/*- * Copyright (c) 1982, 1986, 1989, 1993 * The Regents of the University of California. All rights reserved. * * This code is derived from software contributed to Berkeley by * Mike Karels at Berkeley Software Design, Inc. * * Quite extensively rewritten by Poul-Henning Kamp of the FreeBSD * project, to make these variables more userfriendly. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)kern_sysctl.c 8.4 (Berkeley) 4/14/94 * $FreeBSD: src/sys/kern/kern_sysctl.c,v 1.92.2.9 2003/05/01 22:48:09 trhodes Exp $ */ #include "opt_ktrace.h" #include "opt_sysctl.h" #include #include #include #include #include #include #include #include #include #include #include #ifdef KTRACE #include #endif #include #include static MALLOC_DEFINE(M_SYSCTL, "sysctl", "sysctl internal magic"); static MALLOC_DEFINE(M_SYSCTLOID, "sysctloid", "sysctl dynamic oids"); int sysctl_debugx = 0; SYSCTL_INT(_debug, OID_AUTO, sysctl, CTLFLAG_RW, &sysctl_debugx, 0, ""); /* * The sysctllock protects the MIB tree. It also protects sysctl * contexts used with dynamic sysctls. The sysctl_register_oid() and * sysctl_unregister_oid() routines require the sysctllock to already * be held, so the sysctl_lock() and sysctl_unlock() routines are * provided for the few places in the kernel which need to use that * API rather than using the dynamic API. Use of the dynamic API is * strongly encouraged for most code. */ static int sysctl_root(SYSCTL_HANDLER_ARGS); static void sysctl_register_oid_int(struct sysctl_oid *oipd); static void sysctl_unregister_oid_int(struct sysctl_oid *oipd); struct sysctl_oid_list sysctl__children; /* root list */ static int sysctl_remove_oid_locked(struct sysctl_oid *oidp, int del, int recurse); static struct sysctl_oid * sysctl_find_oidname(const char *name, struct sysctl_oid_list *list, int lock) { struct sysctl_oid *oidp; SLIST_FOREACH(oidp, list, oid_link) { if (strcmp(oidp->oid_name, name) == 0) { break; } } return (oidp); } /* * Initialization of the MIB tree. * * Order by number in each list. */ void sysctl_register_oid(struct sysctl_oid *oidp) { SYSCTL_XLOCK(); sysctl_register_oid_int(oidp); SYSCTL_XUNLOCK(); } static void sysctl_register_oid_int(struct sysctl_oid *oidp) { struct sysctl_oid_list *parent = oidp->oid_parent; struct sysctl_oid *p; struct sysctl_oid *q; /* * Finish initialization from sysctl_set or add. */ lockinit(&oidp->oid_lock, "oidlk", 0, LK_CANRECURSE); /* * First check if another oid with the same name already * exists in the parent's list. */ p = sysctl_find_oidname(oidp->oid_name, parent, 0); if (p != NULL) { if ((p->oid_kind & CTLTYPE) == CTLTYPE_NODE) p->oid_refcnt++; else kprintf("can't re-use a leaf (%s)!\n", p->oid_name); return; } /* * If this oid has a number OID_AUTO, give it a number which * is greater than any current oid. Make sure it is at least * 256 to leave space for pre-assigned oid numbers. */ if (oidp->oid_number == OID_AUTO) { int newoid = 0x100; /* minimum AUTO oid */ /* * Adjust based on highest oid in parent list */ SLIST_FOREACH(p, parent, oid_link) { if (newoid <= p->oid_number) newoid = p->oid_number + 1; } oidp->oid_number = newoid; } /* * Insert the oid into the parent's list in order. */ q = NULL; SLIST_FOREACH(p, parent, oid_link) { if (oidp->oid_number < p->oid_number) break; q = p; } if (q) SLIST_INSERT_AFTER(q, oidp, oid_link); else SLIST_INSERT_HEAD(parent, oidp, oid_link); } void sysctl_unregister_oid(struct sysctl_oid *oidp) { SYSCTL_XLOCK(); sysctl_unregister_oid_int(oidp); SYSCTL_XUNLOCK(); } static void sysctl_unregister_oid_int(struct sysctl_oid *oidp) { struct sysctl_oid *p; if (oidp->oid_number == OID_AUTO) panic("Trying to unregister OID_AUTO entry: %p", oidp); SLIST_FOREACH(p, oidp->oid_parent, oid_link) { if (p != oidp) continue; SLIST_REMOVE(oidp->oid_parent, oidp, sysctl_oid, oid_link); return; } /* * This can happen when a module fails to register and is * being unloaded afterwards. It should not be a panic() * for normal use. */ kprintf("%s: failed to unregister sysctl\n", __func__); } /* Initialize a new context to keep track of dynamically added sysctls. */ int sysctl_ctx_init(struct sysctl_ctx_list *c) { if (c == NULL) return(EINVAL); TAILQ_INIT(c); return(0); } /* Free the context, and destroy all dynamic oids registered in this context */ int sysctl_ctx_free(struct sysctl_ctx_list *clist) { struct sysctl_ctx_entry *e, *e1; int error; error = 0; /* * First perform a "dry run" to check if it's ok to remove oids. * XXX FIXME * XXX This algorithm is a hack. But I don't know any * XXX better solution for now... */ SYSCTL_XLOCK(); TAILQ_FOREACH(e, clist, link) { error = sysctl_remove_oid_locked(e->entry, 0, 0); if (error) break; } /* * Restore deregistered entries, either from the end, * or from the place where error occured. * e contains the entry that was not unregistered */ if (error) e1 = TAILQ_PREV(e, sysctl_ctx_list, link); else e1 = TAILQ_LAST(clist, sysctl_ctx_list); while (e1 != NULL) { sysctl_register_oid(e1->entry); e1 = TAILQ_PREV(e1, sysctl_ctx_list, link); } if (error) { SYSCTL_XUNLOCK(); return(EBUSY); } /* Now really delete the entries */ e = TAILQ_FIRST(clist); while (e != NULL) { e1 = TAILQ_NEXT(e, link); error = sysctl_remove_oid_locked(e->entry, 1, 0); if (error) panic("sysctl_remove_oid: corrupt tree, entry: %s", e->entry->oid_name); kfree(e, M_SYSCTLOID); e = e1; } SYSCTL_XUNLOCK(); return (error); } /* Add an entry to the context */ struct sysctl_ctx_entry * sysctl_ctx_entry_add(struct sysctl_ctx_list *clist, struct sysctl_oid *oidp) { struct sysctl_ctx_entry *e; SYSCTL_ASSERT_LOCKED(); if (clist == NULL || oidp == NULL) return(NULL); e = kmalloc(sizeof(struct sysctl_ctx_entry), M_SYSCTLOID, M_WAITOK); e->entry = oidp; TAILQ_INSERT_HEAD(clist, e, link); return (e); } /* Find an entry in the context */ struct sysctl_ctx_entry * sysctl_ctx_entry_find(struct sysctl_ctx_list *clist, struct sysctl_oid *oidp) { struct sysctl_ctx_entry *e; SYSCTL_ASSERT_LOCKED(); if (clist == NULL || oidp == NULL) return(NULL); TAILQ_FOREACH(e, clist, link) { if(e->entry == oidp) return(e); } return (e); } /* * Delete an entry from the context. * NOTE: this function doesn't free oidp! You have to remove it * with sysctl_remove_oid(). */ int sysctl_ctx_entry_del(struct sysctl_ctx_list *clist, struct sysctl_oid *oidp) { struct sysctl_ctx_entry *e; if (clist == NULL || oidp == NULL) return (EINVAL); SYSCTL_XLOCK(); e = sysctl_ctx_entry_find(clist, oidp); if (e != NULL) { TAILQ_REMOVE(clist, e, link); SYSCTL_XUNLOCK(); kfree(e, M_SYSCTLOID); return (0); } else { SYSCTL_XUNLOCK(); return (ENOENT); } } /* * Remove dynamically created sysctl trees. * oidp - top of the tree to be removed * del - if 0 - just deregister, otherwise free up entries as well * recurse - if != 0 traverse the subtree to be deleted */ int sysctl_remove_oid(struct sysctl_oid *oidp, int del, int recurse) { int error; SYSCTL_XLOCK(); error = sysctl_remove_oid_locked(oidp, del, recurse); SYSCTL_XUNLOCK(); return (error); } static int sysctl_remove_oid_locked(struct sysctl_oid *oidp, int del, int recurse) { struct sysctl_oid *p, *tmp; int error; SYSCTL_ASSERT_LOCKED(); if (oidp == NULL) return(EINVAL); if ((oidp->oid_kind & CTLFLAG_DYN) == 0) { kprintf("can't remove non-dynamic nodes!\n"); return (EINVAL); } /* * WARNING: normal method to do this should be through * sysctl_ctx_free(). Use recursing as the last resort * method to purge your sysctl tree of leftovers... * However, if some other code still references these nodes, * it will panic. */ if ((oidp->oid_kind & CTLTYPE) == CTLTYPE_NODE) { if (oidp->oid_refcnt == 1) { SLIST_FOREACH_MUTABLE(p, SYSCTL_CHILDREN(oidp), oid_link, tmp) { if (!recurse) { kprintf("Warning: failed attempt to " "remove oid %s with child %s\n", oidp->oid_name, p->oid_name); return (ENOTEMPTY); } error = sysctl_remove_oid_locked(p, del, recurse); if (error) return (error); } if (del) kfree(SYSCTL_CHILDREN(oidp), M_SYSCTLOID); } } if (oidp->oid_refcnt > 1 ) { oidp->oid_refcnt--; } else { if (oidp->oid_refcnt == 0) { kprintf("Warning: bad oid_refcnt=%u (%s)!\n", oidp->oid_refcnt, oidp->oid_name); return (EINVAL); } sysctl_unregister_oid(oidp); if (del) { /* * Wait for all threads running the handler to drain. * This preserves the previous behavior when the * sysctl lock was held across a handler invocation, * and is necessary for module unload correctness. */ while (oidp->oid_running > 0) { oidp->oid_kind |= CTLFLAG_DYING; tsleep_interlock(&oidp->oid_running, 0); SYSCTL_XUNLOCK(); tsleep(&oidp->oid_running, PINTERLOCKED, "oidrm", 0); SYSCTL_XLOCK(); } if (oidp->oid_descr) kfree(__DECONST(char *, oidp->oid_descr), M_SYSCTLOID); kfree(__DECONST(char *, oidp->oid_name), M_SYSCTLOID); lockuninit(&oidp->oid_lock); kfree(oidp, M_SYSCTLOID); } } return (0); } int sysctl_remove_name(struct sysctl_oid *parent, const char *name, int del, int recurse) { struct sysctl_oid *p, *tmp; int error; error = ENOENT; SYSCTL_XLOCK(); SLIST_FOREACH_MUTABLE(p, SYSCTL_CHILDREN(parent), oid_link, tmp) { if (strcmp(p->oid_name, name) == 0) { error = sysctl_remove_oid_locked(p, del, recurse); break; } } SYSCTL_XUNLOCK(); return (error); } /* * Create new sysctls at run time. * clist may point to a valid context initialized with sysctl_ctx_init(). */ struct sysctl_oid * sysctl_add_oid(struct sysctl_ctx_list *clist, struct sysctl_oid_list *parent, int number, const char *name, int kind, void *arg1, int arg2, int (*handler)(SYSCTL_HANDLER_ARGS), const char *fmt, const char *descr) { struct sysctl_oid *oidp; ssize_t len; char *newname; /* You have to hook up somewhere.. */ if (parent == NULL) return(NULL); SYSCTL_XLOCK(); /* Check if the node already exists, otherwise create it */ oidp = sysctl_find_oidname(name, parent, 0); if (oidp != NULL) { if ((oidp->oid_kind & CTLTYPE) == CTLTYPE_NODE) { oidp->oid_refcnt++; /* Update the context */ if (clist != NULL) sysctl_ctx_entry_add(clist, oidp); SYSCTL_XUNLOCK(); return (oidp); } else { kprintf("can't re-use a leaf (%s)!\n", name); SYSCTL_XUNLOCK(); return (NULL); } } oidp = kmalloc(sizeof(struct sysctl_oid), M_SYSCTLOID, M_WAITOK | M_ZERO); oidp->oid_parent = parent; SLIST_NEXT(oidp, oid_link) = NULL; oidp->oid_number = number; oidp->oid_refcnt = 1; len = strlen(name); newname = kmalloc(len + 1, M_SYSCTLOID, M_WAITOK); bcopy(name, newname, len + 1); newname[len] = '\0'; oidp->oid_name = newname; oidp->oid_handler = handler; oidp->oid_kind = CTLFLAG_DYN | kind; if ((kind & CTLTYPE) == CTLTYPE_NODE) { struct sysctl_oid_list *children; /* Allocate space for children */ children = kmalloc(sizeof(*children), M_SYSCTLOID, M_WAITOK); SYSCTL_SET_CHILDREN(oidp, children); SLIST_INIT(children); } else { oidp->oid_arg1 = arg1; oidp->oid_arg2 = arg2; } oidp->oid_fmt = fmt; if (descr) { int len = strlen(descr) + 1; oidp->oid_descr = kmalloc(len, M_SYSCTLOID, M_WAITOK); strcpy((char *)(uintptr_t)(const void *)oidp->oid_descr, descr); }; /* Update the context, if used */ if (clist != NULL) sysctl_ctx_entry_add(clist, oidp); /* Register this oid */ sysctl_register_oid_int(oidp); SYSCTL_XUNLOCK(); return (oidp); } /* * Rename an existing oid. */ void sysctl_rename_oid(struct sysctl_oid *oidp, const char *name) { char *newname; char *oldname; newname = kstrdup(name, M_SYSCTLOID); SYSCTL_XLOCK(); oldname = __DECONST(char *, oidp->oid_name); oidp->oid_name = newname; SYSCTL_XUNLOCK(); kfree(oldname, M_SYSCTLOID); } /* * Register the kernel's oids on startup. */ SET_DECLARE(sysctl_set, struct sysctl_oid); static void sysctl_register_all(void *arg) { struct sysctl_oid **oidp; SYSCTL_XLOCK(); SET_FOREACH(oidp, sysctl_set) sysctl_register_oid(*oidp); SYSCTL_XUNLOCK(); } SYSINIT(sysctl, SI_BOOT1_POST, SI_ORDER_ANY, sysctl_register_all, 0); #ifdef SYSCTL_DEBUG /* * "Staff-functions" * * These functions implement a presently undocumented interface * used by the sysctl program to walk the tree, and get the type * so it can print the value. * This interface is under work and consideration, and should probably * be killed with a big axe by the first person who can find the time. * (be aware though, that the proper interface isn't as obvious as it * may seem, there are various conflicting requirements. * * {CTL_SYSCTL, CTL_SYSCTL_DEBUG} kprintf the entire MIB-tree. * {CTL_SYSCTL, CTL_SYSCTL_NAME, ...} return the name of the "..." * OID. * {CTL_SYSCTL, CTL_SYSCTL_NEXT, ...} return the next OID. * {CTL_SYSCTL, CTL_SYSCTL_NAME2OID} return the OID of the name in * "new" * {CTL_SYSCTL, CTL_SYSCTL_OIDFMT, ...} return the kind & format info * for the "..." OID. * {CTL_SYSCTL, CTL_SYSCTL_OIDDESCR, ...} return the description of the * "..." OID. */ static void sysctl_sysctl_debug_dump_node(struct sysctl_oid_list *l, int i) { int k; struct sysctl_oid *oidp; SLIST_FOREACH(oidp, l, oid_link) { for (k=0; koid_number, oidp->oid_name); kprintf("%c%c", oidp->oid_kind & CTLFLAG_RD ? 'R':' ', oidp->oid_kind & CTLFLAG_WR ? 'W':' '); if (oidp->oid_handler) kprintf(" *Handler"); switch (oidp->oid_kind & CTLTYPE) { case CTLTYPE_NODE: kprintf(" Node\n"); if (!oidp->oid_handler) { sysctl_sysctl_debug_dump_node( oidp->oid_arg1, i+2); } break; case CTLTYPE_INT: kprintf(" Int\n"); break; case CTLTYPE_UINT: kprintf(" u_int\n"); break; case CTLTYPE_LONG: kprintf(" Long\n"); break; case CTLTYPE_ULONG: kprintf(" u_long\n"); break; case CTLTYPE_STRING: kprintf(" String\n"); break; case CTLTYPE_S8: kprintf(" int8_t\n"); break; case CTLTYPE_S16: kprintf(" int16_t\n"); break; case CTLTYPE_S32: kprintf(" int32_t\n"); break; case CTLTYPE_S64: kprintf(" int64_t\n"); break; case CTLTYPE_U8: kprintf(" uint8_t\n"); break; case CTLTYPE_U16: kprintf(" uint16_t\n"); break; case CTLTYPE_U32: kprintf(" uint32_t\n"); break; case CTLTYPE_U64: kprintf(" uint64_t\n"); break; case CTLTYPE_BIT32(0): kprintf(" Int\n"); break; case CTLTYPE_BIT64(0): kprintf(" Int\n"); break; case CTLTYPE_OPAQUE: kprintf(" Opaque/struct\n"); break; default: kprintf("\n"); break; } } } static int sysctl_sysctl_debug(SYSCTL_HANDLER_ARGS) { int error; error = caps_priv_check_td(req->td, SYSCAP_NODEBUG_UNPRIV); if (error) return (error); sysctl_sysctl_debug_dump_node(&sysctl__children, 0); return (ENOENT); } SYSCTL_PROC(_sysctl, CTL_SYSCTL_DEBUG, debug, CTLTYPE_STRING | CTLFLAG_RD, 0, 0, sysctl_sysctl_debug, "-", ""); #endif /* SYSCTL_DEBUG */ static int sysctl_sysctl_name(SYSCTL_HANDLER_ARGS) { int *name = (int *) arg1; u_int namelen = arg2; int error = 0; struct sysctl_oid *oid; struct sysctl_oid_list *lsp = &sysctl__children, *lsp2; char buf[10]; while (namelen) { if (!lsp) { ksnprintf(buf, sizeof(buf), "%d", *name); if (req->oldidx) error = SYSCTL_OUT(req, ".", 1); if (!error) error = SYSCTL_OUT(req, buf, strlen(buf)); if (error) goto out; namelen--; name++; continue; } lsp2 = NULL; SLIST_FOREACH(oid, lsp, oid_link) { if (oid->oid_number != *name) continue; if (req->oldidx) error = SYSCTL_OUT(req, ".", 1); if (!error) error = SYSCTL_OUT(req, oid->oid_name, strlen(oid->oid_name)); if (error) goto out; namelen--; name++; if ((oid->oid_kind & CTLTYPE) != CTLTYPE_NODE) break; if (oid->oid_handler) break; lsp2 = SYSCTL_CHILDREN(oid); break; } lsp = lsp2; } error = SYSCTL_OUT(req, "", 1); out: return (error); } SYSCTL_NODE(_sysctl, CTL_SYSCTL_NAME, name, CTLFLAG_RD | CTLFLAG_NOLOCK, sysctl_sysctl_name, ""); static int sysctl_sysctl_next_ls(struct sysctl_oid_list *lsp, int *name, u_int namelen, int *next, int *len, int level, struct sysctl_oid **oidpp) { struct sysctl_oid *oidp; *len = level; SLIST_FOREACH(oidp, lsp, oid_link) { *next = oidp->oid_number; *oidpp = oidp; if (oidp->oid_kind & CTLFLAG_SKIP) continue; if (!namelen) { if ((oidp->oid_kind & CTLTYPE) != CTLTYPE_NODE) return (0); if (oidp->oid_handler) /* We really should call the handler here...*/ return (0); lsp = SYSCTL_CHILDREN(oidp); if (!sysctl_sysctl_next_ls(lsp, 0, 0, next+1, len, level+1, oidpp)) return (0); goto emptynode; } if (oidp->oid_number < *name) continue; if (oidp->oid_number > *name) { if ((oidp->oid_kind & CTLTYPE) != CTLTYPE_NODE) return (0); if (oidp->oid_handler) return (0); lsp = SYSCTL_CHILDREN(oidp); if (!sysctl_sysctl_next_ls(lsp, name+1, namelen-1, next+1, len, level+1, oidpp)) return (0); goto next; } if ((oidp->oid_kind & CTLTYPE) != CTLTYPE_NODE) continue; if (oidp->oid_handler) continue; lsp = SYSCTL_CHILDREN(oidp); if (!sysctl_sysctl_next_ls(lsp, name+1, namelen-1, next+1, len, level+1, oidpp)) return (0); next: namelen = 1; emptynode: *len = level; } return (1); } static int sysctl_sysctl_next(SYSCTL_HANDLER_ARGS) { int *name = (int *) arg1; u_int namelen = arg2; int i, j, error; struct sysctl_oid *oid; struct sysctl_oid_list *lsp = &sysctl__children; int newoid[CTL_MAXNAME]; i = sysctl_sysctl_next_ls(lsp, name, namelen, newoid, &j, 1, &oid); if (i) return ENOENT; error = SYSCTL_OUT(req, newoid, j * sizeof (int)); return (error); } SYSCTL_NODE(_sysctl, CTL_SYSCTL_NEXT, next, CTLFLAG_RD | CTLFLAG_NOLOCK, sysctl_sysctl_next, ""); static int name2oid(char *name, int *oid, int *len, struct sysctl_oid **oidpp) { struct sysctl_oid *oidp; struct sysctl_oid_list *lsp = &sysctl__children; char *p; SYSCTL_ASSERT_LOCKED(); for (*len = 0; *len < CTL_MAXNAME;) { p = strsep(&name, "."); oidp = SLIST_FIRST(lsp); for (;; oidp = SLIST_NEXT(oidp, oid_link)) { if (oidp == NULL) return (ENOENT); if (strcmp(p, oidp->oid_name) == 0) break; } *oid++ = oidp->oid_number; (*len)++; if (name == NULL || *name == '\0') { if (oidpp) *oidpp = oidp; return (0); } if ((oidp->oid_kind & CTLTYPE) != CTLTYPE_NODE) break; if (oidp->oid_handler) break; lsp = SYSCTL_CHILDREN(oidp); } return (ENOENT); } static int sysctl_sysctl_name2oid(SYSCTL_HANDLER_ARGS) { char *p; int error, oid[CTL_MAXNAME], len; struct sysctl_oid *op = NULL; if (!req->newlen) return ENOENT; if (req->newlen >= MAXPATHLEN) /* XXX arbitrary, undocumented */ return (ENAMETOOLONG); p = kmalloc(req->newlen+1, M_SYSCTL, M_WAITOK); error = SYSCTL_IN(req, p, req->newlen); if (error) { kfree(p, M_SYSCTL); return (error); } p [req->newlen] = '\0'; error = name2oid(p, oid, &len, &op); kfree(p, M_SYSCTL); if (error) return (error); error = SYSCTL_OUT(req, oid, len * sizeof *oid); return (error); } SYSCTL_PROC(_sysctl, CTL_SYSCTL_NAME2OID, name2oid, CTLFLAG_RW | CTLFLAG_ANYBODY | CTLFLAG_NOLOCK, 0, 0, sysctl_sysctl_name2oid, "I", ""); static int sysctl_sysctl_oidfmt(SYSCTL_HANDLER_ARGS) { struct sysctl_oid *oid; int error; error = sysctl_find_oid(arg1, arg2, &oid, NULL, req); if (error) return (error); if (!oid->oid_fmt) return (ENOENT); error = SYSCTL_OUT(req, &oid->oid_kind, sizeof(oid->oid_kind)); if (error) return (error); error = SYSCTL_OUT(req, oid->oid_fmt, strlen(oid->oid_fmt) + 1); return (error); } SYSCTL_NODE(_sysctl, CTL_SYSCTL_OIDFMT, oidfmt, CTLFLAG_RD | CTLFLAG_NOLOCK, sysctl_sysctl_oidfmt, ""); static int sysctl_sysctl_oiddescr(SYSCTL_HANDLER_ARGS) { struct sysctl_oid *oid; int error; error = sysctl_find_oid(arg1, arg2, &oid, NULL, req); if (error) return (error); if (!oid->oid_descr) return (ENOENT); error = SYSCTL_OUT(req, oid->oid_descr, strlen(oid->oid_descr) + 1); return (error); } SYSCTL_NODE(_sysctl, CTL_SYSCTL_OIDDESCR, oiddescr, CTLFLAG_RD | CTLFLAG_NOLOCK, sysctl_sysctl_oiddescr, ""); /* * Default "handler" functions. */ /* * Handle an 8-bit number, signed or unsigned. arg1 points to it. */ int sysctl_handle_8(SYSCTL_HANDLER_ARGS) { int error = 0; if (!arg1) return (EINVAL); error = SYSCTL_OUT(req, arg1, sizeof(int8_t)); if (error || !req->newptr) return (error); error = SYSCTL_IN(req, arg1, sizeof(int8_t)); return (error); } /* * Handle a 16-bit number, signed or unsigned. arg1 points to it. */ int sysctl_handle_16(SYSCTL_HANDLER_ARGS) { int error = 0; if (!arg1) return (EINVAL); error = SYSCTL_OUT(req, arg1, sizeof(int16_t)); if (error || !req->newptr) return (error); error = SYSCTL_IN(req, arg1, sizeof(int16_t)); return (error); } /* * Handle a 32-bit number, signed or unsigned. arg1 points to it. */ int sysctl_handle_32(SYSCTL_HANDLER_ARGS) { int error = 0; if (!arg1) return (EINVAL); error = SYSCTL_OUT(req, arg1, sizeof(int32_t)); if (error || !req->newptr) return (error); error = SYSCTL_IN(req, arg1, sizeof(int32_t)); return (error); } /* * Handle a 64-bit number, signed or unsigned. arg1 points to it. */ int sysctl_handle_64(SYSCTL_HANDLER_ARGS) { int error = 0; if (!arg1) return (EINVAL); error = SYSCTL_OUT(req, arg1, sizeof(int64_t)); if (error || !req->newptr) return (error); error = SYSCTL_IN(req, arg1, sizeof(int64_t)); return (error); } /* * Handle an int, signed or unsigned. * Two cases: * a variable: point arg1 at it. * a constant: pass it in arg2. */ int sysctl_handle_int(SYSCTL_HANDLER_ARGS) { int error = 0; if (arg1) error = SYSCTL_OUT(req, arg1, sizeof(int)); else error = SYSCTL_OUT(req, &arg2, sizeof(int)); if (error || !req->newptr) return (error); if (!arg1) error = EPERM; else error = SYSCTL_IN(req, arg1, sizeof(int)); return (error); } /* * Handle a long, signed or unsigned. arg1 points to it. */ int sysctl_handle_long(SYSCTL_HANDLER_ARGS) { int error = 0; if (!arg1) return (EINVAL); if (req->oldlen == sizeof(int) && *(long *)arg1 >= INT_MIN && *(long *)arg1 <= INT_MAX) { /* * Backwards compatibility for read-only fields promoted * from int to long. Allow userland to request the field * as an integer if the value is in-range. */ int val = (int)*(long *)arg1; error = SYSCTL_OUT(req, &val, sizeof(int)); } else { /* * Normal operation fo a long */ error = SYSCTL_OUT(req, arg1, sizeof(long)); } if (error || !req->newptr) return (error); error = SYSCTL_IN(req, arg1, sizeof(long)); return (error); } /* * Handle a quad, signed or unsigned. arg1 points to it. */ int sysctl_handle_quad(SYSCTL_HANDLER_ARGS) { int error = 0; if (!arg1) return (EINVAL); error = SYSCTL_OUT(req, arg1, sizeof(quad_t)); if (error || !req->newptr) return (error); error = SYSCTL_IN(req, arg1, sizeof(quad_t)); return (error); } /* * Handle an bit in a 32-bit field, pass and return an 'int' * Two cases: * a variable: point arg1 at it. * a constant: pass it in arg2. */ int sysctl_handle_bit32(SYSCTL_HANDLER_ARGS) { int error = 0; uint32_t mask; int v; int bit; bit = (oidp->oid_kind & CTLMASK_BITFLD) >> CTLSHIFT_BITFLD; mask = arg1 ? *(uint32_t *)arg1 : (uint32_t)arg2; v = (mask & (1U << bit)) ? 1 : 0; error = SYSCTL_OUT(req, &v, sizeof(int)); if (error || !req->newptr) return (error); if (!arg1) { error = EPERM; } else { error = SYSCTL_IN(req, &v, sizeof(int)); if (error == 0) { if (v) atomic_set_int((uint32_t *)arg1, 1U << bit); else atomic_clear_int((uint32_t *)arg1, 1U << bit); } } return (error); } /* * Handle an bit in a 64-bit field, pass and return an 'int' * Two cases: * a variable: point arg1 at it. * a constant: pass it in arg2. (NOTE: arg2 is only 32bits) */ int sysctl_handle_bit64(SYSCTL_HANDLER_ARGS) { int error = 0; uint64_t mask; int v; int bit; bit = (oidp->oid_kind & CTLMASK_BITFLD) >> CTLSHIFT_BITFLD; mask = arg1 ? *(uint64_t *)arg1 : (uint64_t)(uint32_t)arg2; v = (mask & (1LU << bit)) ? 1 : 0; error = SYSCTL_OUT(req, &v, sizeof(int)); if (error || !req->newptr) return (error); if (!arg1) { error = EPERM; } else { error = SYSCTL_IN(req, &v, sizeof(int)); if (error == 0) { if (v) atomic_set_long((uint64_t *)arg1, 1LU << bit); else atomic_clear_long((uint64_t *)arg1, 1LU << bit); } } return (error); } /* * Handle our generic '\0' terminated 'C' string. * Two cases: * a variable string: point arg1 at it, arg2 is max length. * a constant string: point arg1 at it, arg2 is zero. */ int sysctl_handle_string(SYSCTL_HANDLER_ARGS) { int error=0; error = SYSCTL_OUT(req, arg1, strlen((char *)arg1)+1); if (error || !req->newptr) return (error); if ((req->newlen - req->newidx) >= arg2) { error = EINVAL; } else { arg2 = (req->newlen - req->newidx); error = SYSCTL_IN(req, arg1, arg2); ((char *)arg1)[arg2] = '\0'; } return (error); } /* * Handle any kind of opaque data. * arg1 points to it, arg2 is the size. */ int sysctl_handle_opaque(SYSCTL_HANDLER_ARGS) { int error; error = SYSCTL_OUT(req, arg1, arg2); if (error || !req->newptr) return (error); error = SYSCTL_IN(req, arg1, arg2); return (error); } /* * Transfer functions to/from kernel space. * XXX: rather untested at this point */ static int sysctl_old_kernel(struct sysctl_req *req, const void *p, size_t l) { size_t i = 0; if (req->oldptr) { i = l; if (i > req->oldlen - req->oldidx) i = req->oldlen - req->oldidx; if (i > 0) bcopy(p, (char *)req->oldptr + req->oldidx, i); } req->oldidx += l; if (req->oldptr && i != l) return (ENOMEM); return (0); } static int sysctl_new_kernel(struct sysctl_req *req, void *p, size_t l) { if (!req->newptr) return 0; if (req->newlen - req->newidx < l) return (EINVAL); bcopy((char *)req->newptr + req->newidx, p, l); req->newidx += l; return (0); } int kernel_sysctl(int *name, u_int namelen, void *old, size_t *oldlenp, void *new, size_t newlen, size_t *retval) { int error = 0; struct sysctl_req req; bzero(&req, sizeof req); req.td = curthread; if (oldlenp) { req.oldlen = *oldlenp; } req.validlen = req.oldlen; if (old) { req.oldptr= old; } if (new != NULL) { req.newlen = newlen; req.newptr = new; } req.oldfunc = sysctl_old_kernel; req.newfunc = sysctl_new_kernel; #if 0 req.lock = REQ_UNWIRED; #endif SYSCTL_SLOCK(); error = sysctl_root(0, name, namelen, &req); SYSCTL_SUNLOCK(); #if 0 if (req.lock == REQ_WIRED && req.validlen > 0) vsunlock(req.oldptr, req.validlen); #endif if (error && error != ENOMEM) return (error); if (retval) { if (req.oldptr && req.oldidx > req.validlen) *retval = req.validlen; else *retval = req.oldidx; } return (error); } int kernel_sysctlbyname(char *name, void *old, size_t *oldlenp, void *new, size_t newlen, size_t *retval) { int oid[CTL_MAXNAME]; size_t oidlen, plen; int error; oid[0] = CTL_SYSCTL; oid[1] = CTL_SYSCTL_NAME2OID; oidlen = sizeof(oid); error = kernel_sysctl(oid, 2, oid, &oidlen, name, strlen(name), &plen); if (error) return (error); error = kernel_sysctl(oid, plen / sizeof(int), old, oldlenp, new, newlen, retval); return (error); } /* * Transfer function to/from user space. */ static int sysctl_old_user(struct sysctl_req *req, const void *p, size_t l) { int error = 0; size_t i = 0; #if 0 if (req->lock == 1 && req->oldptr) { vslock(req->oldptr, req->oldlen); req->lock = 2; } #endif if (req->oldptr) { i = l; if (i > req->oldlen - req->oldidx) i = req->oldlen - req->oldidx; if (i > 0) error = copyout(p, (char *)req->oldptr + req->oldidx, i); } req->oldidx += l; if (error) return (error); if (req->oldptr && i < l) return (ENOMEM); return (0); } static int sysctl_new_user(struct sysctl_req *req, void *p, size_t l) { int error; if (!req->newptr) return 0; if (req->newlen - req->newidx < l) return (EINVAL); error = copyin((char *)req->newptr + req->newidx, p, l); req->newidx += l; return (error); } int sysctl_find_oid(int *name, u_int namelen, struct sysctl_oid **noid, int *nindx, struct sysctl_req *req) { struct sysctl_oid_list *lsp; struct sysctl_oid *oid; int indx; lsp = &sysctl__children; indx = 0; while (indx < CTL_MAXNAME) { SLIST_FOREACH(oid, lsp, oid_link) { if (oid->oid_number == name[indx]) break; } if (oid == NULL) return (ENOENT); indx++; if ((oid->oid_kind & CTLTYPE) == CTLTYPE_NODE) { if (oid->oid_handler != NULL || indx == namelen) { *noid = oid; if (nindx != NULL) *nindx = indx; KASSERT((oid->oid_kind & CTLFLAG_DYING) == 0, ("%s found DYING node %p", __func__, oid)); return (0); } lsp = SYSCTL_CHILDREN(oid); } else if (indx == namelen) { *noid = oid; if (nindx != NULL) *nindx = indx; KASSERT((oid->oid_kind & CTLFLAG_DYING) == 0, ("%s found DYING node %p", __func__, oid)); return (0); } else { return (ENOTDIR); } } return (ENOENT); } /* * Traverse our tree, and find the right node, execute whatever it points * to, and return the resulting error code. */ static int sysctl_root(SYSCTL_HANDLER_ARGS) { struct thread *td = req->td; struct proc *p = td ? td->td_proc : NULL; struct sysctl_oid *oid; int error, indx; int lktype; error = sysctl_find_oid(arg1, arg2, &oid, &indx, req); if (error) return (error); if (sysctl_debugx & 1) { kprintf("pid %d oid %p %s\n", (p ? p->p_pid : -1), oid, oid->oid_name); } if ((oid->oid_kind & CTLTYPE) == CTLTYPE_NODE) { /* * You can't call a sysctl when it's a node, but has * no handler. Inform the user that it's a node. * The indx may or may not be the same as namelen. */ if (oid->oid_handler == NULL) return (EISDIR); } /* If writing isn't allowed */ if (req->newptr && (!(oid->oid_kind & CTLFLAG_WR) || ((oid->oid_kind & CTLFLAG_SECURE) && securelevel > 0))) { return (EPERM); } /* Most likely only root can write */ if (!(oid->oid_kind & CTLFLAG_ANYBODY) && req->newptr && p && (error = caps_priv_check(td->td_ucred, SYSCAP_NOSYSCTL_WR))) { return (error); } if (oid->oid_handler == NULL) return EINVAL; /* * Default oid locking is exclusive when modifying (newptr), * shared otherwise, unless overridden with a control flag. */ if ((oid->oid_kind & CTLFLAG_NOLOCK) == 0) { lktype = (req->newptr != NULL) ? LK_EXCLUSIVE : LK_SHARED; if (oid->oid_kind & CTLFLAG_SHLOCK) lktype = LK_SHARED; if (oid->oid_kind & CTLFLAG_EXLOCK) lktype = LK_EXCLUSIVE; #if 1 lockmgr(&oid->oid_lock, lktype); #else /* DEBUGGING */ if (lockmgr(&oid->oid_lock, lktype | LK_SLEEPFAIL)) { kprintf("%s\n", oid->oid_name); lockmgr(&oid->oid_lock, lktype); } #endif } if ((oid->oid_kind & CTLTYPE) == CTLTYPE_NODE) error = oid->oid_handler(oid, (int *)arg1 + indx, arg2 - indx, req); else error = oid->oid_handler(oid, oid->oid_arg1, oid->oid_arg2, req); if ((oid->oid_kind & CTLFLAG_NOLOCK) == 0) lockmgr(&oid->oid_lock, LK_RELEASE); return (error); } int sys___sysctl(struct sysmsg *sysmsg, const struct sysctl_args *uap) { int error, i, name[CTL_MAXNAME]; size_t j; if (uap->namelen > CTL_MAXNAME || uap->namelen < 2) return (EINVAL); error = copyin(uap->name, &name, uap->namelen * sizeof(int)); if (error) return (error); error = userland_sysctl(name, uap->namelen, uap->old, uap->oldlenp, 0, uap->new, uap->newlen, &j); if (error && error != ENOMEM) return (error); if (uap->oldlenp) { i = copyout(&j, uap->oldlenp, sizeof(j)); if (i) return (i); } return (error); } /* * This is used from various compatibility syscalls too. That's why name * must be in kernel space. */ int userland_sysctl(int *name, u_int namelen, void *old, size_t *oldlenp, int inkernel, void *new, size_t newlen, size_t *retval) { struct thread *td = curthread; struct lwp *lp = td->td_lwp; int error = 0; struct sysctl_req req; bzero(&req, sizeof req); req.td = td; req.flags = 0; if (oldlenp) { if (inkernel) { req.oldlen = *oldlenp; } else { error = copyin(oldlenp, &req.oldlen, sizeof(*oldlenp)); if (error) return (error); } } req.validlen = req.oldlen; /* * NOTE: User supplied buffers are not guaranteed to be good, * the sysctl copyins and copyouts can fail. */ if (old) req.oldptr= old; if (new != NULL) { req.newlen = newlen; req.newptr = new; } req.oldfunc = sysctl_old_user; req.newfunc = sysctl_new_user; #if 0 req.lock = REQ_UNWIRED; #endif #ifdef KTRACE if (KTRPOINT(td, KTR_SYSCTL)) ktrsysctl(lp, name, namelen); #endif for (;;) { req.oldidx = 0; req.newidx = 0; SYSCTL_SLOCK(); error = sysctl_root(0, name, namelen, &req); SYSCTL_SUNLOCK(); if (error != EAGAIN) break; lwkt_yield(); } #if 0 if (req.lock == REQ_WIRED && req.validlen > 0) vsunlock(req.oldptr, req.validlen); #endif if (error && error != ENOMEM) return (error); if (retval) { if (req.oldptr && req.oldidx > req.validlen) *retval = req.validlen; else *retval = req.oldidx; } return (error); } int sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high) { int error, value; value = *(int *)arg1; error = sysctl_handle_int(oidp, &value, 0, req); if (error || !req->newptr) return (error); if (value < low || value > high) return (EINVAL); *(int *)arg1 = value; return (0); } /* * Drain into a sysctl struct. The user buffer should be wired if a page * fault would cause issue. */ static int sbuf_sysctl_drain(void *arg, const char *data, int len) { struct sysctl_req *req = arg; int error; error = SYSCTL_OUT(req, data, len); KASSERT(error >= 0, ("Got unexpected negative value %d", error)); return (error == 0 ? len : -error); } struct sbuf * sbuf_new_for_sysctl(struct sbuf *s, char *buf, int length, struct sysctl_req *req) { s = sbuf_new(s, buf, length, SBUF_FIXEDLEN); sbuf_set_drain(s, sbuf_sysctl_drain, req); return (s); } /* * The exclusive sysctl lock only protects its topology, and is * very expensive, but allows us to use a pcpu shared lock for * critical path accesses. */ void _sysctl_xlock(void) { globaldata_t gd; int i; for (i = 0; i < ncpus; ++i) { gd = globaldata_find(i); lockmgr(&gd->gd_sysctllock, LK_EXCLUSIVE); } } void _sysctl_xunlock(void) { globaldata_t gd; int i; for (i = 0; i < ncpus; ++i) { gd = globaldata_find(i); lockmgr(&gd->gd_sysctllock, LK_RELEASE); } }