/* * Copyright (c) 1997,1998 Doug Rabson * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD: src/sys/kern/subr_bus.c,v 1.54.2.9 2002/10/10 15:13:32 jhb Exp $ */ #include "opt_bus.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* for device_printf() */ SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL); SYSCTL_NODE(, OID_AUTO, dev, CTLFLAG_RW, NULL, NULL); MALLOC_DEFINE(M_BUS, "bus", "Bus data structures"); #ifdef BUS_DEBUG #define PDEBUG(a) (kprintf("%s:%d: ", __func__, __LINE__), kprintf a, kprintf("\n")) #define DEVICENAME(d) ((d)? device_get_name(d): "no device") #define DRIVERNAME(d) ((d)? d->name : "no driver") #define DEVCLANAME(d) ((d)? d->name : "no devclass") /* Produce the indenting, indent*2 spaces plus a '.' ahead of that to * prevent syslog from deleting initial spaces */ #define indentprintf(p) do { int iJ; kprintf("."); for (iJ=0; iJparent ? dc->parent->name : ""; break; default: return (EINVAL); } return (SYSCTL_OUT(req, value, strlen(value))); } static void devclass_sysctl_init(devclass_t dc) { if (dc->sysctl_tree != NULL) return; sysctl_ctx_init(&dc->sysctl_ctx); dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx, SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name, CTLFLAG_RD, NULL, ""); SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD, dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A", "parent class"); } enum { DEVICE_SYSCTL_DESC, DEVICE_SYSCTL_DRIVER, DEVICE_SYSCTL_LOCATION, DEVICE_SYSCTL_PNPINFO, DEVICE_SYSCTL_PARENT, }; static int device_sysctl_handler(SYSCTL_HANDLER_ARGS) { device_t dev = (device_t)arg1; const char *value; char *buf; int error; buf = NULL; switch (arg2) { case DEVICE_SYSCTL_DESC: value = dev->desc ? dev->desc : ""; break; case DEVICE_SYSCTL_DRIVER: value = dev->driver ? dev->driver->name : ""; break; case DEVICE_SYSCTL_LOCATION: value = buf = kmalloc(1024, M_BUS, M_WAITOK | M_ZERO); bus_child_location_str(dev, buf, 1024); break; case DEVICE_SYSCTL_PNPINFO: value = buf = kmalloc(1024, M_BUS, M_WAITOK | M_ZERO); bus_child_pnpinfo_str(dev, buf, 1024); break; case DEVICE_SYSCTL_PARENT: value = dev->parent ? dev->parent->nameunit : ""; break; default: return (EINVAL); } error = SYSCTL_OUT(req, value, strlen(value)); if (buf != NULL) kfree(buf, M_BUS); return (error); } static void device_sysctl_init(device_t dev) { devclass_t dc = dev->devclass; if (dev->sysctl_tree != NULL) return; devclass_sysctl_init(dc); sysctl_ctx_init(&dev->sysctl_ctx); dev->sysctl_tree = SYSCTL_ADD_NODE(&dev->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO, dev->nameunit + strlen(dc->name), CTLFLAG_RD, NULL, ""); SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD, dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A", "device description"); SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), OID_AUTO, "%driver", CTLTYPE_STRING | CTLFLAG_RD, dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A", "device driver name"); SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), OID_AUTO, "%location", CTLTYPE_STRING | CTLFLAG_RD, dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A", "device location relative to parent"); SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), OID_AUTO, "%pnpinfo", CTLTYPE_STRING | CTLFLAG_RD, dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A", "device identification"); SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD, dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A", "parent device"); } static void device_sysctl_update(device_t dev) { devclass_t dc = dev->devclass; if (dev->sysctl_tree == NULL) return; sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name)); } static void device_sysctl_fini(device_t dev) { if (dev->sysctl_tree == NULL) return; sysctl_ctx_free(&dev->sysctl_ctx); dev->sysctl_tree = NULL; } static void device_attach_async(device_t dev); static void device_attach_thread(void *arg); static int device_doattach(device_t dev); static int do_async_attach = 0; static int numasyncthreads; TUNABLE_INT("kern.do_async_attach", &do_async_attach); /* * /dev/devctl implementation */ /* * This design allows only one reader for /dev/devctl. This is not desirable * in the long run, but will get a lot of hair out of this implementation. * Maybe we should make this device a clonable device. * * Also note: we specifically do not attach a device to the device_t tree * to avoid potential chicken and egg problems. One could argue that all * of this belongs to the root node. One could also further argue that the * sysctl interface that we have not might more properly be an ioctl * interface, but at this stage of the game, I'm not inclined to rock that * boat. * * I'm also not sure that the SIGIO support is done correctly or not, as * I copied it from a driver that had SIGIO support that likely hasn't been * tested since 3.4 or 2.2.8! */ static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS); static int devctl_disable = 0; TUNABLE_INT("hw.bus.devctl_disable", &devctl_disable); SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RW, 0, 0, sysctl_devctl_disable, "I", "devctl disable"); static d_open_t devopen; static d_close_t devclose; static d_read_t devread; static d_ioctl_t devioctl; static d_kqfilter_t devkqfilter; static struct dev_ops devctl_ops = { { "devctl", 0, D_MPSAFE }, .d_open = devopen, .d_close = devclose, .d_read = devread, .d_ioctl = devioctl, .d_kqfilter = devkqfilter }; struct dev_event_info { char *dei_data; TAILQ_ENTRY(dev_event_info) dei_link; }; TAILQ_HEAD(devq, dev_event_info); static struct dev_softc { int inuse; struct lock lock; struct kqinfo kq; struct devq devq; struct proc *async_proc; } devsoftc; /* * Chicken-and-egg problem with devfs, get the queue operational early. */ static void predevinit(void) { lockinit(&devsoftc.lock, "dev mtx", 0, 0); TAILQ_INIT(&devsoftc.devq); } SYSINIT(predevinit, SI_SUB_CREATE_INIT, SI_ORDER_ANY, predevinit, 0); static void devinit(void) { /* * WARNING! make_dev() can call back into devctl_queue_data() * immediately. */ make_dev(&devctl_ops, 0, UID_ROOT, GID_WHEEL, 0600, "devctl"); } static int devopen(struct dev_open_args *ap) { /* * Disallow access to disk volumes if RESTRICTEDROOT */ if (caps_priv_check_self(SYSCAP_RESTRICTEDROOT)) return (EPERM); lockmgr(&devsoftc.lock, LK_EXCLUSIVE); if (devsoftc.inuse) { lockmgr(&devsoftc.lock, LK_RELEASE); return (EBUSY); } /* move to init */ devsoftc.inuse = 1; devsoftc.async_proc = NULL; lockmgr(&devsoftc.lock, LK_RELEASE); return (0); } static int devclose(struct dev_close_args *ap) { lockmgr(&devsoftc.lock, LK_EXCLUSIVE); devsoftc.inuse = 0; wakeup(&devsoftc); lockmgr(&devsoftc.lock, LK_RELEASE); return (0); } /* * The read channel for this device is used to report changes to * userland in realtime. We are required to free the data as well as * the n1 object because we allocate them separately. Also note that * we return one record at a time. If you try to read this device a * character at a time, you will lose the rest of the data. Listening * programs are expected to cope. */ static int devread(struct dev_read_args *ap) { struct uio *uio = ap->a_uio; struct dev_event_info *n1; int rv; lockmgr(&devsoftc.lock, LK_EXCLUSIVE); while (TAILQ_EMPTY(&devsoftc.devq)) { if (ap->a_ioflag & IO_NDELAY) { lockmgr(&devsoftc.lock, LK_RELEASE); return (EAGAIN); } tsleep_interlock(&devsoftc, PCATCH); lockmgr(&devsoftc.lock, LK_RELEASE); rv = tsleep(&devsoftc, PCATCH | PINTERLOCKED, "devctl", 0); lockmgr(&devsoftc.lock, LK_EXCLUSIVE); if (rv) { /* * Need to translate ERESTART to EINTR here? -- jake */ lockmgr(&devsoftc.lock, LK_RELEASE); return (rv); } } n1 = TAILQ_FIRST(&devsoftc.devq); TAILQ_REMOVE(&devsoftc.devq, n1, dei_link); lockmgr(&devsoftc.lock, LK_RELEASE); rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio); kfree(n1->dei_data, M_BUS); kfree(n1, M_BUS); return (rv); } static int devioctl(struct dev_ioctl_args *ap) { switch (ap->a_cmd) { case FIONBIO: return (0); case FIOASYNC: if (*(int*)ap->a_data) devsoftc.async_proc = curproc; else devsoftc.async_proc = NULL; return (0); /* (un)Support for other fcntl() calls. */ case FIOCLEX: case FIONCLEX: case FIONREAD: case FIOSETOWN: case FIOGETOWN: default: break; } return (ENOTTY); } static void dev_filter_detach(struct knote *); static int dev_filter_read(struct knote *, long); static struct filterops dev_filtops = { FILTEROP_ISFD | FILTEROP_MPSAFE, NULL, dev_filter_detach, dev_filter_read }; static int devkqfilter(struct dev_kqfilter_args *ap) { struct knote *kn = ap->a_kn; struct klist *klist; ap->a_result = 0; lockmgr(&devsoftc.lock, LK_EXCLUSIVE); switch (kn->kn_filter) { case EVFILT_READ: kn->kn_fop = &dev_filtops; break; default: ap->a_result = EOPNOTSUPP; lockmgr(&devsoftc.lock, LK_RELEASE); return (0); } klist = &devsoftc.kq.ki_note; knote_insert(klist, kn); lockmgr(&devsoftc.lock, LK_RELEASE); return (0); } static void dev_filter_detach(struct knote *kn) { struct klist *klist; lockmgr(&devsoftc.lock, LK_EXCLUSIVE); klist = &devsoftc.kq.ki_note; knote_remove(klist, kn); lockmgr(&devsoftc.lock, LK_RELEASE); } static int dev_filter_read(struct knote *kn, long hint) { int ready = 0; lockmgr(&devsoftc.lock, LK_EXCLUSIVE); if (!TAILQ_EMPTY(&devsoftc.devq)) ready = 1; lockmgr(&devsoftc.lock, LK_RELEASE); return (ready); } /** * @brief Return whether the userland process is running */ boolean_t devctl_process_running(void) { return (devsoftc.inuse == 1); } /** * @brief Queue data to be read from the devctl device * * Generic interface to queue data to the devctl device. It is * assumed that @p data is properly formatted. It is further assumed * that @p data is allocated using the M_BUS malloc type. */ void devctl_queue_data(char *data) { struct dev_event_info *n1 = NULL; struct proc *p; n1 = kmalloc(sizeof(*n1), M_BUS, M_NOWAIT); if (n1 == NULL) return; n1->dei_data = data; lockmgr(&devsoftc.lock, LK_EXCLUSIVE); TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link); wakeup(&devsoftc); lockmgr(&devsoftc.lock, LK_RELEASE); KNOTE(&devsoftc.kq.ki_note, 0); p = devsoftc.async_proc; if (p != NULL) ksignal(p, SIGIO); } /** * @brief Send a 'notification' to userland, using standard ways */ void devctl_notify(const char *system, const char *subsystem, const char *type, const char *data) { int len = 0; char *msg; if (system == NULL) return; /* BOGUS! Must specify system. */ if (subsystem == NULL) return; /* BOGUS! Must specify subsystem. */ if (type == NULL) return; /* BOGUS! Must specify type. */ len += strlen(" system=") + strlen(system); len += strlen(" subsystem=") + strlen(subsystem); len += strlen(" type=") + strlen(type); /* add in the data message plus newline. */ if (data != NULL) len += strlen(data); len += 3; /* '!', '\n', and NUL */ msg = kmalloc(len, M_BUS, M_NOWAIT); if (msg == NULL) return; /* Drop it on the floor */ if (data != NULL) ksnprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n", system, subsystem, type, data); else ksnprintf(msg, len, "!system=%s subsystem=%s type=%s\n", system, subsystem, type); devctl_queue_data(msg); } /* * Common routine that tries to make sending messages as easy as possible. * We allocate memory for the data, copy strings into that, but do not * free it unless there's an error. The dequeue part of the driver should * free the data. We don't send data when the device is disabled. We do * send data, even when we have no listeners, because we wish to avoid * races relating to startup and restart of listening applications. * * devaddq is designed to string together the type of event, with the * object of that event, plus the plug and play info and location info * for that event. This is likely most useful for devices, but less * useful for other consumers of this interface. Those should use * the devctl_queue_data() interface instead. */ static void devaddq(const char *type, const char *what, device_t dev) { char *data = NULL; char *loc = NULL; char *pnp = NULL; const char *parstr; if (devctl_disable) return; data = kmalloc(1024, M_BUS, M_NOWAIT); if (data == NULL) goto bad; /* get the bus specific location of this device */ loc = kmalloc(1024, M_BUS, M_NOWAIT); if (loc == NULL) goto bad; *loc = '\0'; bus_child_location_str(dev, loc, 1024); /* Get the bus specific pnp info of this device */ pnp = kmalloc(1024, M_BUS, M_NOWAIT); if (pnp == NULL) goto bad; *pnp = '\0'; bus_child_pnpinfo_str(dev, pnp, 1024); /* Get the parent of this device, or / if high enough in the tree. */ if (device_get_parent(dev) == NULL) parstr = "."; /* Or '/' ? */ else parstr = device_get_nameunit(device_get_parent(dev)); /* String it all together. */ ksnprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp, parstr); kfree(loc, M_BUS); kfree(pnp, M_BUS); devctl_queue_data(data); return; bad: if (pnp != NULL) kfree(pnp, M_BUS); if (loc != NULL) kfree(loc, M_BUS); if (loc != NULL) kfree(data, M_BUS); return; } /* * A device was added to the tree. We are called just after it successfully * attaches (that is, probe and attach success for this device). No call * is made if a device is merely parented into the tree. See devnomatch * if probe fails. If attach fails, no notification is sent (but maybe * we should have a different message for this). */ static void devadded(device_t dev) { char *pnp = NULL; char *tmp = NULL; pnp = kmalloc(1024, M_BUS, M_NOWAIT); if (pnp == NULL) goto fail; tmp = kmalloc(1024, M_BUS, M_NOWAIT); if (tmp == NULL) goto fail; *pnp = '\0'; bus_child_pnpinfo_str(dev, pnp, 1024); ksnprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp); devaddq("+", tmp, dev); fail: if (pnp != NULL) kfree(pnp, M_BUS); if (tmp != NULL) kfree(tmp, M_BUS); return; } /* * A device was removed from the tree. We are called just before this * happens. */ static void devremoved(device_t dev) { char *pnp = NULL; char *tmp = NULL; pnp = kmalloc(1024, M_BUS, M_NOWAIT); if (pnp == NULL) goto fail; tmp = kmalloc(1024, M_BUS, M_NOWAIT); if (tmp == NULL) goto fail; *pnp = '\0'; bus_child_pnpinfo_str(dev, pnp, 1024); ksnprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp); devaddq("-", tmp, dev); fail: if (pnp != NULL) kfree(pnp, M_BUS); if (tmp != NULL) kfree(tmp, M_BUS); return; } /* * Called when there's no match for this device. This is only called * the first time that no match happens, so we don't keep getitng this * message. Should that prove to be undesirable, we can change it. * This is called when all drivers that can attach to a given bus * decline to accept this device. Other errrors may not be detected. */ static void devnomatch(device_t dev) { devaddq("?", "", dev); } static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS) { struct dev_event_info *n1; int dis, error; dis = devctl_disable; error = sysctl_handle_int(oidp, &dis, 0, req); if (error || !req->newptr) return (error); lockmgr(&devsoftc.lock, LK_EXCLUSIVE); devctl_disable = dis; if (dis) { while (!TAILQ_EMPTY(&devsoftc.devq)) { n1 = TAILQ_FIRST(&devsoftc.devq); TAILQ_REMOVE(&devsoftc.devq, n1, dei_link); kfree(n1->dei_data, M_BUS); kfree(n1, M_BUS); } } lockmgr(&devsoftc.lock, LK_RELEASE); return (0); } /* End of /dev/devctl code */ TAILQ_HEAD(,bsd_device) bus_data_devices; static int bus_data_generation = 1; kobj_method_t null_methods[] = { { 0, 0 } }; DEFINE_CLASS(null, null_methods, 0); /* * Devclass implementation */ static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses); static devclass_t devclass_find_internal(const char *classname, const char *parentname, int create) { devclass_t dc; PDEBUG(("looking for %s", classname)); if (classname == NULL) return(NULL); TAILQ_FOREACH(dc, &devclasses, link) if (!strcmp(dc->name, classname)) break; if (create && !dc) { PDEBUG(("creating %s", classname)); dc = kmalloc(sizeof(struct devclass) + strlen(classname) + 1, M_BUS, M_INTWAIT | M_ZERO); dc->parent = NULL; dc->name = (char*) (dc + 1); strcpy(dc->name, classname); dc->devices = NULL; dc->maxunit = 0; TAILQ_INIT(&dc->drivers); TAILQ_INSERT_TAIL(&devclasses, dc, link); bus_data_generation_update(); } /* * If a parent class is specified, then set that as our parent so * that this devclass will support drivers for the parent class as * well. If the parent class has the same name don't do this though * as it creates a cycle that can trigger an infinite loop in * device_probe_child() if a device exists for which there is no * suitable driver. */ if (parentname && dc && !dc->parent && strcmp(classname, parentname) != 0) dc->parent = devclass_find_internal(parentname, NULL, FALSE); return(dc); } devclass_t devclass_create(const char *classname) { return(devclass_find_internal(classname, NULL, TRUE)); } devclass_t devclass_find(const char *classname) { return(devclass_find_internal(classname, NULL, FALSE)); } device_t devclass_find_unit(const char *classname, int unit) { devclass_t dc; if ((dc = devclass_find(classname)) != NULL) return(devclass_get_device(dc, unit)); return (NULL); } int devclass_add_driver(devclass_t dc, driver_t *driver) { driverlink_t dl; device_t dev; int i; PDEBUG(("%s", DRIVERNAME(driver))); dl = kmalloc(sizeof *dl, M_BUS, M_INTWAIT | M_ZERO); /* * Compile the driver's methods. Also increase the reference count * so that the class doesn't get freed when the last instance * goes. This means we can safely use static methods and avoids a * double-free in devclass_delete_driver. */ kobj_class_instantiate(driver); /* * Make sure the devclass which the driver is implementing exists. */ devclass_find_internal(driver->name, NULL, TRUE); dl->driver = driver; TAILQ_INSERT_TAIL(&dc->drivers, dl, link); /* * Call BUS_DRIVER_ADDED for any existing busses in this class, * but only if the bus has already been attached (otherwise we * might probe too early). * * This is what will cause a newly loaded module to be associated * with hardware. bus_generic_driver_added() is typically what ends * up being called. */ for (i = 0; i < dc->maxunit; i++) { if ((dev = dc->devices[i]) != NULL) { if (dev->state >= DS_ATTACHED) BUS_DRIVER_ADDED(dev, driver); } } bus_data_generation_update(); return(0); } int devclass_delete_driver(devclass_t busclass, driver_t *driver) { devclass_t dc = devclass_find(driver->name); driverlink_t dl; device_t dev; int i; int error; PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); if (!dc) return(0); /* * Find the link structure in the bus' list of drivers. */ TAILQ_FOREACH(dl, &busclass->drivers, link) if (dl->driver == driver) break; if (!dl) { PDEBUG(("%s not found in %s list", driver->name, busclass->name)); return(ENOENT); } /* * Disassociate from any devices. We iterate through all the * devices in the devclass of the driver and detach any which are * using the driver and which have a parent in the devclass which * we are deleting from. * * Note that since a driver can be in multiple devclasses, we * should not detach devices which are not children of devices in * the affected devclass. */ for (i = 0; i < dc->maxunit; i++) if (dc->devices[i]) { dev = dc->devices[i]; if (dev->driver == driver && dev->parent && dev->parent->devclass == busclass) { if ((error = device_detach(dev)) != 0) return(error); device_set_driver(dev, NULL); } } TAILQ_REMOVE(&busclass->drivers, dl, link); kfree(dl, M_BUS); kobj_class_uninstantiate(driver); bus_data_generation_update(); return(0); } static driverlink_t devclass_find_driver_internal(devclass_t dc, const char *classname) { driverlink_t dl; PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc))); TAILQ_FOREACH(dl, &dc->drivers, link) if (!strcmp(dl->driver->name, classname)) return(dl); PDEBUG(("not found")); return(NULL); } kobj_class_t devclass_find_driver(devclass_t dc, const char *classname) { driverlink_t dl; dl = devclass_find_driver_internal(dc, classname); if (dl) return(dl->driver); else return(NULL); } const char * devclass_get_name(devclass_t dc) { return(dc->name); } device_t devclass_get_device(devclass_t dc, int unit) { if (dc == NULL || unit < 0 || unit >= dc->maxunit) return(NULL); return(dc->devices[unit]); } void * devclass_get_softc(devclass_t dc, int unit) { device_t dev; dev = devclass_get_device(dc, unit); if (!dev) return(NULL); return(device_get_softc(dev)); } int devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp) { int i; int count; device_t *list; count = 0; for (i = 0; i < dc->maxunit; i++) if (dc->devices[i]) count++; list = kmalloc(count * sizeof(device_t), M_TEMP, M_INTWAIT | M_ZERO); count = 0; for (i = 0; i < dc->maxunit; i++) if (dc->devices[i]) { list[count] = dc->devices[i]; count++; } *devlistp = list; *devcountp = count; return(0); } /** * @brief Get a list of drivers in the devclass * * An array containing a list of pointers to all the drivers in the * given devclass is allocated and returned in @p *listp. The number * of drivers in the array is returned in @p *countp. The caller should * free the array using @c free(p, M_TEMP). * * @param dc the devclass to examine * @param listp gives location for array pointer return value * @param countp gives location for number of array elements * return value * * @retval 0 success * @retval ENOMEM the array allocation failed */ int devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp) { driverlink_t dl; driver_t **list; int count; count = 0; TAILQ_FOREACH(dl, &dc->drivers, link) count++; list = kmalloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT); if (list == NULL) return (ENOMEM); count = 0; TAILQ_FOREACH(dl, &dc->drivers, link) { list[count] = dl->driver; count++; } *listp = list; *countp = count; return (0); } /** * @brief Get the number of devices in a devclass * * @param dc the devclass to examine */ int devclass_get_count(devclass_t dc) { int count, i; count = 0; for (i = 0; i < dc->maxunit; i++) if (dc->devices[i]) count++; return (count); } int devclass_get_maxunit(devclass_t dc) { return(dc->maxunit); } void devclass_set_parent(devclass_t dc, devclass_t pdc) { dc->parent = pdc; } devclass_t devclass_get_parent(devclass_t dc) { return(dc->parent); } static int devclass_alloc_unit(devclass_t dc, int *unitp) { int unit = *unitp; PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc))); /* If we have been given a wired unit number, check for existing device */ if (unit != -1) { if (unit >= 0 && unit < dc->maxunit && dc->devices[unit] != NULL) { if (bootverbose) kprintf("%s-: %s%d exists, using next available unit number\n", dc->name, dc->name, unit); /* find the next available slot */ while (++unit < dc->maxunit && dc->devices[unit] != NULL) ; } } else { /* Unwired device, find the next available slot for it */ unit = 0; while (unit < dc->maxunit && dc->devices[unit] != NULL) unit++; } /* * We've selected a unit beyond the length of the table, so let's * extend the table to make room for all units up to and including * this one. */ if (unit >= dc->maxunit) { device_t *newlist; int newsize; newsize = (unit + 1); newlist = kmalloc(sizeof(device_t) * newsize, M_BUS, M_INTWAIT | M_ZERO); if (newlist == NULL) return(ENOMEM); /* * WARNING: Due to gcc builtin optimization, * calling bcopy causes gcc to assume * that the source and destination args * cannot be NULL and optimize-away later * conditional tests to determine if dc->devices * is NULL. In this situation, in fact, * dc->devices CAN be NULL w/ maxunit == 0. */ if (dc->devices) { bcopy(dc->devices, newlist, sizeof(device_t) * dc->maxunit); kfree(dc->devices, M_BUS); } dc->devices = newlist; dc->maxunit = newsize; } PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc))); *unitp = unit; return(0); } static int devclass_add_device(devclass_t dc, device_t dev) { int buflen, error; PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); buflen = strlen(dc->name) + 5; dev->nameunit = kmalloc(buflen, M_BUS, M_INTWAIT | M_ZERO); if (dev->nameunit == NULL) return(ENOMEM); if ((error = devclass_alloc_unit(dc, &dev->unit)) != 0) { kfree(dev->nameunit, M_BUS); dev->nameunit = NULL; return(error); } dc->devices[dev->unit] = dev; dev->devclass = dc; ksnprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit); return(0); } static int devclass_delete_device(devclass_t dc, device_t dev) { if (!dc || !dev) return(0); PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); if (dev->devclass != dc || dc->devices[dev->unit] != dev) { panic("devclass_delete_device: inconsistent device class: " "%p/%p %d %p/%p\n", dev->devclass, dc, dev->unit, dc->devices[dev->unit], dev); } dc->devices[dev->unit] = NULL; if (dev->flags & DF_WILDCARD) dev->unit = -1; dev->devclass = NULL; kfree(dev->nameunit, M_BUS); dev->nameunit = NULL; return(0); } static device_t make_device(device_t parent, const char *name, int unit) { device_t dev; devclass_t dc; PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit)); if (name != NULL) { dc = devclass_find_internal(name, NULL, TRUE); if (!dc) { kprintf("make_device: can't find device class %s\n", name); return(NULL); } } else dc = NULL; dev = kmalloc(sizeof(struct bsd_device), M_BUS, M_INTWAIT | M_ZERO); if (!dev) return(0); dev->parent = parent; TAILQ_INIT(&dev->children); kobj_init((kobj_t) dev, &null_class); dev->driver = NULL; dev->devclass = NULL; dev->unit = unit; dev->nameunit = NULL; dev->desc = NULL; dev->busy = 0; dev->devflags = 0; dev->flags = DF_ENABLED; dev->order = 0; if (unit == -1) dev->flags |= DF_WILDCARD; if (name) { dev->flags |= DF_FIXEDCLASS; if (devclass_add_device(dc, dev) != 0) { kobj_delete((kobj_t)dev, M_BUS); return(NULL); } } dev->ivars = NULL; dev->softc = NULL; dev->state = DS_NOTPRESENT; TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink); bus_data_generation_update(); return(dev); } static int device_print_child(device_t dev, device_t child) { int retval = 0; if (device_is_alive(child)) retval += BUS_PRINT_CHILD(dev, child); else retval += device_printf(child, " not found\n"); return(retval); } device_t device_add_child(device_t dev, const char *name, int unit) { return device_add_child_ordered(dev, 0, name, unit); } device_t device_add_child_ordered(device_t dev, int order, const char *name, int unit) { device_t child; device_t place; PDEBUG(("%s at %s with order %d as unit %d", name, DEVICENAME(dev), order, unit)); child = make_device(dev, name, unit); if (child == NULL) return child; child->order = order; TAILQ_FOREACH(place, &dev->children, link) { if (place->order > order) break; } if (place) { /* * The device 'place' is the first device whose order is * greater than the new child. */ TAILQ_INSERT_BEFORE(place, child, link); } else { /* * The new child's order is greater or equal to the order of * any existing device. Add the child to the tail of the list. */ TAILQ_INSERT_TAIL(&dev->children, child, link); } bus_data_generation_update(); return(child); } int device_delete_child(device_t dev, device_t child) { int error; device_t grandchild; PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev))); /* remove children first */ while ( (grandchild = TAILQ_FIRST(&child->children)) ) { error = device_delete_child(child, grandchild); if (error) return(error); } if ((error = device_detach(child)) != 0) return(error); if (child->devclass) devclass_delete_device(child->devclass, child); TAILQ_REMOVE(&dev->children, child, link); TAILQ_REMOVE(&bus_data_devices, child, devlink); kobj_delete((kobj_t)child, M_BUS); bus_data_generation_update(); return(0); } /** * @brief Delete all children devices of the given device, if any. * * This function deletes all children devices of the given device, if * any, using the device_delete_child() function for each device it * finds. If a child device cannot be deleted, this function will * return an error code. * * @param dev the parent device * * @retval 0 success * @retval non-zero a device would not detach */ int device_delete_children(device_t dev) { device_t child; int error; PDEBUG(("Deleting all children of %s", DEVICENAME(dev))); error = 0; while ((child = TAILQ_FIRST(&dev->children)) != NULL) { error = device_delete_child(dev, child); if (error) { PDEBUG(("Failed deleting %s", DEVICENAME(child))); break; } } return (error); } /** * @brief Find a device given a unit number * * This is similar to devclass_get_devices() but only searches for * devices which have @p dev as a parent. * * @param dev the parent device to search * @param unit the unit number to search for. If the unit is -1, * return the first child of @p dev which has name * @p classname (that is, the one with the lowest unit.) * * @returns the device with the given unit number or @c * NULL if there is no such device */ device_t device_find_child(device_t dev, const char *classname, int unit) { devclass_t dc; device_t child; dc = devclass_find(classname); if (!dc) return(NULL); if (unit != -1) { child = devclass_get_device(dc, unit); if (child && child->parent == dev) return (child); } else { for (unit = 0; unit < devclass_get_maxunit(dc); unit++) { child = devclass_get_device(dc, unit); if (child && child->parent == dev) return (child); } } return(NULL); } static driverlink_t first_matching_driver(devclass_t dc, device_t dev) { if (dev->devclass) return(devclass_find_driver_internal(dc, dev->devclass->name)); else return(TAILQ_FIRST(&dc->drivers)); } static driverlink_t next_matching_driver(devclass_t dc, device_t dev, driverlink_t last) { if (dev->devclass) { driverlink_t dl; for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link)) if (!strcmp(dev->devclass->name, dl->driver->name)) return(dl); return(NULL); } else return(TAILQ_NEXT(last, link)); } int device_probe_child(device_t dev, device_t child) { devclass_t dc; driverlink_t best = NULL; driverlink_t dl; int result, pri = 0; int hasclass = (child->devclass != NULL); dc = dev->devclass; if (!dc) panic("device_probe_child: parent device has no devclass"); if (child->state == DS_ALIVE) return(0); for (; dc; dc = dc->parent) { for (dl = first_matching_driver(dc, child); dl; dl = next_matching_driver(dc, child, dl)) { PDEBUG(("Trying %s", DRIVERNAME(dl->driver))); device_set_driver(child, dl->driver); if (!hasclass) device_set_devclass(child, dl->driver->name); result = DEVICE_PROBE(child); if (!hasclass) device_set_devclass(child, 0); /* * If the driver returns SUCCESS, there can be * no higher match for this device. */ if (result == 0) { best = dl; pri = 0; break; } /* * The driver returned an error so it * certainly doesn't match. */ if (result > 0) { device_set_driver(child, NULL); continue; } /* * A priority lower than SUCCESS, remember the * best matching driver. Initialise the value * of pri for the first match. */ if (best == NULL || result > pri) { best = dl; pri = result; continue; } } /* * If we have unambiguous match in this devclass, * don't look in the parent. */ if (best && pri == 0) break; } /* * If we found a driver, change state and initialise the devclass. */ if (best) { if (!child->devclass) device_set_devclass(child, best->driver->name); device_set_driver(child, best->driver); if (pri < 0) { /* * A bit bogus. Call the probe method again to make * sure that we have the right description. */ DEVICE_PROBE(child); } bus_data_generation_update(); child->state = DS_ALIVE; return(0); } return(ENXIO); } int device_probe_child_gpri(device_t dev, device_t child, u_int gpri) { devclass_t dc; driverlink_t best = NULL; driverlink_t dl; int result, pri = 0; int hasclass = (child->devclass != NULL); dc = dev->devclass; if (!dc) panic("device_probe_child: parent device has no devclass"); if (child->state == DS_ALIVE) return(0); for (; dc; dc = dc->parent) { for (dl = first_matching_driver(dc, child); dl; dl = next_matching_driver(dc, child, dl)) { /* * GPRI handling, only probe drivers with the * specific GPRI. */ if (dl->driver->gpri != gpri) continue; PDEBUG(("Trying %s", DRIVERNAME(dl->driver))); device_set_driver(child, dl->driver); if (!hasclass) device_set_devclass(child, dl->driver->name); result = DEVICE_PROBE(child); if (!hasclass) device_set_devclass(child, 0); /* * If the driver returns SUCCESS, there can be * no higher match for this device. */ if (result == 0) { best = dl; pri = 0; break; } /* * The driver returned an error so it * certainly doesn't match. */ if (result > 0) { device_set_driver(child, NULL); continue; } /* * A priority lower than SUCCESS, remember the * best matching driver. Initialise the value * of pri for the first match. */ if (best == NULL || result > pri) { best = dl; pri = result; continue; } } /* * If we have unambiguous match in this devclass, * don't look in the parent. */ if (best && pri == 0) break; } /* * If we found a driver, change state and initialise the devclass. */ if (best) { if (!child->devclass) device_set_devclass(child, best->driver->name); device_set_driver(child, best->driver); if (pri < 0) { /* * A bit bogus. Call the probe method again to make * sure that we have the right description. */ DEVICE_PROBE(child); } bus_data_generation_update(); child->state = DS_ALIVE; return(0); } return(ENXIO); } device_t device_get_parent(device_t dev) { return dev->parent; } int device_get_children(device_t dev, device_t **devlistp, int *devcountp) { int count; device_t child; device_t *list; count = 0; TAILQ_FOREACH(child, &dev->children, link) count++; list = kmalloc(count * sizeof(device_t), M_TEMP, M_INTWAIT | M_ZERO); count = 0; TAILQ_FOREACH(child, &dev->children, link) { list[count] = child; count++; } *devlistp = list; *devcountp = count; return(0); } driver_t * device_get_driver(device_t dev) { return(dev->driver); } devclass_t device_get_devclass(device_t dev) { return(dev->devclass); } const char * device_get_name(device_t dev) { if (dev->devclass) return devclass_get_name(dev->devclass); return(NULL); } const char * device_get_nameunit(device_t dev) { return(dev->nameunit); } int device_get_unit(device_t dev) { return(dev->unit); } const char * device_get_desc(device_t dev) { return(dev->desc); } uint32_t device_get_flags(device_t dev) { return(dev->devflags); } struct sysctl_ctx_list * device_get_sysctl_ctx(device_t dev) { return (&dev->sysctl_ctx); } struct sysctl_oid * device_get_sysctl_tree(device_t dev) { return (dev->sysctl_tree); } int device_print_prettyname(device_t dev) { const char *name = device_get_name(dev); if (name == NULL) return kprintf("unknown: "); else return kprintf("%s%d: ", name, device_get_unit(dev)); } int device_printf(device_t dev, const char * fmt, ...) { __va_list ap; int retval; retval = device_print_prettyname(dev); __va_start(ap, fmt); retval += kvprintf(fmt, ap); __va_end(ap); return retval; } /** * @brief Print the name of the device followed by a colon, a space * and the result of calling log() with the value of @p fmt and * the following arguments. * * @returns the number of characters printed */ int device_log(device_t dev, int pri, const char * fmt, ...) { char buf[128]; struct sbuf sb; const char *name; __va_list ap; size_t retval; retval = 0; sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN); name = device_get_name(dev); if (name == NULL) sbuf_cat(&sb, "unknown: "); else sbuf_printf(&sb, "%s%d: ", name, device_get_unit(dev)); __va_start(ap, fmt); sbuf_vprintf(&sb, fmt, ap); __va_end(ap); sbuf_finish(&sb); log(pri, "%.*s", (int) sbuf_len(&sb), sbuf_data(&sb)); retval = sbuf_len(&sb); sbuf_delete(&sb); return (retval); } static void device_set_desc_internal(device_t dev, const char* desc, int copy) { if (dev->desc && (dev->flags & DF_DESCMALLOCED)) { kfree(dev->desc, M_BUS); dev->flags &= ~DF_DESCMALLOCED; dev->desc = NULL; } if (copy && desc) { dev->desc = kmalloc(strlen(desc) + 1, M_BUS, M_INTWAIT); if (dev->desc) { strcpy(dev->desc, desc); dev->flags |= DF_DESCMALLOCED; } } else { /* Avoid a -Wcast-qual warning */ dev->desc = (char *)(uintptr_t) desc; } bus_data_generation_update(); } void device_set_desc(device_t dev, const char* desc) { device_set_desc_internal(dev, desc, FALSE); } void device_set_desc_copy(device_t dev, const char* desc) { device_set_desc_internal(dev, desc, TRUE); } void device_set_flags(device_t dev, uint32_t flags) { dev->devflags = flags; } void * device_get_softc(device_t dev) { return dev->softc; } void device_set_softc(device_t dev, void *softc) { if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) kfree(dev->softc, M_BUS); dev->softc = softc; if (dev->softc) dev->flags |= DF_EXTERNALSOFTC; else dev->flags &= ~DF_EXTERNALSOFTC; } void device_set_async_attach(device_t dev, int enable) { if (enable) dev->flags |= DF_ASYNCPROBE; else dev->flags &= ~DF_ASYNCPROBE; } void * device_get_ivars(device_t dev) { return dev->ivars; } void device_set_ivars(device_t dev, void * ivars) { if (!dev) return; dev->ivars = ivars; } device_state_t device_get_state(device_t dev) { return(dev->state); } void device_enable(device_t dev) { dev->flags |= DF_ENABLED; } void device_disable(device_t dev) { dev->flags &= ~DF_ENABLED; } /* * YYY cannot block */ void device_busy(device_t dev) { if (dev->state < DS_ATTACHED) panic("device_busy: called for unattached device"); if (dev->busy == 0 && dev->parent) device_busy(dev->parent); dev->busy++; dev->state = DS_BUSY; } /* * YYY cannot block */ void device_unbusy(device_t dev) { if (dev->state != DS_BUSY) panic("device_unbusy: called for non-busy device"); dev->busy--; if (dev->busy == 0) { if (dev->parent) device_unbusy(dev->parent); dev->state = DS_ATTACHED; } } void device_quiet(device_t dev) { dev->flags |= DF_QUIET; } void device_verbose(device_t dev) { dev->flags &= ~DF_QUIET; } int device_is_quiet(device_t dev) { return((dev->flags & DF_QUIET) != 0); } int device_is_enabled(device_t dev) { return((dev->flags & DF_ENABLED) != 0); } int device_is_alive(device_t dev) { return(dev->state >= DS_ALIVE); } int device_is_attached(device_t dev) { return(dev->state >= DS_ATTACHED); } int device_set_devclass(device_t dev, const char *classname) { devclass_t dc; int error; if (!classname) { if (dev->devclass) devclass_delete_device(dev->devclass, dev); return(0); } if (dev->devclass) { kprintf("device_set_devclass: device class already set\n"); return(EINVAL); } dc = devclass_find_internal(classname, NULL, TRUE); if (!dc) return(ENOMEM); error = devclass_add_device(dc, dev); bus_data_generation_update(); return(error); } int device_set_driver(device_t dev, driver_t *driver) { if (dev->state >= DS_ATTACHED) return(EBUSY); if (dev->driver == driver) return(0); if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) { kfree(dev->softc, M_BUS); dev->softc = NULL; } device_set_desc(dev, NULL); kobj_delete((kobj_t) dev, 0); dev->driver = driver; if (driver) { kobj_init((kobj_t) dev, (kobj_class_t) driver); if (!(dev->flags & DF_EXTERNALSOFTC)) dev->softc = kmalloc(driver->size, M_BUS, M_INTWAIT | M_ZERO); } else { kobj_init((kobj_t) dev, &null_class); } bus_data_generation_update(); return(0); } int device_probe_and_attach(device_t dev) { device_t bus = dev->parent; int error = 0; if (dev->state >= DS_ALIVE) return(0); if ((dev->flags & DF_ENABLED) == 0) { if (bootverbose) { device_print_prettyname(dev); kprintf("not probed (disabled)\n"); } return(0); } error = device_probe_child(bus, dev); if (error) { if (!(dev->flags & DF_DONENOMATCH)) { BUS_PROBE_NOMATCH(bus, dev); devnomatch(dev); dev->flags |= DF_DONENOMATCH; } return(error); } /* * Output the exact device chain prior to the attach in case the * system locks up during attach, and generate the full info after * the attach so correct irq and other information is displayed. */ if (bootverbose && !device_is_quiet(dev)) { device_t tmp; kprintf("%s", device_get_nameunit(dev)); for (tmp = dev->parent; tmp; tmp = tmp->parent) kprintf(".%s", device_get_nameunit(tmp)); kprintf("\n"); } if (!device_is_quiet(dev)) device_print_child(bus, dev); if ((dev->flags & DF_ASYNCPROBE) && do_async_attach) { kprintf("%s: probing asynchronously\n", device_get_nameunit(dev)); dev->state = DS_INPROGRESS; device_attach_async(dev); error = 0; } else { error = device_doattach(dev); } return(error); } int device_probe_and_attach_gpri(device_t dev, u_int gpri) { device_t bus = dev->parent; int error = 0; if (dev->state >= DS_ALIVE) return(0); if ((dev->flags & DF_ENABLED) == 0) { if (bootverbose) { device_print_prettyname(dev); kprintf("not probed (disabled)\n"); } return(0); } error = device_probe_child_gpri(bus, dev, gpri); if (error) { #if 0 if (!(dev->flags & DF_DONENOMATCH)) { BUS_PROBE_NOMATCH(bus, dev); devnomatch(dev); dev->flags |= DF_DONENOMATCH; } #endif return(error); } /* * Output the exact device chain prior to the attach in case the * system locks up during attach, and generate the full info after * the attach so correct irq and other information is displayed. */ if (bootverbose && !device_is_quiet(dev)) { device_t tmp; kprintf("%s", device_get_nameunit(dev)); for (tmp = dev->parent; tmp; tmp = tmp->parent) kprintf(".%s", device_get_nameunit(tmp)); kprintf("\n"); } if (!device_is_quiet(dev)) device_print_child(bus, dev); if ((dev->flags & DF_ASYNCPROBE) && do_async_attach) { kprintf("%s: probing asynchronously\n", device_get_nameunit(dev)); dev->state = DS_INPROGRESS; device_attach_async(dev); error = 0; } else { error = device_doattach(dev); } return(error); } /* * Device is known to be alive, do the attach asynchronously. * However, serialize the attaches with the mp lock. */ static void device_attach_async(device_t dev) { thread_t td; atomic_add_int(&numasyncthreads, 1); lwkt_create(device_attach_thread, dev, &td, NULL, 0, 0, "%s", (dev->desc ? dev->desc : "devattach")); } static void device_attach_thread(void *arg) { device_t dev = arg; (void)device_doattach(dev); atomic_subtract_int(&numasyncthreads, 1); wakeup(&numasyncthreads); } /* * Device is known to be alive, do the attach (synchronous or asynchronous) */ static int device_doattach(device_t dev) { device_t bus = dev->parent; int hasclass = (dev->devclass != NULL); int error; device_sysctl_init(dev); error = DEVICE_ATTACH(dev); if (error == 0) { dev->state = DS_ATTACHED; if (bootverbose && !device_is_quiet(dev)) device_print_child(bus, dev); device_sysctl_update(dev); devadded(dev); } else { kprintf("device_probe_and_attach: %s%d attach returned %d\n", dev->driver->name, dev->unit, error); /* Unset the class that was set in device_probe_child */ if (!hasclass) device_set_devclass(dev, 0); device_set_driver(dev, NULL); dev->state = DS_NOTPRESENT; device_sysctl_fini(dev); } return(error); } int device_detach(device_t dev) { int error; PDEBUG(("%s", DEVICENAME(dev))); if (dev->state == DS_BUSY) return(EBUSY); if (dev->state != DS_ATTACHED) return(0); if ((error = DEVICE_DETACH(dev)) != 0) return(error); devremoved(dev); device_printf(dev, "detached\n"); if (dev->parent) BUS_CHILD_DETACHED(dev->parent, dev); if (!(dev->flags & DF_FIXEDCLASS)) devclass_delete_device(dev->devclass, dev); dev->state = DS_NOTPRESENT; device_set_driver(dev, NULL); device_sysctl_fini(dev); return(0); } int device_shutdown(device_t dev) { if (dev->state < DS_ATTACHED) return 0; PDEBUG(("%s", DEVICENAME(dev))); return DEVICE_SHUTDOWN(dev); } int device_set_unit(device_t dev, int unit) { devclass_t dc; int err; dc = device_get_devclass(dev); if (unit < dc->maxunit && dc->devices[unit]) return(EBUSY); err = devclass_delete_device(dc, dev); if (err) return(err); dev->unit = unit; err = devclass_add_device(dc, dev); if (err) return(err); bus_data_generation_update(); return(0); } /*======================================*/ /* * Access functions for device resources. */ /* Supplied by config(8) in ioconf.c */ extern struct config_device config_devtab[]; extern int devtab_count; /* Runtime version */ struct config_device *devtab = config_devtab; static int resource_new_name(const char *name, int unit) { struct config_device *new; new = kmalloc((devtab_count + 1) * sizeof(*new), M_TEMP, M_INTWAIT | M_ZERO); if (devtab && devtab_count > 0) bcopy(devtab, new, devtab_count * sizeof(*new)); new[devtab_count].name = kmalloc(strlen(name) + 1, M_TEMP, M_INTWAIT); if (new[devtab_count].name == NULL) { kfree(new, M_TEMP); return(-1); } strcpy(new[devtab_count].name, name); new[devtab_count].unit = unit; new[devtab_count].resource_count = 0; new[devtab_count].resources = NULL; if (devtab && devtab != config_devtab) kfree(devtab, M_TEMP); devtab = new; return devtab_count++; } static int resource_new_resname(int j, const char *resname, resource_type type) { struct config_resource *new; int i; i = devtab[j].resource_count; new = kmalloc((i + 1) * sizeof(*new), M_TEMP, M_INTWAIT | M_ZERO); if (devtab[j].resources && i > 0) bcopy(devtab[j].resources, new, i * sizeof(*new)); new[i].name = kmalloc(strlen(resname) + 1, M_TEMP, M_INTWAIT); if (new[i].name == NULL) { kfree(new, M_TEMP); return(-1); } strcpy(new[i].name, resname); new[i].type = type; if (devtab[j].resources) kfree(devtab[j].resources, M_TEMP); devtab[j].resources = new; devtab[j].resource_count = i + 1; return(i); } static int resource_match_string(int i, const char *resname, const char *value) { int j; struct config_resource *res; for (j = 0, res = devtab[i].resources; j < devtab[i].resource_count; j++, res++) if (!strcmp(res->name, resname) && res->type == RES_STRING && !strcmp(res->u.stringval, value)) return(j); return(-1); } static int resource_find(const char *name, int unit, const char *resname, struct config_resource **result) { int i, j; struct config_resource *res; /* * First check specific instances, then generic. */ for (i = 0; i < devtab_count; i++) { if (devtab[i].unit < 0) continue; if (!strcmp(devtab[i].name, name) && devtab[i].unit == unit) { res = devtab[i].resources; for (j = 0; j < devtab[i].resource_count; j++, res++) if (!strcmp(res->name, resname)) { *result = res; return(0); } } } for (i = 0; i < devtab_count; i++) { if (devtab[i].unit >= 0) continue; /* XXX should this `&& devtab[i].unit == unit' be here? */ /* XXX if so, then the generic match does nothing */ if (!strcmp(devtab[i].name, name) && devtab[i].unit == unit) { res = devtab[i].resources; for (j = 0; j < devtab[i].resource_count; j++, res++) if (!strcmp(res->name, resname)) { *result = res; return(0); } } } return(ENOENT); } static int resource_kenv(const char *name, int unit, const char *resname, long *result) { const char *env; char buf[64]; /* * DragonFly style loader.conf hinting */ ksnprintf(buf, sizeof(buf), "%s%d.%s", name, unit, resname); if ((env = kgetenv(buf)) != NULL) { *result = strtol(env, NULL, 0); return(0); } /* * Also support FreeBSD style loader.conf hinting */ ksnprintf(buf, sizeof(buf), "hint.%s.%d.%s", name, unit, resname); if ((env = kgetenv(buf)) != NULL) { *result = strtol(env, NULL, 0); return(0); } return (ENOENT); } int resource_int_value(const char *name, int unit, const char *resname, int *result) { struct config_resource *res; long kvalue = 0; int error; if (resource_kenv(name, unit, resname, &kvalue) == 0) { *result = (int)kvalue; return 0; } if ((error = resource_find(name, unit, resname, &res)) != 0) return(error); if (res->type != RES_INT) return(EFTYPE); *result = res->u.intval; return(0); } int resource_long_value(const char *name, int unit, const char *resname, long *result) { struct config_resource *res; long kvalue; int error; if (resource_kenv(name, unit, resname, &kvalue) == 0) { *result = kvalue; return 0; } if ((error = resource_find(name, unit, resname, &res)) != 0) return(error); if (res->type != RES_LONG) return(EFTYPE); *result = res->u.longval; return(0); } int resource_string_value(const char *name, int unit, const char *resname, const char **result) { int error; struct config_resource *res; char buf[64]; const char *env; /* * DragonFly style loader.conf hinting */ ksnprintf(buf, sizeof(buf), "%s%d.%s", name, unit, resname); if ((env = kgetenv(buf)) != NULL) { *result = env; return 0; } /* * Also support FreeBSD style loader.conf hinting */ ksnprintf(buf, sizeof(buf), "hint.%s.%d.%s", name, unit, resname); if ((env = kgetenv(buf)) != NULL) { *result = env; return 0; } if ((error = resource_find(name, unit, resname, &res)) != 0) return(error); if (res->type != RES_STRING) return(EFTYPE); *result = res->u.stringval; return(0); } int resource_query_string(int i, const char *resname, const char *value) { if (i < 0) i = 0; else i = i + 1; for (; i < devtab_count; i++) if (resource_match_string(i, resname, value) >= 0) return(i); return(-1); } int resource_locate(int i, const char *resname) { if (i < 0) i = 0; else i = i + 1; for (; i < devtab_count; i++) if (!strcmp(devtab[i].name, resname)) return(i); return(-1); } int resource_count(void) { return(devtab_count); } char * resource_query_name(int i) { return(devtab[i].name); } int resource_query_unit(int i) { return(devtab[i].unit); } static int resource_create(const char *name, int unit, const char *resname, resource_type type, struct config_resource **result) { int i, j; struct config_resource *res = NULL; for (i = 0; i < devtab_count; i++) if (!strcmp(devtab[i].name, name) && devtab[i].unit == unit) { res = devtab[i].resources; break; } if (res == NULL) { i = resource_new_name(name, unit); if (i < 0) return(ENOMEM); res = devtab[i].resources; } for (j = 0; j < devtab[i].resource_count; j++, res++) if (!strcmp(res->name, resname)) { *result = res; return(0); } j = resource_new_resname(i, resname, type); if (j < 0) return(ENOMEM); res = &devtab[i].resources[j]; *result = res; return(0); } int resource_set_int(const char *name, int unit, const char *resname, int value) { int error; struct config_resource *res; error = resource_create(name, unit, resname, RES_INT, &res); if (error) return(error); if (res->type != RES_INT) return(EFTYPE); res->u.intval = value; return(0); } int resource_set_long(const char *name, int unit, const char *resname, long value) { int error; struct config_resource *res; error = resource_create(name, unit, resname, RES_LONG, &res); if (error) return(error); if (res->type != RES_LONG) return(EFTYPE); res->u.longval = value; return(0); } int resource_set_string(const char *name, int unit, const char *resname, const char *value) { int error; struct config_resource *res; error = resource_create(name, unit, resname, RES_STRING, &res); if (error) return(error); if (res->type != RES_STRING) return(EFTYPE); if (res->u.stringval) kfree(res->u.stringval, M_TEMP); res->u.stringval = kmalloc(strlen(value) + 1, M_TEMP, M_INTWAIT); if (res->u.stringval == NULL) return(ENOMEM); strcpy(res->u.stringval, value); return(0); } static void resource_cfgload(void *dummy __unused) { struct config_resource *res, *cfgres; int i, j; int error; char *name, *resname; int unit; resource_type type; char *stringval; int config_devtab_count; config_devtab_count = devtab_count; devtab = NULL; devtab_count = 0; for (i = 0; i < config_devtab_count; i++) { name = config_devtab[i].name; unit = config_devtab[i].unit; for (j = 0; j < config_devtab[i].resource_count; j++) { cfgres = config_devtab[i].resources; resname = cfgres[j].name; type = cfgres[j].type; error = resource_create(name, unit, resname, type, &res); if (error) { kprintf("create resource %s%d: error %d\n", name, unit, error); continue; } if (res->type != type) { kprintf("type mismatch %s%d: %d != %d\n", name, unit, res->type, type); continue; } switch (type) { case RES_INT: res->u.intval = cfgres[j].u.intval; break; case RES_LONG: res->u.longval = cfgres[j].u.longval; break; case RES_STRING: if (res->u.stringval) kfree(res->u.stringval, M_TEMP); stringval = cfgres[j].u.stringval; res->u.stringval = kmalloc(strlen(stringval) + 1, M_TEMP, M_INTWAIT); if (res->u.stringval == NULL) break; strcpy(res->u.stringval, stringval); break; default: panic("unknown resource type %d", type); } } } } SYSINIT(cfgload, SI_BOOT1_POST, SI_ORDER_ANY + 50, resource_cfgload, 0); /*======================================*/ /* * Some useful method implementations to make life easier for bus drivers. */ void resource_list_init(struct resource_list *rl) { SLIST_INIT(rl); } void resource_list_free(struct resource_list *rl) { struct resource_list_entry *rle; while ((rle = SLIST_FIRST(rl)) != NULL) { if (rle->res) panic("resource_list_free: resource entry is busy"); SLIST_REMOVE_HEAD(rl, link); kfree(rle, M_BUS); } } void resource_list_add(struct resource_list *rl, int type, int rid, u_long start, u_long end, u_long count, int cpuid) { struct resource_list_entry *rle; rle = resource_list_find(rl, type, rid); if (rle == NULL) { rle = kmalloc(sizeof(struct resource_list_entry), M_BUS, M_INTWAIT); SLIST_INSERT_HEAD(rl, rle, link); rle->type = type; rle->rid = rid; rle->res = NULL; rle->cpuid = -1; } if (rle->res) panic("resource_list_add: resource entry is busy"); rle->start = start; rle->end = end; rle->count = count; if (cpuid != -1) { if (rle->cpuid != -1 && rle->cpuid != cpuid) { panic("resource_list_add: moving from cpu%d -> cpu%d", rle->cpuid, cpuid); } rle->cpuid = cpuid; } } struct resource_list_entry* resource_list_find(struct resource_list *rl, int type, int rid) { struct resource_list_entry *rle; SLIST_FOREACH(rle, rl, link) if (rle->type == type && rle->rid == rid) return(rle); return(NULL); } void resource_list_delete(struct resource_list *rl, int type, int rid) { struct resource_list_entry *rle = resource_list_find(rl, type, rid); if (rle) { if (rle->res != NULL) panic("resource_list_delete: resource has not been released"); SLIST_REMOVE(rl, rle, resource_list_entry, link); kfree(rle, M_BUS); } } struct resource * resource_list_alloc(struct resource_list *rl, device_t bus, device_t child, int type, int *rid, u_long start, u_long end, u_long count, u_int flags, int cpuid) { struct resource_list_entry *rle = NULL; int passthrough = (device_get_parent(child) != bus); int isdefault = (start == 0UL && end == ~0UL); if (passthrough) { return(BUS_ALLOC_RESOURCE(device_get_parent(bus), child, type, rid, start, end, count, flags, cpuid)); } rle = resource_list_find(rl, type, *rid); if (!rle) return(0); /* no resource of that type/rid */ if (rle->res) panic("resource_list_alloc: resource entry is busy"); if (isdefault) { start = rle->start; count = ulmax(count, rle->count); end = ulmax(rle->end, start + count - 1); } cpuid = rle->cpuid; rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child, type, rid, start, end, count, flags, cpuid); /* * Record the new range. */ if (rle->res) { rle->start = rman_get_start(rle->res); rle->end = rman_get_end(rle->res); rle->count = count; } return(rle->res); } int resource_list_release(struct resource_list *rl, device_t bus, device_t child, int type, int rid, struct resource *res) { struct resource_list_entry *rle = NULL; int passthrough = (device_get_parent(child) != bus); int error; if (passthrough) { return(BUS_RELEASE_RESOURCE(device_get_parent(bus), child, type, rid, res)); } rle = resource_list_find(rl, type, rid); if (!rle) panic("resource_list_release: can't find resource"); if (!rle->res) panic("resource_list_release: resource entry is not busy"); error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child, type, rid, res); if (error) return(error); rle->res = NULL; return(0); } int resource_list_print_type(struct resource_list *rl, const char *name, int type, const char *format) { struct resource_list_entry *rle; int printed, retval; printed = 0; retval = 0; /* Yes, this is kinda cheating */ SLIST_FOREACH(rle, rl, link) { if (rle->type == type) { if (printed == 0) retval += kprintf(" %s ", name); else retval += kprintf(","); printed++; retval += kprintf(format, rle->start); if (rle->count > 1) { retval += kprintf("-"); retval += kprintf(format, rle->start + rle->count - 1); } } } return(retval); } /* * Generic driver/device identify functions. These will install a device * rendezvous point under the parent using the same name as the driver * name, which will at a later time be probed and attached. * * These functions are used when the parent does not 'scan' its bus for * matching devices, or for the particular devices using these functions, * or when the device is a pseudo or synthesized device (such as can be * found under firewire and ppbus). */ int bus_generic_identify(driver_t *driver, device_t parent) { if (parent->state == DS_ATTACHED) return (0); BUS_ADD_CHILD(parent, parent, 0, driver->name, -1); return (0); } int bus_generic_identify_sameunit(driver_t *driver, device_t parent) { if (parent->state == DS_ATTACHED) return (0); BUS_ADD_CHILD(parent, parent, 0, driver->name, device_get_unit(parent)); return (0); } /* * Call DEVICE_IDENTIFY for each driver. */ int bus_generic_probe(device_t dev) { devclass_t dc = dev->devclass; driverlink_t dl; TAILQ_FOREACH(dl, &dc->drivers, link) { DEVICE_IDENTIFY(dl->driver, dev); } return(0); } /* * This is an aweful hack due to the isa bus and autoconf code not * probing the ISA devices until after everything else has configured. * The ISA bus did a dummy attach long ago so we have to set it back * to an earlier state so the probe thinks its the initial probe and * not a bus rescan. * * XXX remove by properly defering the ISA bus scan. */ int bus_generic_probe_hack(device_t dev) { if (dev->state == DS_ATTACHED) { dev->state = DS_ALIVE; bus_generic_probe(dev); dev->state = DS_ATTACHED; } return (0); } int bus_generic_attach(device_t dev) { device_t child; TAILQ_FOREACH(child, &dev->children, link) { device_probe_and_attach(child); } return(0); } int bus_generic_attach_gpri(device_t dev, u_int gpri) { device_t child; TAILQ_FOREACH(child, &dev->children, link) { device_probe_and_attach_gpri(child, gpri); } return(0); } int bus_generic_detach(device_t dev) { device_t child; int error; if (dev->state != DS_ATTACHED) return(EBUSY); TAILQ_FOREACH(child, &dev->children, link) if ((error = device_detach(child)) != 0) return(error); return 0; } int bus_generic_shutdown(device_t dev) { device_t child; TAILQ_FOREACH(child, &dev->children, link) device_shutdown(child); return(0); } int bus_generic_suspend(device_t dev) { int error; device_t child, child2; TAILQ_FOREACH(child, &dev->children, link) { error = DEVICE_SUSPEND(child); if (error) { for (child2 = TAILQ_FIRST(&dev->children); child2 && child2 != child; child2 = TAILQ_NEXT(child2, link)) DEVICE_RESUME(child2); return(error); } } return(0); } int bus_generic_resume(device_t dev) { device_t child; TAILQ_FOREACH(child, &dev->children, link) DEVICE_RESUME(child); /* if resume fails, there's nothing we can usefully do... */ return(0); } int bus_print_child_header(device_t dev, device_t child) { int retval = 0; if (device_get_desc(child)) retval += device_printf(child, "<%s>", device_get_desc(child)); else retval += kprintf("%s", device_get_nameunit(child)); if (bootverbose) { if (child->state != DS_ATTACHED) kprintf(" [tentative]"); else kprintf(" [attached!]"); } return(retval); } int bus_print_child_footer(device_t dev, device_t child) { return(kprintf(" on %s\n", device_get_nameunit(dev))); } device_t bus_generic_add_child(device_t dev, device_t child, int order, const char *name, int unit) { if (dev->parent) dev = BUS_ADD_CHILD(dev->parent, child, order, name, unit); else dev = device_add_child_ordered(child, order, name, unit); return(dev); } int bus_generic_print_child(device_t dev, device_t child) { int retval = 0; retval += bus_print_child_header(dev, child); retval += bus_print_child_footer(dev, child); return(retval); } int bus_generic_read_ivar(device_t dev, device_t child, int index, uintptr_t * result) { int error; if (dev->parent) error = BUS_READ_IVAR(dev->parent, child, index, result); else error = ENOENT; return (error); } int bus_generic_write_ivar(device_t dev, device_t child, int index, uintptr_t value) { int error; if (dev->parent) error = BUS_WRITE_IVAR(dev->parent, child, index, value); else error = ENOENT; return (error); } /* * Resource list are used for iterations, do not recurse. */ struct resource_list * bus_generic_get_resource_list(device_t dev, device_t child) { return (NULL); } void bus_generic_driver_added(device_t dev, driver_t *driver) { device_t child; DEVICE_IDENTIFY(driver, dev); TAILQ_FOREACH(child, &dev->children, link) { if (child->state == DS_NOTPRESENT) device_probe_and_attach(child); } } int bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq, int flags, driver_intr_t *intr, void *arg, void **cookiep, lwkt_serialize_t serializer, const char *desc) { /* Propagate up the bus hierarchy until someone handles it. */ if (dev->parent) { return BUS_SETUP_INTR(dev->parent, child, irq, flags, intr, arg, cookiep, serializer, desc); } else { return EINVAL; } } int bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq, void *cookie) { /* Propagate up the bus hierarchy until someone handles it. */ if (dev->parent) return(BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie)); else return(EINVAL); } int bus_generic_disable_intr(device_t dev, device_t child, void *cookie) { if (dev->parent) return(BUS_DISABLE_INTR(dev->parent, child, cookie)); else return(0); } void bus_generic_enable_intr(device_t dev, device_t child, void *cookie) { if (dev->parent) BUS_ENABLE_INTR(dev->parent, child, cookie); } int bus_generic_config_intr(device_t dev, device_t child, int irq, enum intr_trigger trig, enum intr_polarity pol) { /* Propagate up the bus hierarchy until someone handles it. */ if (dev->parent) return(BUS_CONFIG_INTR(dev->parent, child, irq, trig, pol)); else return(EINVAL); } struct resource * bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid, u_long start, u_long end, u_long count, u_int flags, int cpuid) { /* Propagate up the bus hierarchy until someone handles it. */ if (dev->parent) return(BUS_ALLOC_RESOURCE(dev->parent, child, type, rid, start, end, count, flags, cpuid)); else return(NULL); } int bus_generic_release_resource(device_t dev, device_t child, int type, int rid, struct resource *r) { /* Propagate up the bus hierarchy until someone handles it. */ if (dev->parent) return(BUS_RELEASE_RESOURCE(dev->parent, child, type, rid, r)); else return(EINVAL); } int bus_generic_activate_resource(device_t dev, device_t child, int type, int rid, struct resource *r) { /* Propagate up the bus hierarchy until someone handles it. */ if (dev->parent) return(BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid, r)); else return(EINVAL); } int bus_generic_deactivate_resource(device_t dev, device_t child, int type, int rid, struct resource *r) { /* Propagate up the bus hierarchy until someone handles it. */ if (dev->parent) return(BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid, r)); else return(EINVAL); } int bus_generic_get_resource(device_t dev, device_t child, int type, int rid, u_long *startp, u_long *countp) { int error; error = ENOENT; if (dev->parent) { error = BUS_GET_RESOURCE(dev->parent, child, type, rid, startp, countp); } return (error); } int bus_generic_set_resource(device_t dev, device_t child, int type, int rid, u_long start, u_long count, int cpuid) { int error; error = EINVAL; if (dev->parent) { error = BUS_SET_RESOURCE(dev->parent, child, type, rid, start, count, cpuid); } return (error); } void bus_generic_delete_resource(device_t dev, device_t child, int type, int rid) { if (dev->parent) BUS_DELETE_RESOURCE(dev, child, type, rid); } /** * @brief Helper function for implementing BUS_GET_DMA_TAG(). * * This simple implementation of BUS_GET_DMA_TAG() simply calls the * BUS_GET_DMA_TAG() method of the parent of @p dev. */ bus_dma_tag_t bus_generic_get_dma_tag(device_t dev, device_t child) { /* Propagate up the bus hierarchy until someone handles it. */ if (dev->parent != NULL) return (BUS_GET_DMA_TAG(dev->parent, child)); return (NULL); } int bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid, u_long *startp, u_long *countp) { struct resource_list *rl = NULL; struct resource_list_entry *rle = NULL; rl = BUS_GET_RESOURCE_LIST(dev, child); if (!rl) return(EINVAL); rle = resource_list_find(rl, type, rid); if (!rle) return(ENOENT); if (startp) *startp = rle->start; if (countp) *countp = rle->count; return(0); } int bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid, u_long start, u_long count, int cpuid) { struct resource_list *rl = NULL; rl = BUS_GET_RESOURCE_LIST(dev, child); if (!rl) return(EINVAL); resource_list_add(rl, type, rid, start, (start + count - 1), count, cpuid); return(0); } void bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid) { struct resource_list *rl = NULL; rl = BUS_GET_RESOURCE_LIST(dev, child); if (!rl) return; resource_list_delete(rl, type, rid); } int bus_generic_rl_release_resource(device_t dev, device_t child, int type, int rid, struct resource *r) { struct resource_list *rl = NULL; rl = BUS_GET_RESOURCE_LIST(dev, child); if (!rl) return(EINVAL); return(resource_list_release(rl, dev, child, type, rid, r)); } struct resource * bus_generic_rl_alloc_resource(device_t dev, device_t child, int type, int *rid, u_long start, u_long end, u_long count, u_int flags, int cpuid) { struct resource_list *rl = NULL; rl = BUS_GET_RESOURCE_LIST(dev, child); if (!rl) return(NULL); return(resource_list_alloc(rl, dev, child, type, rid, start, end, count, flags, cpuid)); } int bus_generic_child_present(device_t bus, device_t child) { return(BUS_CHILD_PRESENT(device_get_parent(bus), bus)); } /* * Some convenience functions to make it easier for drivers to use the * resource-management functions. All these really do is hide the * indirection through the parent's method table, making for slightly * less-wordy code. In the future, it might make sense for this code * to maintain some sort of a list of resources allocated by each device. */ int bus_alloc_resources(device_t dev, struct resource_spec *rs, struct resource **res) { int i; for (i = 0; rs[i].type != -1; i++) res[i] = NULL; for (i = 0; rs[i].type != -1; i++) { res[i] = bus_alloc_resource_any(dev, rs[i].type, &rs[i].rid, rs[i].flags); if (res[i] == NULL) { bus_release_resources(dev, rs, res); return (ENXIO); } } return (0); } void bus_release_resources(device_t dev, const struct resource_spec *rs, struct resource **res) { int i; for (i = 0; rs[i].type != -1; i++) if (res[i] != NULL) { bus_release_resource( dev, rs[i].type, rs[i].rid, res[i]); res[i] = NULL; } } struct resource * bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end, u_long count, u_int flags) { if (dev->parent == NULL) return(0); return(BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end, count, flags, -1)); } struct resource * bus_alloc_legacy_irq_resource(device_t dev, int *rid, u_long irq, u_int flags) { if (dev->parent == NULL) return(0); return BUS_ALLOC_RESOURCE(dev->parent, dev, SYS_RES_IRQ, rid, irq, irq, 1, flags, machintr_legacy_intr_cpuid(irq)); } int bus_activate_resource(device_t dev, int type, int rid, struct resource *r) { if (dev->parent == NULL) return(EINVAL); return(BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); } int bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r) { if (dev->parent == NULL) return(EINVAL); return(BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); } int bus_release_resource(device_t dev, int type, int rid, struct resource *r) { if (dev->parent == NULL) return(EINVAL); return(BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r)); } int bus_setup_intr_descr(device_t dev, struct resource *r, int flags, driver_intr_t handler, void *arg, void **cookiep, lwkt_serialize_t serializer, const char *desc) { if (dev->parent == NULL) return EINVAL; return BUS_SETUP_INTR(dev->parent, dev, r, flags, handler, arg, cookiep, serializer, desc); } int bus_setup_intr(device_t dev, struct resource *r, int flags, driver_intr_t handler, void *arg, void **cookiep, lwkt_serialize_t serializer) { return bus_setup_intr_descr(dev, r, flags, handler, arg, cookiep, serializer, NULL); } int bus_teardown_intr(device_t dev, struct resource *r, void *cookie) { if (dev->parent == NULL) return(EINVAL); return(BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie)); } void bus_enable_intr(device_t dev, void *cookie) { if (dev->parent) BUS_ENABLE_INTR(dev->parent, dev, cookie); } int bus_disable_intr(device_t dev, void *cookie) { if (dev->parent) return(BUS_DISABLE_INTR(dev->parent, dev, cookie)); else return(0); } int bus_set_resource(device_t dev, int type, int rid, u_long start, u_long count, int cpuid) { return(BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid, start, count, cpuid)); } int bus_get_resource(device_t dev, int type, int rid, u_long *startp, u_long *countp) { return(BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, startp, countp)); } u_long bus_get_resource_start(device_t dev, int type, int rid) { u_long start, count; int error; error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, &start, &count); if (error) return(0); return(start); } u_long bus_get_resource_count(device_t dev, int type, int rid) { u_long start, count; int error; error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, &start, &count); if (error) return(0); return(count); } void bus_delete_resource(device_t dev, int type, int rid) { BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid); } int bus_child_present(device_t child) { return (BUS_CHILD_PRESENT(device_get_parent(child), child)); } int bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen) { device_t parent; parent = device_get_parent(child); if (parent == NULL) { *buf = '\0'; return (0); } return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen)); } int bus_child_location_str(device_t child, char *buf, size_t buflen) { device_t parent; parent = device_get_parent(child); if (parent == NULL) { *buf = '\0'; return (0); } return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen)); } /** * @brief Wrapper function for BUS_GET_DMA_TAG(). * * This function simply calls the BUS_GET_DMA_TAG() method of the * parent of @p dev. */ bus_dma_tag_t bus_get_dma_tag(device_t dev) { device_t parent; parent = device_get_parent(dev); if (parent == NULL) return (NULL); return (BUS_GET_DMA_TAG(parent, dev)); } static int root_print_child(device_t dev, device_t child) { return(0); } static int root_setup_intr(device_t dev, device_t child, driver_intr_t *intr, void *arg, void **cookiep, lwkt_serialize_t serializer, const char *desc) { /* * If an interrupt mapping gets to here something bad has happened. */ panic("root_setup_intr"); } /* * If we get here, assume that the device is permanant and really is * present in the system. Removable bus drivers are expected to intercept * this call long before it gets here. We return -1 so that drivers that * really care can check vs -1 or some ERRNO returned higher in the food * chain. */ static int root_child_present(device_t dev, device_t child) { return(-1); } /* * XXX NOTE! other defaults may be set in bus_if.m */ static kobj_method_t root_methods[] = { /* Device interface */ KOBJMETHOD(device_shutdown, bus_generic_shutdown), KOBJMETHOD(device_suspend, bus_generic_suspend), KOBJMETHOD(device_resume, bus_generic_resume), /* Bus interface */ KOBJMETHOD(bus_add_child, bus_generic_add_child), KOBJMETHOD(bus_print_child, root_print_child), KOBJMETHOD(bus_read_ivar, bus_generic_read_ivar), KOBJMETHOD(bus_write_ivar, bus_generic_write_ivar), KOBJMETHOD(bus_setup_intr, root_setup_intr), KOBJMETHOD(bus_child_present, root_child_present), KOBJMETHOD_END }; static driver_t root_driver = { "root", root_methods, 1, /* no softc */ }; device_t root_bus; devclass_t root_devclass; static int root_bus_module_handler(module_t mod, int what, void* arg) { switch (what) { case MOD_LOAD: TAILQ_INIT(&bus_data_devices); root_bus = make_device(NULL, "root", 0); root_bus->desc = "System root bus"; kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver); root_bus->driver = &root_driver; root_bus->state = DS_ALIVE; root_devclass = devclass_find_internal("root", NULL, FALSE); devinit(); return(0); case MOD_SHUTDOWN: device_shutdown(root_bus); return(0); default: return(0); } } static moduledata_t root_bus_mod = { "rootbus", root_bus_module_handler, 0 }; DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST); void root_bus_configure(void) { int warncount; device_t dev; PDEBUG((".")); /* * handle device_identify based device attachments to the root_bus * (typically nexus). */ bus_generic_probe(root_bus); /* * Probe and attach the devices under root_bus. */ TAILQ_FOREACH(dev, &root_bus->children, link) { device_probe_and_attach(dev); } /* * Wait for all asynchronous attaches to complete. If we don't * our legacy ISA bus scan could steal device unit numbers or * even I/O ports. */ warncount = 10; if (numasyncthreads) kprintf("Waiting for async drivers to attach\n"); while (numasyncthreads > 0) { if (tsleep(&numasyncthreads, 0, "rootbus", hz) == EWOULDBLOCK) --warncount; if (warncount == 0) { kprintf("Warning: Still waiting for %d " "drivers to attach\n", numasyncthreads); } else if (warncount == -30) { kprintf("Giving up on %d drivers\n", numasyncthreads); break; } } root_bus->state = DS_ATTACHED; } int driver_module_handler(module_t mod, int what, void *arg) { int error; struct driver_module_data *dmd; devclass_t bus_devclass; kobj_class_t driver; const char *parentname; dmd = (struct driver_module_data *)arg; bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE); error = 0; switch (what) { case MOD_LOAD: if (dmd->dmd_chainevh) error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); driver = dmd->dmd_driver; PDEBUG(("Loading module: driver %s on bus %s", DRIVERNAME(driver), dmd->dmd_busname)); /* * If the driver has any base classes, make the * devclass inherit from the devclass of the driver's * first base class. This will allow the system to * search for drivers in both devclasses for children * of a device using this driver. */ if (driver->baseclasses) parentname = driver->baseclasses[0]->name; else parentname = NULL; *dmd->dmd_devclass = devclass_find_internal(driver->name, parentname, TRUE); error = devclass_add_driver(bus_devclass, driver); if (error) break; break; case MOD_UNLOAD: PDEBUG(("Unloading module: driver %s from bus %s", DRIVERNAME(dmd->dmd_driver), dmd->dmd_busname)); error = devclass_delete_driver(bus_devclass, dmd->dmd_driver); if (!error && dmd->dmd_chainevh) error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); break; } return (error); } #ifdef BUS_DEBUG /* * The _short versions avoid iteration by not calling anything that prints * more than oneliners. I love oneliners. */ static void print_device_short(device_t dev, int indent) { if (!dev) return; indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s,%sivars,%ssoftc,busy=%d\n", dev->unit, dev->desc, (dev->parent? "":"no "), (TAILQ_EMPTY(&dev->children)? "no ":""), (dev->flags&DF_ENABLED? "enabled,":"disabled,"), (dev->flags&DF_FIXEDCLASS? "fixed,":""), (dev->flags&DF_WILDCARD? "wildcard,":""), (dev->flags&DF_DESCMALLOCED? "descmalloced,":""), (dev->ivars? "":"no "), (dev->softc? "":"no "), dev->busy)); } static void print_device(device_t dev, int indent) { if (!dev) return; print_device_short(dev, indent); indentprintf(("Parent:\n")); print_device_short(dev->parent, indent+1); indentprintf(("Driver:\n")); print_driver_short(dev->driver, indent+1); indentprintf(("Devclass:\n")); print_devclass_short(dev->devclass, indent+1); } /* * Print the device and all its children (indented). */ void print_device_tree_short(device_t dev, int indent) { device_t child; if (!dev) return; print_device_short(dev, indent); TAILQ_FOREACH(child, &dev->children, link) print_device_tree_short(child, indent+1); } /* * Print the device and all its children (indented). */ void print_device_tree(device_t dev, int indent) { device_t child; if (!dev) return; print_device(dev, indent); TAILQ_FOREACH(child, &dev->children, link) print_device_tree(child, indent+1); } static void print_driver_short(driver_t *driver, int indent) { if (!driver) return; indentprintf(("driver %s: softc size = %zu\n", driver->name, driver->size)); } static void print_driver(driver_t *driver, int indent) { if (!driver) return; print_driver_short(driver, indent); } static void print_driver_list(driver_list_t drivers, int indent) { driverlink_t driver; TAILQ_FOREACH(driver, &drivers, link) print_driver(driver->driver, indent); } static void print_devclass_short(devclass_t dc, int indent) { if (!dc) return; indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit)); } static void print_devclass(devclass_t dc, int indent) { int i; if (!dc) return; print_devclass_short(dc, indent); indentprintf(("Drivers:\n")); print_driver_list(dc->drivers, indent+1); indentprintf(("Devices:\n")); for (i = 0; i < dc->maxunit; i++) if (dc->devices[i]) print_device(dc->devices[i], indent+1); } void print_devclass_list_short(void) { devclass_t dc; kprintf("Short listing of devclasses, drivers & devices:\n"); TAILQ_FOREACH(dc, &devclasses, link) { print_devclass_short(dc, 0); } } void print_devclass_list(void) { devclass_t dc; kprintf("Full listing of devclasses, drivers & devices:\n"); TAILQ_FOREACH(dc, &devclasses, link) { print_devclass(dc, 0); } } #endif /* * Check to see if a device is disabled via a disabled hint. */ int resource_disabled(const char *name, int unit) { int error, value; error = resource_int_value(name, unit, "disabled", &value); if (error) return(0); return(value); } /* * User-space access to the device tree. * * We implement a small set of nodes: * * hw.bus Single integer read method to obtain the * current generation count. * hw.bus.devices Reads the entire device tree in flat space. * hw.bus.rman Resource manager interface * * We might like to add the ability to scan devclasses and/or drivers to * determine what else is currently loaded/available. */ static int sysctl_bus(SYSCTL_HANDLER_ARGS) { struct u_businfo ubus; ubus.ub_version = BUS_USER_VERSION; ubus.ub_generation = bus_data_generation; return (SYSCTL_OUT(req, &ubus, sizeof(ubus))); } SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus, "bus-related data"); static int sysctl_devices(SYSCTL_HANDLER_ARGS) { int *name = (int *)arg1; u_int namelen = arg2; int index; device_t dev; struct u_device udev; /* XXX this is a bit big */ int error; if (namelen != 2) return (EINVAL); if (bus_data_generation_check(name[0])) return (EINVAL); index = name[1]; /* * Scan the list of devices, looking for the requested index. */ TAILQ_FOREACH(dev, &bus_data_devices, devlink) { if (index-- == 0) break; } if (dev == NULL) return (ENOENT); /* * Populate the return array. */ bzero(&udev, sizeof(udev)); udev.dv_handle = (uintptr_t)dev; udev.dv_parent = (uintptr_t)dev->parent; if (dev->nameunit != NULL) strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name)); if (dev->desc != NULL) strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc)); if (dev->driver != NULL && dev->driver->name != NULL) strlcpy(udev.dv_drivername, dev->driver->name, sizeof(udev.dv_drivername)); bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo)); bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location)); udev.dv_devflags = dev->devflags; udev.dv_flags = dev->flags; udev.dv_state = dev->state; error = SYSCTL_OUT(req, &udev, sizeof(udev)); return (error); } SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices, "system device tree"); int bus_data_generation_check(int generation) { if (generation != bus_data_generation) return (1); /* XXX generate optimised lists here? */ return (0); } void bus_data_generation_update(void) { bus_data_generation++; } const char * intr_str_polarity(enum intr_polarity pola) { switch (pola) { case INTR_POLARITY_LOW: return "low"; case INTR_POLARITY_HIGH: return "high"; case INTR_POLARITY_CONFORM: return "conform"; } return "unknown"; } const char * intr_str_trigger(enum intr_trigger trig) { switch (trig) { case INTR_TRIGGER_EDGE: return "edge"; case INTR_TRIGGER_LEVEL: return "level"; case INTR_TRIGGER_CONFORM: return "conform"; } return "unknown"; } int device_getenv_int(device_t dev, const char *knob, int def) { char env[128]; /* Deprecated; for compat */ ksnprintf(env, sizeof(env), "hw.%s.%s", device_get_nameunit(dev), knob); kgetenv_int(env, &def); /* Prefer dev.driver.unit.knob */ ksnprintf(env, sizeof(env), "dev.%s.%d.%s", device_get_name(dev), device_get_unit(dev), knob); kgetenv_int(env, &def); return def; } void device_getenv_string(device_t dev, const char *knob, char * __restrict data, int dlen, const char * __restrict def) { char env[128]; strlcpy(data, def, dlen); /* Deprecated; for compat */ ksnprintf(env, sizeof(env), "hw.%s.%s", device_get_nameunit(dev), knob); kgetenv_string(env, data, dlen); /* Prefer dev.driver.unit.knob */ ksnprintf(env, sizeof(env), "dev.%s.%d.%s", device_get_name(dev), device_get_unit(dev), knob); kgetenv_string(env, data, dlen); }