/*- * Copyright (c) 1986, 1988, 1991, 1993 * The Regents of the University of California. All rights reserved. * (c) UNIX System Laboratories, Inc. * All or some portions of this file are derived from material licensed * to the University of California by American Telephone and Telegraph * Co. or Unix System Laboratories, Inc. and are reproduced herein with * the permission of UNIX System Laboratories, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)kern_shutdown.c 8.3 (Berkeley) 1/21/94 * $FreeBSD: src/sys/kern/kern_shutdown.c,v 1.72.2.12 2002/02/21 19:15:10 dillon Exp $ */ #include "opt_ddb.h" #include "opt_ddb_trace.h" #include "opt_panic.h" #include "use_gpio.h" #include #include #include #include #include #include #include #include #include #include /* FREAD */ #include /* S_IFCHR */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* smp_active_mask, cpuid */ #include #include #include #if defined(WDOG_DISABLE_ON_PANIC) #include #endif #include #if (NGPIO > 0) && defined(ERROR_LED_ON_PANIC) #include #endif #ifndef PANIC_REBOOT_WAIT_TIME #define PANIC_REBOOT_WAIT_TIME 15 /* default to 15 seconds */ #endif /* * Note that stdarg.h and the ANSI style va_start macro is used for both * ANSI and traditional C compilers. We use the machine version to stay * within the confines of the kernel header files. */ #include #ifdef DDB #include #ifdef DDB_UNATTENDED int debugger_on_panic = 0; #else int debugger_on_panic = 1; #endif SYSCTL_INT(_debug, OID_AUTO, debugger_on_panic, CTLFLAG_RW, &debugger_on_panic, 0, "Run debugger on kernel panic"); #ifdef DDB_TRACE int trace_on_panic = 1; #else int trace_on_panic = 0; #endif SYSCTL_INT(_debug, OID_AUTO, trace_on_panic, CTLFLAG_RW, &trace_on_panic, 0, "Print stack trace on kernel panic"); #endif static int sync_on_panic = 0; SYSCTL_INT(_kern, OID_AUTO, sync_on_panic, CTLFLAG_RW, &sync_on_panic, 0, "Do a sync before rebooting from a panic"); SYSCTL_NODE(_kern, OID_AUTO, shutdown, CTLFLAG_RW, 0, "Shutdown environment"); /* * Variable panicstr contains argument to first call to panic; used as flag * to indicate that the kernel has already called panic. */ const char *panicstr; __read_mostly int dumping; /* system is dumping */ static struct dumperinfo dumper; /* selected dumper */ __read_frequently globaldata_t panic_cpu_gd; /* used in lock assertion */ struct lwkt_tokref panic_tokens[LWKT_MAXTOKENS]; int panic_tokens_count; __read_mostly int bootverbose = 0; /* note: assignment to force non-bss */ SYSCTL_INT(_debug, OID_AUTO, bootverbose, CTLFLAG_RW, &bootverbose, 0, "Verbose kernel messages"); int cold = 1; /* note: assignment to force non-bss */ int dumplo; /* OBSOLETE - savecore compat */ u_int64_t dumplo64; static void boot (int) __dead2; static int setdumpdev (cdev_t dev); static void poweroff_wait (void *, int); static void print_uptime (void); static void shutdown_halt (void *junk, int howto); static void shutdown_panic (void *junk, int howto); static void shutdown_reset (void *junk, int howto); static int shutdown_busycount1(struct buf *bp, void *info); static int shutdown_busycount2(struct buf *bp, void *info); static void shutdown_cleanup_proc(struct proc *p); /* register various local shutdown events */ static void shutdown_conf(void *unused) { EVENTHANDLER_REGISTER(shutdown_final, poweroff_wait, NULL, SHUTDOWN_PRI_FIRST); EVENTHANDLER_REGISTER(shutdown_final, shutdown_halt, NULL, SHUTDOWN_PRI_LAST + 100); EVENTHANDLER_REGISTER(shutdown_final, shutdown_panic, NULL, SHUTDOWN_PRI_LAST + 100); EVENTHANDLER_REGISTER(shutdown_final, shutdown_reset, NULL, SHUTDOWN_PRI_LAST + 200); } SYSINIT(shutdown_conf, SI_BOOT2_MACHDEP, SI_ORDER_ANY, shutdown_conf, NULL); /* ARGSUSED */ /* * The system call that results in a reboot * * MPALMOSTSAFE */ int sys_reboot(struct sysmsg *sysmsg, const struct reboot_args *uap) { int error; if ((error = caps_priv_check_self(SYSCAP_NOREBOOT))) return (error); get_mplock(); boot(uap->opt); rel_mplock(); return (0); } /* * Called by events that want to shut down.. e.g on a PC */ static int shutdown_howto = 0; void shutdown_nice(int howto) { shutdown_howto = howto; /* Send a signal to init(8) and have it shutdown the world */ if (initproc != NULL) { ksignal(initproc, SIGINT); } else { /* No init(8) running, so simply reboot */ boot(RB_NOSYNC); } return; } static int waittime = -1; struct pcb dumppcb; struct thread *dumpthread; static void print_uptime(void) { int f; struct timespec ts; getnanouptime(&ts); kprintf("Uptime: "); f = 0; if (ts.tv_sec >= 86400) { kprintf("%ldd", ts.tv_sec / 86400); ts.tv_sec %= 86400; f = 1; } if (f || ts.tv_sec >= 3600) { kprintf("%ldh", ts.tv_sec / 3600); ts.tv_sec %= 3600; f = 1; } if (f || ts.tv_sec >= 60) { kprintf("%ldm", ts.tv_sec / 60); ts.tv_sec %= 60; f = 1; } kprintf("%lds\n", ts.tv_sec); } /* * Go through the rigmarole of shutting down.. * this used to be in machdep.c but I'll be dammned if I could see * anything machine dependant in it. */ static void boot(int howto) { /* * Get rid of any user scheduler baggage and then give * us a high priority. */ if (curthread->td_release) curthread->td_release(curthread); lwkt_setpri_self(TDPRI_MAX); /* collect extra flags that shutdown_nice might have set */ howto |= shutdown_howto; /* * We really want to shutdown on the BSP. Subsystems such as ACPI * can't power-down the box otherwise. */ if (!CPUMASK_ISUP(smp_active_mask)) { kprintf("boot() called on cpu#%d\n", mycpu->gd_cpuid); } if (panicstr == NULL && mycpu->gd_cpuid != 0) { kprintf("Switching to cpu #0 for shutdown\n"); lwkt_setcpu_self(globaldata_find(0)); } /* * Do any callouts that should be done BEFORE syncing the filesystems. */ EVENTHANDLER_INVOKE(shutdown_pre_sync, howto); /* * Try to get rid of any remaining FS references. The calling * process, proc0, and init may still hold references. The * VFS cache subsystem may still hold a root reference to root. * * XXX this needs work. We really need to SIGSTOP all remaining * processes in order to avoid blowups due to proc0's filesystem * references going away. For now just make sure that the init * process is stopped. */ if (panicstr == NULL) { shutdown_cleanup_proc(curproc); shutdown_cleanup_proc(&proc0); if (initproc) { if (initproc != curproc) { ksignal(initproc, SIGSTOP); tsleep(boot, 0, "shutdn", hz / 20); } shutdown_cleanup_proc(initproc); } vfs_cache_setroot(NULL, NULL); } /* * Now sync filesystems */ if (!cold && (howto & RB_NOSYNC) == 0 && waittime < 0) { int iter, nbusy, pbusy; int zcount; waittime = 0; zcount = 0; kprintf("\nsyncing disks... "); sys_sync(NULL, NULL); /* * With soft updates, some buffers that are written will be * remarked as dirty until other buffers are written. * * sys_sync() usually runs asynchronously, to give us a * better chance of syncing the rest of the filesystems when * one or more of them are stuck. */ for (iter = pbusy = 0; iter < 20 + zcount; iter++) { if (iter <= 10) nbusy = scan_all_buffers(shutdown_busycount1, &iter); else nbusy = scan_all_buffers(shutdown_busycount2, &iter); kprintf("%d ", nbusy); if (nbusy == 0) { if (++zcount == 3) break; } else { zcount = 0; } /* * There could be a lot to sync, only allow iter to * proceed while there is progress. */ if (nbusy < pbusy) { if (iter > 10) iter = 10; else iter = 0; } pbusy = nbusy; /* * XXX: * Process soft update work queue if buffers don't sync * after 6 iterations by permitting the syncer to run. */ if (iter > 5) bio_ops_sync(NULL); sys_sync(NULL, NULL); tsleep(boot, 0, "shutdn", hz * iter / 20 + 1); } kprintf("\n"); if (zcount < 3) { /* * Failed to sync all blocks. Indicate this and don't * unmount filesystems (thus forcing an fsck on reboot). */ kprintf("giving up on %d buffers\n", nbusy); #ifdef DDB if (debugger_on_panic) Debugger("busy buffer problem"); #endif /* DDB */ tsleep(boot, 0, "shutdn", hz * 5 + 1); } else { kprintf("done\n"); /* * Unmount filesystems */ if (panicstr == NULL) vfs_unmountall(1); } tsleep(boot, 0, "shutdn", hz / 10 + 1); } print_uptime(); /* * Dump before doing post_sync shutdown ops */ crit_enter(); if ((howto & (RB_HALT|RB_DUMP)) == RB_DUMP && !cold) { dumpsys(); } /* * Ok, now do things that assume all filesystem activity has * been completed. This will also call the device shutdown * methods. */ EVENTHANDLER_INVOKE(shutdown_post_sync, howto); /* Now that we're going to really halt the system... */ EVENTHANDLER_INVOKE(shutdown_final, howto); for(;;) ; /* safety against shutdown_reset not working */ /* NOTREACHED */ } /* * Pass 1 - Figure out if there are any busy or dirty buffers still present. * * We ignore TMPFS mounts in this pass. */ static int shutdown_busycount1(struct buf *bp, void *info __unused) { struct vnode *vp; if ((vp = bp->b_vp) != NULL && vp->v_tag == VT_TMPFS) return (0); if ((bp->b_flags & B_INVAL) == 0 && BUF_LOCKINUSE(bp)) return(1); if ((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) return (1); return (0); } /* * Pass 2 - only run after pass 1 has completed or has given up * * We ignore TMPFS, NFS, MFS, and SMBFS mounts in this pass. */ static int shutdown_busycount2(struct buf *bp, void *info) { struct vnode *vp; int *iterp = info; const char *mpath; /* * Ignore tmpfs and nfs mounts */ if ((vp = bp->b_vp) != NULL) { if (vp->v_tag == VT_TMPFS) return (0); if (vp->v_tag == VT_NFS) return (0); if (vp->v_tag == VT_MFS) return (0); if (vp->v_tag == VT_SMBFS) return (0); } /* * Only count buffers stuck on I/O, ignore everything else */ if (((bp->b_flags & B_INVAL) == 0 && BUF_LOCKINUSE(bp)) || ((bp->b_flags & (B_DELWRI|B_INVAL)) == B_DELWRI)) { /* * Only count buffers undergoing write I/O * on the related vnode. */ if (bp->b_vp == NULL || bio_track_active(&bp->b_vp->v_track_write) == 0) { return (0); } if (*iterp > 15) { mpath = "?"; if (bp->b_vp->v_mount) mpath = bp->b_vp->v_mount->mnt_stat.f_mntonname; kprintf("%p on %s, flags:%08x, loffset:%jd, " "doffset:%jd\n", bp, mpath, bp->b_flags, (intmax_t)bp->b_loffset, (intmax_t)bp->b_bio2.bio_offset); } return(1); } return(0); } /* * If the shutdown was a clean halt, behave accordingly. */ static void shutdown_halt(void *junk, int howto) { if (howto & RB_HALT) { kprintf("\n"); kprintf("The operating system has halted.\n"); #ifdef _KERNEL_VIRTUAL cpu_halt(); #else kprintf("Please press any key to reboot.\n\n"); cnpoll(TRUE); switch (cngetc()) { case -1: /* No console, just die */ cpu_halt(); /* NOTREACHED */ default: howto &= ~RB_HALT; break; } #endif } } /* * Check to see if the system paniced, pause and then reboot * according to the specified delay. */ static void shutdown_panic(void *junk, int howto) { int loop; int c; if (howto & RB_DUMP) { if (PANIC_REBOOT_WAIT_TIME != 0) { if (PANIC_REBOOT_WAIT_TIME != -1) { kprintf("Automatic reboot in %d seconds - " "press a key on the console to abort\n", PANIC_REBOOT_WAIT_TIME); for (loop = PANIC_REBOOT_WAIT_TIME * 10; loop > 0; --loop) { DELAY(1000 * 100); /* 1/10th second */ /* Did user type a key? */ c = cncheckc(); if (c != -1 && c != NOKEY) break; } if (!loop) return; } } else { /* zero time specified - reboot NOW */ return; } kprintf("--> Press a key on the console to reboot,\n"); kprintf("--> or switch off the system now.\n"); cngetc(); } } /* * Everything done, now reset */ static void shutdown_reset(void *junk, int howto) { kprintf("Rebooting...\n"); DELAY(1000000); /* wait 1 sec for kprintf's to complete and be read */ /* cpu_boot(howto); */ /* doesn't do anything at the moment */ cpu_reset(); /* NOTREACHED */ /* assuming reset worked */ } /* * Try to remove FS references in the specified process. This function * is used during shutdown */ static void shutdown_cleanup_proc(struct proc *p) { struct filedesc *fdp; struct vmspace *vm; if (p == NULL) return; if ((fdp = p->p_fd) != NULL) { kern_closefrom(0); if (fdp->fd_cdir) { cache_drop(&fdp->fd_ncdir); vrele(fdp->fd_cdir); fdp->fd_cdir = NULL; } if (fdp->fd_rdir) { cache_drop(&fdp->fd_nrdir); vrele(fdp->fd_rdir); fdp->fd_rdir = NULL; } if (fdp->fd_jdir) { cache_drop(&fdp->fd_njdir); vrele(fdp->fd_jdir); fdp->fd_jdir = NULL; } } if (p->p_vkernel) vkernel_exit(p); if (p->p_textvp) { vrele(p->p_textvp); p->p_textvp = NULL; } if (p->p_textnch.ncp) cache_drop(&p->p_textnch); vm = p->p_vmspace; if (vm != NULL) { pmap_remove_pages(vmspace_pmap(vm), VM_MIN_USER_ADDRESS, VM_MAX_USER_ADDRESS); vm_map_remove(&vm->vm_map, VM_MIN_USER_ADDRESS, VM_MAX_USER_ADDRESS); } } /* * Magic number for savecore * * exported (symorder) and used at least by savecore(8) * * Mark it as used so that gcc doesn't optimize it away. */ __attribute__((__used__)) static u_long const dumpmag = 0x8fca0101UL; __attribute__((__used__)) static int dumpsize = 0; /* also for savecore */ static int dodump = 1; SYSCTL_INT(_machdep, OID_AUTO, do_dump, CTLFLAG_RW, &dodump, 0, "Try to perform coredump on kernel panic"); void mkdumpheader(struct kerneldumpheader *kdh, char *magic, uint32_t archver, uint64_t dumplen, uint32_t blksz) { bzero(kdh, sizeof(*kdh)); strncpy(kdh->magic, magic, sizeof(kdh->magic)); strncpy(kdh->architecture, MACHINE_ARCH, sizeof(kdh->architecture)); kdh->version = htod32(KERNELDUMPVERSION); kdh->architectureversion = htod32(archver); kdh->dumplength = htod64(dumplen); kdh->dumptime = htod64(time_second); kdh->blocksize = htod32(blksz); strncpy(kdh->hostname, hostname, sizeof(kdh->hostname)); strncpy(kdh->versionstring, version, sizeof(kdh->versionstring)); if (panicstr != NULL) strncpy(kdh->panicstring, panicstr, sizeof(kdh->panicstring)); kdh->parity = kerneldump_parity(kdh); } static int setdumpdev(cdev_t dev) { int error; int doopen; if (dev == NULL) { disk_dumpconf(NULL, 0/*off*/); dumpdev = NULL; return (0); } /* * We have to open the device before we can perform ioctls on it, * or the slice/label data may not be present. Device opens are * usually tracked by specfs, but the dump device can be set in * early boot and may not be open so this is somewhat of a hack. */ doopen = (dev->si_sysref.refcnt == 1); if (doopen) { error = dev_dopen(dev, FREAD, S_IFCHR, proc0.p_ucred, NULL, NULL); if (error) return (error); } error = disk_dumpconf(dev, 1/*on*/); if (error == 0) dumpdev = dev; return error; } /* ARGSUSED */ static void dump_conf (void *dummy); static void dump_conf(void *dummy) { char *path; cdev_t dev; int _dummy; path = kmalloc(MNAMELEN, M_TEMP, M_WAITOK); if (TUNABLE_STR_FETCH("dumpdev", path, MNAMELEN) != 0) { /* * Make sure all disk devices created so far have also been * probed, and also make sure that the newly created device * nodes for probed disks are ready, too. * * XXX - Delay an additional 2 seconds to help drivers which * pickup devices asynchronously and are not caught by * CAM's initial probe. */ sync_devs(); tsleep(&_dummy, 0, "syncer", hz*2); dev = kgetdiskbyname(path); if (dev != NULL) dumpdev = dev; } kfree(path, M_TEMP); if (setdumpdev(dumpdev) != 0) dumpdev = NULL; } SYSINIT(dump_conf, SI_SUB_DUMP_CONF, SI_ORDER_FIRST, dump_conf, NULL); static int sysctl_kern_dumpdev(SYSCTL_HANDLER_ARGS) { int error; dev_t ndumpdev; ndumpdev = devid_from_dev(dumpdev); error = sysctl_handle_opaque(oidp, &ndumpdev, sizeof ndumpdev, req); if (error == 0 && req->newptr != NULL) error = setdumpdev(dev_from_devid(ndumpdev, 0)); return (error); } SYSCTL_PROC(_kern, KERN_DUMPDEV, dumpdev, CTLTYPE_OPAQUE|CTLFLAG_RW, 0, sizeof dumpdev, sysctl_kern_dumpdev, "T,udev_t", ""); static struct panicerinfo *panic_notifier; int set_panic_notifier(struct panicerinfo *info) { if (info == NULL) panic_notifier = NULL; else if (panic_notifier != NULL) return 1; else panic_notifier = info; return 0; } /* * Panic is called on unresolvable fatal errors. It prints "panic: mesg", * and then reboots. If we are called twice, then we avoid trying to sync * the disks as this often leads to recursive panics. */ void panic(const char *fmt, ...) { int bootopt, newpanic; globaldata_t gd = mycpu; thread_t td = gd->gd_curthread; __va_list ap; static char buf[256]; /* * If a panic occurs on multiple cpus before the first is able to * halt the other cpus, only one cpu is allowed to take the panic. * Attempt to be verbose about this situation but if the kprintf() * itself panics don't let us overrun the kernel stack. * * Be very nasty about descheduling our thread at the lowest * level possible in an attempt to freeze the thread without * inducing further panics. * * Bumping gd_trap_nesting_level will also bypass assertions in * lwkt_switch() and allow us to switch away even if we are a * FAST interrupt or IPI. * * The setting of panic_cpu_gd also determines how kprintf() * spin-locks itself. DDB can set panic_cpu_gd as well. */ for (;;) { globaldata_t xgd = panic_cpu_gd; /* * Someone else got the panic cpu */ if (xgd && xgd != gd) { crit_enter(); ++mycpu->gd_trap_nesting_level; if (mycpu->gd_trap_nesting_level < 25) { kprintf("SECONDARY PANIC ON CPU %d THREAD %p\n", mycpu->gd_cpuid, td); } td->td_release = NULL; /* be a grinch */ for (;;) { lwkt_deschedule_self(td); lwkt_switch(); } /* NOT REACHED */ /* --mycpu->gd_trap_nesting_level */ /* crit_exit() */ } /* * Reentrant panic */ if (xgd && xgd == gd) break; /* * We got it */ if (atomic_cmpset_ptr(&panic_cpu_gd, NULL, gd)) break; } /* * Try to get the system into a working state. Save information * we are about to destroy. */ kvcreinitspin(); if (panicstr == NULL) { bcopy(td->td_toks_array, panic_tokens, sizeof(panic_tokens)); panic_tokens_count = td->td_toks_stop - &td->td_toks_base; } lwkt_relalltokens(td); td->td_toks_stop = &td->td_toks_base; if (gd->gd_spinlocks) kprintf("panic with %d spinlocks held\n", gd->gd_spinlocks); gd->gd_spinlocks = 0; /* * Setup */ bootopt = RB_AUTOBOOT | RB_DUMP; if (sync_on_panic == 0) bootopt |= RB_NOSYNC; newpanic = 0; if (panicstr) { bootopt |= RB_NOSYNC; } else { panicstr = fmt; newpanic = 1; } /* * Format the panic string. */ __va_start(ap, fmt); kvsnprintf(buf, sizeof(buf), fmt, ap); if (panicstr == fmt) panicstr = buf; __va_end(ap); if (panic_notifier != NULL) panic_notifier->notifier(panic_notifier->arg); kprintf("panic: %s\n", buf); /* two separate prints in case of an unmapped page and trap */ kprintf("cpuid = %d\n", mycpu->gd_cpuid); #if (NGPIO > 0) && defined(ERROR_LED_ON_PANIC) led_switch("error", 1); #endif #if defined(WDOG_DISABLE_ON_PANIC) wdog_disable(); #endif /* * Make sure kgdb knows who we are, there won't be a stoppcbs[] * entry since our cpu wasn't stopped. */ savectx(&dumppcb); dumpthread = curthread; /* * Enter the debugger or fall through & dump. Entering the * debugger will stop cpus. If not entering the debugger stop * cpus here. * * Limit the trace history to leave more panic data on a * potentially row-limited console. */ #if defined(DDB) if (newpanic && trace_on_panic) print_backtrace(6); if (debugger_on_panic) Debugger("panic"); else #endif if (newpanic) stop_cpus(mycpu->gd_other_cpus); boot(bootopt); } /* * Support for poweroff delay. */ #ifndef POWEROFF_DELAY # define POWEROFF_DELAY 5000 #endif static int poweroff_delay = POWEROFF_DELAY; SYSCTL_INT(_kern_shutdown, OID_AUTO, poweroff_delay, CTLFLAG_RW, &poweroff_delay, 0, ""); static void poweroff_wait(void *junk, int howto) { if(!(howto & RB_POWEROFF) || poweroff_delay <= 0) return; DELAY(poweroff_delay * 1000); } /* * Some system processes (e.g. syncer) need to be stopped at appropriate * points in their main loops prior to a system shutdown, so that they * won't interfere with the shutdown process (e.g. by holding a disk buf * to cause sync to fail). For each of these system processes, register * shutdown_kproc() as a handler for one of shutdown events. */ static int kproc_shutdown_wait = 60; SYSCTL_INT(_kern_shutdown, OID_AUTO, kproc_shutdown_wait, CTLFLAG_RW, &kproc_shutdown_wait, 0, ""); void shutdown_kproc(void *arg, int howto) { struct thread *td; struct proc *p; int error; if (panicstr) return; td = (struct thread *)arg; if ((p = td->td_proc) != NULL) { kprintf("Waiting (max %d seconds) for system process `%s' to stop...", kproc_shutdown_wait, p->p_comm); } else { kprintf("Waiting (max %d seconds) for system thread %s to stop...", kproc_shutdown_wait, td->td_comm); } error = suspend_kproc(td, kproc_shutdown_wait * hz); if (error == EWOULDBLOCK) kprintf("timed out\n"); else kprintf("stopped\n"); } /* Registration of dumpers */ int set_dumper(struct dumperinfo *di) { if (di == NULL) { bzero(&dumper, sizeof(dumper)); return 0; } if (dumper.dumper != NULL) return (EBUSY); dumper = *di; return 0; } void dumpsys(void) { #if defined (_KERNEL_VIRTUAL) /* vkernels don't support dumps */ kprintf("vkernels don't support dumps\n"); return; #endif /* * If there is a dumper registered and we aren't dumping already, call * the machine dependent dumpsys (md_dumpsys) to do the hard work. * * XXX: while right now the md_dumpsys() of x86 and x86_64 could be * factored out completely into here, I rather keep them machine * dependent in case we ever add a platform which does not share * the same dumpsys() code, such as arm. */ if (dumper.dumper != NULL && !dumping) { dumping++; md_dumpsys(&dumper); } } __read_frequently int dump_stop_usertds = 0; static void need_user_resched_remote(void *dummy) { need_user_resched(); } void dump_reactivate_cpus(void) { globaldata_t gd; int cpu, seq; dump_stop_usertds = 1; need_user_resched(); for (cpu = 0; cpu < ncpus; cpu++) { gd = globaldata_find(cpu); seq = lwkt_send_ipiq(gd, need_user_resched_remote, NULL); lwkt_wait_ipiq(gd, seq); } restart_cpus(stopped_cpus); }