirement); break; } case MPI26_EVENT_ACTIVE_CABLE_DEGRADED: { mpr_printf(sc, "Currently a cable with " "ReceptacleID %d is not running at optimal speed " "(12 Gb/s rate)\n", ace_event_data->ReceptacleID); break; } default: break; } break; } case MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR: { pMpi25EventDataSasDeviceDiscoveryError_t discovery_error_data; uint64_t sas_address; discovery_error_data = (pMpi25EventDataSasDeviceDiscoveryError_t) fw_event->event_data; sas_address = discovery_error_data->SASAddress.High; sas_address = (sas_address << 32) | discovery_error_data->SASAddress.Low; switch(discovery_error_data->ReasonCode) { case MPI25_EVENT_SAS_DISC_ERR_SMP_FAILED: { mpr_printf(sc, "SMP command failed during discovery " "for expander with SAS Address %jx and " "handle 0x%x.\n", sas_address, discovery_error_data->DevHandle); break; } case MPI25_EVENT_SAS_DISC_ERR_SMP_TIMEOUT: { mpr_printf(sc, "SMP command timed out during " "discovery for expander with SAS Address %jx and " "handle 0x%x.\n", sas_address, discovery_error_data->DevHandle); break; } default: break; } break; } case MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST: { MPI26_EVENT_DATA_PCIE_TOPOLOGY_CHANGE_LIST *data; MPI26_EVENT_PCIE_TOPO_PORT_ENTRY *port_entry; uint8_t i, link_rate; uint16_t handle; data = (MPI26_EVENT_DATA_PCIE_TOPOLOGY_CHANGE_LIST *) fw_event->event_data; mpr_mapping_pcie_topology_change_event(sc, fw_event->event_data); for (i = 0; i < data->NumEntries; i++) { port_entry = &data->PortEntry[i]; handle = le16toh(port_entry->AttachedDevHandle); link_rate = port_entry->CurrentPortInfo & MPI26_EVENT_PCIE_TOPO_PI_RATE_MASK; switch (port_entry->PortStatus) { case MPI26_EVENT_PCIE_TOPO_PS_DEV_ADDED: if (link_rate < MPI26_EVENT_PCIE_TOPO_PI_RATE_2_5) { mpr_dprint(sc, MPR_ERROR, "%s: Cannot " "add PCIe device with handle 0x%x " "with unknown link rate.\n", __func__, handle); break; } if (mprsas_add_pcie_device(sc, handle, link_rate)) { mpr_dprint(sc, MPR_ERROR, "%s: failed " "to add PCIe device with handle " "0x%x\n", __func__, handle); mprsas_prepare_remove(sassc, handle); } break; case MPI26_EVENT_PCIE_TOPO_PS_NOT_RESPONDING: mprsas_prepare_remove(sassc, handle); break; case MPI26_EVENT_PCIE_TOPO_PS_PORT_CHANGED: case MPI26_EVENT_PCIE_TOPO_PS_NO_CHANGE: case MPI26_EVENT_PCIE_TOPO_PS_DELAY_NOT_RESPONDING: default: break; } } /* * refcount was incremented for this event in * mprsas_evt_handler. Decrement it here because the event has * been processed. */ mprsas_startup_decrement(sassc); break; } case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE: case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE: default: mpr_dprint(sc, MPR_TRACE,"Unhandled event 0x%0X\n", fw_event->event); break; } mpr_dprint(sc, MPR_EVENT, "(%d)->(%s) Event Free: [%x]\n", event_count, __func__, fw_event->event); mprsas_fw_event_free(sc, fw_event); } void mprsas_firmware_event_work(void *arg, int pending) { struct mpr_fw_event_work *fw_event; struct mpr_softc *sc; sc = (struct mpr_softc *)arg; mpr_lock(sc); while ((fw_event = TAILQ_FIRST(&sc->sassc->ev_queue)) != NULL) { TAILQ_REMOVE(&sc->sassc->ev_queue, fw_event, ev_link); mprsas_fw_work(sc, fw_event); } mpr_unlock(sc); } static int mprsas_add_device(struct mpr_softc *sc, u16 handle, u8 linkrate) { char devstring[80]; struct mprsas_softc *sassc; struct mprsas_target *targ; Mpi2ConfigReply_t mpi_reply; Mpi2SasDevicePage0_t config_page; uint64_t sas_address, parent_sas_address = 0; u32 device_info, parent_devinfo = 0; unsigned int id; int ret = 1, error = 0, i; struct mprsas_lun *lun; u8 is_SATA_SSD = 0; struct mpr_command *cm; sassc = sc->sassc; mprsas_startup_increment(sassc); if (mpr_config_get_sas_device_pg0(sc, &mpi_reply, &config_page, MPI2_SAS_DEVICE_PGAD_FORM_HANDLE, handle) != 0) { mpr_dprint(sc, MPR_INFO|MPR_MAPPING|MPR_FAULT, "Error reading SAS device %#x page0, iocstatus= 0x%x\n", handle, mpi_reply.IOCStatus); error = ENXIO; goto out; } device_info = le32toh(config_page.DeviceInfo); if (((device_info & MPI2_SAS_DEVICE_INFO_SMP_TARGET) == 0) && (le16toh(config_page.ParentDevHandle) != 0)) { Mpi2ConfigReply_t tmp_mpi_reply; Mpi2SasDevicePage0_t parent_config_page; if (mpr_config_get_sas_device_pg0(sc, &tmp_mpi_reply, &parent_config_page, MPI2_SAS_DEVICE_PGAD_FORM_HANDLE, le16toh(config_page.ParentDevHandle)) != 0) { mpr_dprint(sc, MPR_MAPPING|MPR_FAULT, "Error reading parent SAS device %#x page0, " "iocstatus= 0x%x\n", le16toh(config_page.ParentDevHandle), tmp_mpi_reply.IOCStatus); } else { parent_sas_address = parent_config_page.SASAddress.High; parent_sas_address = (parent_sas_address << 32) | parent_config_page.SASAddress.Low; parent_devinfo = le32toh(parent_config_page.DeviceInfo); } } /* TODO Check proper endianness */ sas_address = config_page.SASAddress.High; sas_address = (sas_address << 32) | config_page.SASAddress.Low; mpr_dprint(sc, MPR_MAPPING, "Handle 0x%04x SAS Address from SAS device " "page0 = %jx\n", handle, sas_address); /* * Always get SATA Identify information because this is used to * determine if Start/Stop Unit should be sent to the drive when the * system is shutdown. */ if (device_info & MPI2_SAS_DEVICE_INFO_SATA_DEVICE) { ret = mprsas_get_sas_address_for_sata_disk(sc, &sas_address, handle, device_info, &is_SATA_SSD); if (ret) { mpr_dprint(sc, MPR_MAPPING|MPR_ERROR, "%s: failed to get disk type (SSD or HDD) for SATA " "device with handle 0x%04x\n", __func__, handle); } else { mpr_dprint(sc, MPR_MAPPING, "Handle 0x%04x SAS Address " "from SATA device = %jx\n", handle, sas_address); } } /* * use_phynum: * 1 - use the PhyNum field as a fallback to the mapping logic * 0 - never use the PhyNum field * -1 - only use the PhyNum field * * Note that using the Phy number to map a device can cause device adds * to fail if multiple enclosures/expanders are in the topology. For * example, if two devices are in the same slot number in two different * enclosures within the topology, only one of those devices will be * added. PhyNum mapping should not be used if multiple enclosures are * in the topology. */ id = MPR_MAP_BAD_ID; if (sc->use_phynum != -1) id = mpr_mapping_get_tid(sc, sas_address, handle); if (id == MPR_MAP_BAD_ID) { if ((sc->use_phynum == 0) || ((id = config_page.PhyNum) > sassc->maxtargets)) { mpr_dprint(sc, MPR_INFO, "failure at %s:%d/%s()! " "Could not get ID for device with handle 0x%04x\n", __FILE__, __LINE__, __func__, handle); error = ENXIO; goto out; } } mpr_dprint(sc, MPR_MAPPING, "%s: Target ID for added device is %d.\n", __func__, id); /* * Only do the ID check and reuse check if the target is not from a * RAID Component. For Physical Disks of a Volume, the ID will be reused * when a volume is deleted because the mapping entry for the PD will * still be in the mapping table. The ID check should not be done here * either since this PD is already being used. */ targ = &sassc->targets[id]; if (!(targ->flags & MPR_TARGET_FLAGS_RAID_COMPONENT)) { if (mprsas_check_id(sassc, id) != 0) { mpr_dprint(sc, MPR_MAPPING|MPR_INFO, "Excluding target id %d\n", id); error = ENXIO; goto out; } if (targ->handle != 0x0) { mpr_dprint(sc, MPR_MAPPING, "Attempting to reuse " "target id %d handle 0x%04x\n", id, targ->handle); error = ENXIO; goto out; } } targ->devinfo = device_info; targ->devname = le32toh(config_page.DeviceName.High); targ->devname = (targ->devname << 32) | le32toh(config_page.DeviceName.Low); targ->encl_handle = le16toh(config_page.EnclosureHandle); targ->encl_slot = le16toh(config_page.Slot); targ->encl_level = config_page.EnclosureLevel; targ->connector_name[0] = config_page.ConnectorName[0]; targ->connector_name[1] = config_page.ConnectorName[1]; targ->connector_name[2] = config_page.ConnectorName[2]; targ->connector_name[3] = config_page.ConnectorName[3]; targ->handle = handle; targ->parent_handle = le16toh(config_page.ParentDevHandle); targ->sasaddr = mpr_to_u64(&config_page.SASAddress); targ->parent_sasaddr = le64toh(parent_sas_address); targ->parent_devinfo = parent_devinfo; targ->tid = id; targ->linkrate = (linkrate>>4); targ->flags = 0; if (is_SATA_SSD) { targ->flags = MPR_TARGET_IS_SATA_SSD; } if ((le16toh(config_page.Flags) & MPI25_SAS_DEVICE0_FLAGS_ENABLED_FAST_PATH) && (le16toh(config_page.Flags) & MPI25_SAS_DEVICE0_FLAGS_FAST_PATH_CAPABLE)) { targ->scsi_req_desc_type = MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO; } if (le16toh(config_page.Flags) & MPI2_SAS_DEVICE0_FLAGS_ENCL_LEVEL_VALID) { targ->encl_level_valid = TRUE; } TAILQ_INIT(&targ->commands); TAILQ_INIT(&targ->timedout_commands); while (!SLIST_EMPTY(&targ->luns)) { lun = SLIST_FIRST(&targ->luns); SLIST_REMOVE_HEAD(&targ->luns, lun_link); kfree(lun, M_MPR); } SLIST_INIT(&targ->luns); mpr_describe_devinfo(targ->devinfo, devstring, 80); mpr_dprint(sc, (MPR_INFO|MPR_MAPPING), "Found device <%s> <%s> " "handle<0x%04x> enclosureHandle<0x%04x> slot %d\n", devstring, mpr_describe_table(mpr_linkrate_names, targ->linkrate), targ->handle, targ->encl_handle, targ->encl_slot); if (targ->encl_level_valid) { mpr_dprint(sc, (MPR_INFO|MPR_MAPPING), "At enclosure level %d " "and connector name (%4s)\n", targ->encl_level, targ->connector_name); } #if 1 /* ((__FreeBSD_version >= 1000000) && (__FreeBSD_version < 1000039)) || \ (__FreeBSD_version < 902502) */ if ((sassc->flags & MPRSAS_IN_STARTUP) == 0) #endif mprsas_rescan_target(sc, targ); mpr_dprint(sc, MPR_MAPPING, "Target id 0x%x added\n", targ->tid); /* * Check all commands to see if the SATA_ID_TIMEOUT flag has been set. * If so, send a Target Reset TM to the target that was just created. * An Abort Task TM should be used instead of a Target Reset, but that * would be much more difficult because targets have not been fully * discovered yet, and LUN's haven't been setup. So, just reset the * target instead of the LUN. */ for (i = 1; i < sc->num_reqs; i++) { cm = &sc->commands[i]; if (cm->cm_flags & MPR_CM_FLAGS_SATA_ID_TIMEOUT) { targ->timeouts++; cm->cm_state = MPR_CM_STATE_TIMEDOUT; if ((targ->tm = mprsas_alloc_tm(sc)) != NULL) { mpr_dprint(sc, MPR_INFO, "%s: sending Target " "Reset for stuck SATA identify command " "(cm = %p)\n", __func__, cm); targ->tm->cm_targ = targ; mprsas_send_reset(sc, targ->tm, MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET); } else { mpr_dprint(sc, MPR_ERROR, "Failed to allocate " "tm for Target Reset after SATA ID command " "timed out (cm %p)\n", cm); } /* * No need to check for more since the target is * already being reset. */ break; } } out: /* * Free the commands that may not have been freed from the SATA ID call */ for (i = 1; i < sc->num_reqs; i++) { cm = &sc->commands[i]; if (cm->cm_flags & MPR_CM_FLAGS_SATA_ID_TIMEOUT) { mpr_free_command(sc, cm); } } mprsas_startup_decrement(sassc); return (error); } int mprsas_get_sas_address_for_sata_disk(struct mpr_softc *sc, u64 *sas_address, u16 handle, u32 device_info, u8 *is_SATA_SSD) { Mpi2SataPassthroughReply_t mpi_reply; int i, rc, try_count; u32 *bufferptr; union _sata_sas_address hash_address; struct _ata_identify_device_data ata_identify; u8 buffer[MPT2SAS_MN_LEN + MPT2SAS_SN_LEN]; u32 ioc_status; u8 sas_status; memset(&ata_identify, 0, sizeof(ata_identify)); memset(&mpi_reply, 0, sizeof(mpi_reply)); try_count = 0; do { rc = mprsas_get_sata_identify(sc, handle, &mpi_reply, (char *)&ata_identify, sizeof(ata_identify), device_info); try_count++; ioc_status = le16toh(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK; sas_status = mpi_reply.SASStatus; switch (ioc_status) { case MPI2_IOCSTATUS_SUCCESS: break; case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR: /* No sense sleeping. this error won't get better */ break; default: if (sc->spinup_wait_time > 0) { mpr_dprint(sc, MPR_INFO, "Sleeping %d seconds " "after SATA ID error to wait for spinup\n", sc->spinup_wait_time); lksleep(&sc->msleep_fake_chan, &sc->mpr_lock, 0, "mprid", sc->spinup_wait_time * hz); } } } while (((rc && (rc != EWOULDBLOCK)) || (ioc_status && (ioc_status != MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR)) || sas_status) && (try_count < 5)); if (rc == 0 && !ioc_status && !sas_status) { mpr_dprint(sc, MPR_MAPPING, "%s: got SATA identify " "successfully for handle = 0x%x with try_count = %d\n", __func__, handle, try_count); } else { mpr_dprint(sc, MPR_MAPPING, "%s: handle = 0x%x failed\n", __func__, handle); return -1; } /* Copy & byteswap the 40 byte model number to a buffer */ for (i = 0; i < MPT2SAS_MN_LEN; i += 2) { buffer[i] = ((u8 *)ata_identify.model_number)[i + 1]; buffer[i + 1] = ((u8 *)ata_identify.model_number)[i]; } /* Copy & byteswap the 20 byte serial number to a buffer */ for (i = 0; i < MPT2SAS_SN_LEN; i += 2) { buffer[MPT2SAS_MN_LEN + i] = ((u8 *)ata_identify.serial_number)[i + 1]; buffer[MPT2SAS_MN_LEN + i + 1] = ((u8 *)ata_identify.serial_number)[i]; } bufferptr = (u32 *)buffer; /* There are 60 bytes to hash down to 8. 60 isn't divisible by 8, * so loop through the first 56 bytes (7*8), * and then add in the last dword. */ hash_address.word.low = 0; hash_address.word.high = 0; for (i = 0; (i < ((MPT2SAS_MN_LEN+MPT2SAS_SN_LEN)/8)); i++) { hash_address.word.low += *bufferptr; bufferptr++; hash_address.word.high += *bufferptr; bufferptr++; } /* Add the last dword */ hash_address.word.low += *bufferptr; /* Make sure the hash doesn't start with 5, because it could clash * with a SAS address. Change 5 to a D. */ if ((hash_address.word.high & 0x000000F0) == (0x00000050)) hash_address.word.high |= 0x00000080; *sas_address = (u64)hash_address.wwid[0] << 56 | (u64)hash_address.wwid[1] << 48 | (u64)hash_address.wwid[2] << 40 | (u64)hash_address.wwid[3] << 32 | (u64)hash_address.wwid[4] << 24 | (u64)hash_address.wwid[5] << 16 | (u64)hash_address.wwid[6] << 8 | (u64)hash_address.wwid[7]; if (ata_identify.rotational_speed == 1) { *is_SATA_SSD = 1; } return 0; } static int mprsas_get_sata_identify(struct mpr_softc *sc, u16 handle, Mpi2SataPassthroughReply_t *mpi_reply, char *id_buffer, int sz, u32 devinfo) { Mpi2SataPassthroughRequest_t *mpi_request; Mpi2SataPassthroughReply_t *reply = NULL; /* XXX swildner: warning fix */ struct mpr_command *cm; char *buffer; int error = 0; buffer = kmalloc( sz, M_MPR, M_NOWAIT | M_ZERO); if (!buffer) return ENOMEM; if ((cm = mpr_alloc_command(sc)) == NULL) { kfree(buffer, M_MPR); return (EBUSY); } mpi_request = (MPI2_SATA_PASSTHROUGH_REQUEST *)cm->cm_req; bzero(mpi_request,sizeof(MPI2_SATA_PASSTHROUGH_REQUEST)); mpi_request->Function = MPI2_FUNCTION_SATA_PASSTHROUGH; mpi_request->VF_ID = 0; mpi_request->DevHandle = htole16(handle); mpi_request->PassthroughFlags = (MPI2_SATA_PT_REQ_PT_FLAGS_PIO | MPI2_SATA_PT_REQ_PT_FLAGS_READ); mpi_request->DataLength = htole32(sz); mpi_request->CommandFIS[0] = 0x27; mpi_request->CommandFIS[1] = 0x80; mpi_request->CommandFIS[2] = (devinfo & MPI2_SAS_DEVICE_INFO_ATAPI_DEVICE) ? 0xA1 : 0xEC; cm->cm_sge = &mpi_request->SGL; cm->cm_sglsize = sizeof(MPI2_SGE_IO_UNION); cm->cm_flags = MPR_CM_FLAGS_DATAIN; cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; cm->cm_data = buffer; cm->cm_length = htole32(sz); /* * Start a timeout counter specifically for the SATA ID command. This * is used to fix a problem where the FW does not send a reply sometimes * when a bad disk is in the topology. So, this is used to timeout the * command so that processing can continue normally. */ mpr_dprint(sc, MPR_XINFO, "%s start timeout counter for SATA ID " "command\n", __func__); callout_reset(&cm->cm_callout, MPR_ATA_ID_TIMEOUT * hz, mprsas_ata_id_timeout, cm); error = mpr_wait_command(sc, &cm, 60, CAN_SLEEP); mpr_dprint(sc, MPR_XINFO, "%s stop timeout counter for SATA ID " "command\n", __func__); /* XXX KDM need to fix the case where this command is destroyed */ callout_stop(&cm->cm_callout); if (cm != NULL) reply = (Mpi2SataPassthroughReply_t *)cm->cm_reply; if (error || (reply == NULL)) { /* FIXME */ /* * If the request returns an error then we need to do a diag * reset */ mpr_dprint(sc, MPR_INFO|MPR_FAULT|MPR_MAPPING, "Request for SATA PASSTHROUGH page completed with error %d", error); error = ENXIO; goto out; } bcopy(buffer, id_buffer, sz); bcopy(reply, mpi_reply, sizeof(Mpi2SataPassthroughReply_t)); if ((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) != MPI2_IOCSTATUS_SUCCESS) { mpr_dprint(sc, MPR_INFO|MPR_MAPPING|MPR_FAULT, "Error reading device %#x SATA PASSTHRU; iocstatus= 0x%x\n", handle, reply->IOCStatus); error = ENXIO; goto out; } out: /* * If the SATA_ID_TIMEOUT flag has been set for this command, don't free * it. The command will be freed after sending a target reset TM. If * the command did timeout, use EWOULDBLOCK. */ if ((cm->cm_flags & MPR_CM_FLAGS_SATA_ID_TIMEOUT) == 0) mpr_free_command(sc, cm); else if (error == 0) error = EWOULDBLOCK; cm->cm_data = NULL; kfree(buffer, M_MPR); return (error); } static void mprsas_ata_id_timeout(void *data) { struct mpr_softc *sc; struct mpr_command *cm; cm = (struct mpr_command *)data; sc = cm->cm_sc; KKASSERT(lockowned(&sc->mpr_lock)); mpr_dprint(sc, MPR_INFO, "%s checking ATA ID command %p sc %p\n", __func__, cm, sc); if ((callout_pending(&cm->cm_callout)) || (!callout_active(&cm->cm_callout))) { mpr_dprint(sc, MPR_INFO, "%s ATA ID command almost timed out\n", __func__); return; } callout_deactivate(&cm->cm_callout); /* * Run the interrupt handler to make sure it's not pending. This * isn't perfect because the command could have already completed * and been re-used, though this is unlikely. */ mpr_intr_locked(sc); if (cm->cm_state == MPR_CM_STATE_FREE) { mpr_dprint(sc, MPR_INFO, "%s ATA ID command almost timed out\n", __func__); return; } mpr_dprint(sc, MPR_INFO, "ATA ID command timeout cm %p\n", cm); /* * Send wakeup() to the sleeping thread that issued this ATA ID command. * wakeup() will cause msleep to return a 0 (not EWOULDBLOCK), and this * will keep reinit() from being called. This way, an Abort Task TM can * be issued so that the timed out command can be cleared. The Abort * Task cannot be sent from here because the driver has not completed * setting up targets. Instead, the command is flagged so that special * handling will be used to send the abort. */ cm->cm_flags |= MPR_CM_FLAGS_SATA_ID_TIMEOUT; wakeup(cm); } static int mprsas_add_pcie_device(struct mpr_softc *sc, u16 handle, u8 linkrate) { char devstring[80]; struct mprsas_softc *sassc; struct mprsas_target *targ; Mpi2ConfigReply_t mpi_reply; Mpi26PCIeDevicePage0_t config_page; Mpi26PCIeDevicePage2_t config_page2; uint64_t pcie_wwid, parent_wwid = 0; u32 device_info, parent_devinfo = 0; unsigned int id; int error = 0; struct mprsas_lun *lun; sassc = sc->sassc; mprsas_startup_increment(sassc); if ((mpr_config_get_pcie_device_pg0(sc, &mpi_reply, &config_page, MPI26_PCIE_DEVICE_PGAD_FORM_HANDLE, handle))) { kprintf("%s: error reading PCIe device page0\n", __func__); error = ENXIO; goto out; } device_info = le32toh(config_page.DeviceInfo); if (((device_info & MPI26_PCIE_DEVINFO_PCI_SWITCH) == 0) && (le16toh(config_page.ParentDevHandle) != 0)) { Mpi2ConfigReply_t tmp_mpi_reply; Mpi26PCIeDevicePage0_t parent_config_page; if ((mpr_config_get_pcie_device_pg0(sc, &tmp_mpi_reply, &parent_config_page, MPI26_PCIE_DEVICE_PGAD_FORM_HANDLE, le16toh(config_page.ParentDevHandle)))) { kprintf("%s: error reading PCIe device %#x page0\n", __func__, le16toh(config_page.ParentDevHandle)); } else { parent_wwid = parent_config_page.WWID.High; parent_wwid = (parent_wwid << 32) | parent_config_page.WWID.Low; parent_devinfo = le32toh(parent_config_page.DeviceInfo); } } /* TODO Check proper endianness */ pcie_wwid = config_page.WWID.High; pcie_wwid = (pcie_wwid << 32) | config_page.WWID.Low; mpr_dprint(sc, MPR_INFO, "PCIe WWID from PCIe device page0 = %jx\n", pcie_wwid); if ((mpr_config_get_pcie_device_pg2(sc, &mpi_reply, &config_page2, MPI26_PCIE_DEVICE_PGAD_FORM_HANDLE, handle))) { kprintf("%s: error reading PCIe device page2\n", __func__); error = ENXIO; goto out; } id = mpr_mapping_get_tid(sc, pcie_wwid, handle); if (id == MPR_MAP_BAD_ID) { mpr_dprint(sc, MPR_ERROR | MPR_INFO, "failure at %s:%d/%s()! " "Could not get ID for device with handle 0x%04x\n", __FILE__, __LINE__, __func__, handle); error = ENXIO; goto out; } mpr_dprint(sc, MPR_MAPPING, "%s: Target ID for added device is %d.\n", __func__, id); if (mprsas_check_id(sassc, id) != 0) { mpr_dprint(sc, MPR_MAPPING|MPR_INFO, "Excluding target id %d\n", id); error = ENXIO; goto out; } mpr_dprint(sc, MPR_MAPPING, "WWID from PCIe device page0 = %jx\n", pcie_wwid); targ = &sassc->targets[id]; targ->devinfo = device_info; targ->encl_handle = le16toh(config_page.EnclosureHandle); targ->encl_slot = le16toh(config_page.Slot); targ->encl_level = config_page.EnclosureLevel; targ->connector_name[0] = ((char *)&config_page.ConnectorName)[0]; targ->connector_name[1] = ((char *)&config_page.ConnectorName)[1]; targ->connector_name[2] = ((char *)&config_page.ConnectorName)[2]; targ->connector_name[3] = ((char *)&config_page.ConnectorName)[3]; targ->is_nvme = device_info & MPI26_PCIE_DEVINFO_NVME; targ->MDTS = config_page2.MaximumDataTransferSize; /* * Assume always TRUE for encl_level_valid because there is no valid * flag for PCIe. */ targ->encl_level_valid = TRUE; targ->handle = handle; targ->parent_handle = le16toh(config_page.ParentDevHandle); targ->sasaddr = mpr_to_u64(&config_page.WWID); targ->parent_sasaddr = le64toh(parent_wwid); targ->parent_devinfo = parent_devinfo; targ->tid = id; targ->linkrate = linkrate; targ->flags = 0; if ((le16toh(config_page.Flags) & MPI26_PCIEDEV0_FLAGS_ENABLED_FAST_PATH) && (le16toh(config_page.Flags) & MPI26_PCIEDEV0_FLAGS_FAST_PATH_CAPABLE)) { targ->scsi_req_desc_type = MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO; } TAILQ_INIT(&targ->commands); TAILQ_INIT(&targ->timedout_commands); while (!SLIST_EMPTY(&targ->luns)) { lun = SLIST_FIRST(&targ->luns); SLIST_REMOVE_HEAD(&targ->luns, lun_link); kfree(lun, M_MPR); } SLIST_INIT(&targ->luns); mpr_describe_devinfo(targ->devinfo, devstring, 80); mpr_dprint(sc, (MPR_INFO|MPR_MAPPING), "Found PCIe device <%s> <%s> " "handle<0x%04x> enclosureHandle<0x%04x> slot %d\n", devstring, mpr_describe_table(mpr_pcie_linkrate_names, targ->linkrate), targ->handle, targ->encl_handle, targ->encl_slot); if (targ->encl_level_valid) { mpr_dprint(sc, (MPR_INFO|MPR_MAPPING), "At enclosure level %d " "and connector name (%4s)\n", targ->encl_level, targ->connector_name); } #if 1 /* ((__FreeBSD_version >= 1000000) && (__FreeBSD_version < 1000039)) || \ (__FreeBSD_version < 902502) */ if ((sassc->flags & MPRSAS_IN_STARTUP) == 0) #endif mprsas_rescan_target(sc, targ); mpr_dprint(sc, MPR_MAPPING, "Target id 0x%x added\n", targ->tid); out: mprsas_startup_decrement(sassc); return (error); } static int mprsas_volume_add(struct mpr_softc *sc, u16 handle) { struct mprsas_softc *sassc; struct mprsas_target *targ; u64 wwid; unsigned int id; int error = 0; struct mprsas_lun *lun; sassc = sc->sassc; mprsas_startup_increment(sassc); /* wwid is endian safe */ mpr_config_get_volume_wwid(sc, handle, &wwid); if (!wwid) { kprintf("%s: invalid WWID; cannot add volume to mapping table\n", __func__); error = ENXIO; goto out; } id = mpr_mapping_get_raid_tid(sc, wwid, handle); if (id == MPR_MAP_BAD_ID) { kprintf("%s: could not get ID for volume with handle 0x%04x and " "WWID 0x%016llx\n", __func__, handle, (unsigned long long)wwid); error = ENXIO; goto out; } targ = &sassc->targets[id]; targ->tid = id; targ->handle = handle; targ->devname = wwid; TAILQ_INIT(&targ->commands); TAILQ_INIT(&targ->timedout_commands); while (!SLIST_EMPTY(&targ->luns)) { lun = SLIST_FIRST(&targ->luns); SLIST_REMOVE_HEAD(&targ->luns, lun_link); kfree(lun, M_MPR); } SLIST_INIT(&targ->luns); #if 1 /* ((__FreeBSD_version >= 1000000) && (__FreeBSD_version < 1000039)) || \ (__FreeBSD_version < 902502) */ if ((sassc->flags & MPRSAS_IN_STARTUP) == 0) #endif mprsas_rescan_target(sc, targ); mpr_dprint(sc, MPR_MAPPING, "RAID target id %d added (WWID = 0x%jx)\n", targ->tid, wwid); out: mprsas_startup_decrement(sassc); return (error); } /** * mprsas_SSU_to_SATA_devices * @sc: per adapter object * * Looks through the target list and issues a StartStopUnit SCSI command to each * SATA direct-access device. This helps to ensure that data corruption is * avoided when the system is being shut down. This must be called after the IR * System Shutdown RAID Action is sent if in IR mode. * * Return nothing. */ static void mprsas_SSU_to_SATA_devices(struct mpr_softc *sc) { struct mprsas_softc *sassc = sc->sassc; union ccb *ccb; path_id_t pathid = cam_sim_path(sassc->sim); target_id_t targetid; struct mprsas_target *target; char path_str[64]; struct timeval cur_time, start_time; mpr_lock(sc); /* * For each target, issue a StartStopUnit command to stop the device. */ sc->SSU_started = TRUE; sc->SSU_refcount = 0; for (targetid = 0; targetid < sc->max_devices; targetid++) { target = &sassc->targets[targetid]; if (target->handle == 0x0) { continue; } /* * The stop_at_shutdown flag will be set if this device is * a SATA direct-access end device. */ if (target->stop_at_shutdown) { ccb = xpt_alloc_ccb(); if (ccb == NULL) { mpr_dprint(sc, MPR_FAULT, "Unable to alloc CCB " "to stop unit.\n"); return; } if (xpt_create_path(&ccb->ccb_h.path, xpt_periph, pathid, targetid, CAM_LUN_WILDCARD) != CAM_REQ_CMP) { mpr_dprint(sc, MPR_ERROR, "Unable to create " "path to stop unit.\n"); xpt_free_ccb(&ccb->ccb_h); return; } xpt_path_string(ccb->ccb_h.path, path_str, sizeof(path_str)); mpr_dprint(sc, MPR_INFO, "Sending StopUnit: path %s " "handle %d\n", path_str, target->handle); /* * Issue a START STOP UNIT command for the target. * Increment the SSU counter to be used to count the * number of required replies. */ mpr_dprint(sc, MPR_INFO, "Incrementing SSU count\n"); sc->SSU_refcount++; ccb->ccb_h.target_id = xpt_path_target_id(ccb->ccb_h.path); ccb->ccb_h.ppriv_ptr1 = sassc; scsi_start_stop(&ccb->csio, /*retries*/0, mprsas_stop_unit_done, MSG_SIMPLE_Q_TAG, /*start*/FALSE, /*load/eject*/0, /*immediate*/FALSE, MPR_SENSE_LEN, /*timeout*/10000); xpt_action(ccb); } } mpr_unlock(sc); /* * Wait until all of the SSU commands have completed or time has * expired (60 seconds). Pause for 100ms each time through. If any * command times out, the target will be reset in the SCSI command * timeout routine. */ getmicrotime(&start_time); while (sc->SSU_refcount) { tsleep(mprsas_SSU_to_SATA_devices, 0, "mprwait", hz/10); getmicrotime(&cur_time); if ((cur_time.tv_sec - start_time.tv_sec) > 60) { mpr_dprint(sc, MPR_ERROR, "Time has expired waiting " "for SSU commands to complete.\n"); break; } } } static void mprsas_stop_unit_done(struct cam_periph *periph, union ccb *done_ccb) { struct mprsas_softc *sassc; char path_str[64]; if (done_ccb == NULL) return; sassc = (struct mprsas_softc *)done_ccb->ccb_h.ppriv_ptr1; xpt_path_string(done_ccb->ccb_h.path, path_str, sizeof(path_str)); mpr_dprint(sassc->sc, MPR_INFO, "Completing stop unit for %s\n", path_str); /* * Nothing more to do except free the CCB and path. If the command * timed out, an abort reset, then target reset will be issued during * the SCSI Command process. */ xpt_free_path(done_ccb->ccb_h.path); xpt_free_ccb(&done_ccb->ccb_h); } /** * mprsas_ir_shutdown - IR shutdown notification * @sc: per adapter object * * Sending RAID Action to alert the Integrated RAID subsystem of the IOC that * the host system is shutting down. * * Return nothing. */ void mprsas_ir_shutdown(struct mpr_softc *sc) { u16 volume_mapping_flags; u16 ioc_pg8_flags = le16toh(sc->ioc_pg8.Flags); struct dev_mapping_table *mt_entry; u32 start_idx, end_idx; unsigned int id, found_volume = 0; struct mpr_command *cm; Mpi2RaidActionRequest_t *action; target_id_t targetid; struct mprsas_target *target; mpr_dprint(sc, MPR_TRACE, "%s\n", __func__); /* is IR firmware build loaded? */ if (!sc->ir_firmware) goto out; /* are there any volumes? Look at IR target IDs. */ // TODO-later, this should be looked up in the RAID config structure // when it is implemented. volume_mapping_flags = le16toh(sc->ioc_pg8.IRVolumeMappingFlags) & MPI2_IOCPAGE8_IRFLAGS_MASK_VOLUME_MAPPING_MODE; if (volume_mapping_flags == MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING) { start_idx = 0; if (ioc_pg8_flags & MPI2_IOCPAGE8_FLAGS_RESERVED_TARGETID_0) start_idx = 1; } else start_idx = sc->max_devices - sc->max_volumes; end_idx = start_idx + sc->max_volumes - 1; for (id = start_idx; id < end_idx; id++) { mt_entry = &sc->mapping_table[id]; if ((mt_entry->physical_id != 0) && (mt_entry->missing_count == 0)) { found_volume = 1; break; } } if (!found_volume) goto out; if ((cm = mpr_alloc_command(sc)) == NULL) { kprintf("%s: command alloc failed\n", __func__); goto out; } action = (MPI2_RAID_ACTION_REQUEST *)cm->cm_req; action->Function = MPI2_FUNCTION_RAID_ACTION; action->Action = MPI2_RAID_ACTION_SYSTEM_SHUTDOWN_INITIATED; cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; mpr_lock(sc); mpr_wait_command(sc, &cm, 5, CAN_SLEEP); mpr_unlock(sc); /* * Don't check for reply, just leave. */ if (cm) mpr_free_command(sc, cm); out: /* * All of the targets must have the correct value set for * 'stop_at_shutdown' for the current 'enable_ssu' sysctl variable. * * The possible values for the 'enable_ssu' variable are: * 0: disable to SSD and HDD * 1: disable only to HDD (default) * 2: disable only to SSD * 3: enable to SSD and HDD * anything else will default to 1. */ for (targetid = 0; targetid < sc->max_devices; targetid++) { target = &sc->sassc->targets[targetid]; if (target->handle == 0x0) { continue; } if (target->supports_SSU) { switch (sc->enable_ssu) { case MPR_SSU_DISABLE_SSD_DISABLE_HDD: target->stop_at_shutdown = FALSE; break; case MPR_SSU_DISABLE_SSD_ENABLE_HDD: target->stop_at_shutdown = TRUE; if (target->flags & MPR_TARGET_IS_SATA_SSD) { target->stop_at_shutdown = FALSE; } break; case MPR_SSU_ENABLE_SSD_ENABLE_HDD: target->stop_at_shutdown = TRUE; break; case MPR_SSU_ENABLE_SSD_DISABLE_HDD: default: target->stop_at_shutdown = TRUE; if ((target->flags & MPR_TARGET_IS_SATA_SSD) == 0) { target->stop_at_shutdown = FALSE; } break; } } } mprsas_SSU_to_SATA_devices(sc); }