/* * Copyright (c) 1982, 1986, 1989, 1993 * The Regents of the University of California. All rights reserved. * (c) UNIX System Laboratories, Inc. * All or some portions of this file are derived from material licensed * to the University of California by American Telephone and Telegraph * Co. or Unix System Laboratories, Inc. and are reproduced herein with * the permission of UNIX System Laboratories, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)vfs_vnops.c 8.2 (Berkeley) 1/21/94 * $FreeBSD: src/sys/kern/vfs_vnops.c,v 1.87.2.13 2002/12/29 18:19:53 dillon Exp $ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static int vn_closefile (struct file *fp); static int vn_ioctl (struct file *fp, u_long com, caddr_t data, struct ucred *cred, struct sysmsg *msg); static int vn_read (struct file *fp, struct uio *uio, struct ucred *cred, int flags); static int vn_kqfilter (struct file *fp, struct knote *kn); static int vn_statfile (struct file *fp, struct stat *sb, struct ucred *cred); static int vn_write (struct file *fp, struct uio *uio, struct ucred *cred, int flags); struct fileops vnode_fileops = { .fo_read = vn_read, .fo_write = vn_write, .fo_ioctl = vn_ioctl, .fo_kqfilter = vn_kqfilter, .fo_stat = vn_statfile, .fo_close = vn_closefile, .fo_shutdown = nofo_shutdown }; /* * Common code for vnode open operations. Check permissions, and call * the VOP_NOPEN or VOP_NCREATE routine. * * The caller is responsible for setting up nd with nlookup_init() and * for cleaning it up with nlookup_done(), whether we return an error * or not. * * On success nd->nl_open_vp will hold a referenced and, if requested, * locked vnode. A locked vnode is requested via NLC_LOCKVP. If fp * is non-NULL the vnode will be installed in the file pointer. * * NOTE: If the caller wishes the namecache entry to be operated with * a shared lock it must use NLC_SHAREDLOCK. If NLC_LOCKVP is set * then the vnode lock will also be shared. * * NOTE: The vnode is referenced just once on return whether or not it * is also installed in the file pointer. */ int vn_open(struct nlookupdata *nd, struct file **fpp, int fmode, int cmode) { struct file *fp = fpp ? *fpp : NULL; struct vnode *vp; struct ucred *cred = nd->nl_cred; struct vattr vat; struct vattr *vap = &vat; int error; int vpexcl; u_int flags; uint64_t osize; struct mount *mp; /* * Certain combinations are illegal */ if ((fmode & (FWRITE | O_TRUNC)) == O_TRUNC) return(EACCES); /* * Lookup the path and create or obtain the vnode. After a * successful lookup a locked nd->nl_nch will be returned. * * The result of this section should be a locked vnode. * * XXX with only a little work we should be able to avoid locking * the vnode if FWRITE, O_CREAT, and O_TRUNC are *not* set. */ nd->nl_flags |= NLC_OPEN; if (fmode & O_APPEND) nd->nl_flags |= NLC_APPEND; if (fmode & O_TRUNC) nd->nl_flags |= NLC_TRUNCATE; if (fmode & FREAD) nd->nl_flags |= NLC_READ; if (fmode & FWRITE) nd->nl_flags |= NLC_WRITE; if ((fmode & O_EXCL) == 0 && (fmode & O_NOFOLLOW) == 0) nd->nl_flags |= NLC_FOLLOW; if (fmode & O_CREAT) { /* * CONDITIONAL CREATE FILE CASE * * Setting NLC_CREATE causes a negative hit to store * the negative hit ncp and not return an error. Then * nc_error or nc_vp may be checked to see if the ncp * represents a negative hit. NLC_CREATE also requires * write permission on the governing directory or EPERM * is returned. * * If the file exists but is missing write permission, * nlookup() returns EACCES. This has to be handled specially * when combined with O_EXCL. */ nd->nl_flags |= NLC_CREATE; nd->nl_flags |= NLC_REFDVP; bwillinode(1); error = nlookup(nd); if (error == EACCES && nd->nl_nch.ncp->nc_vp != NULL && (fmode & O_EXCL) && !nd->nl_dir_error) { error = EEXIST; } /* * If no error and nd->nl_dvp is NULL, the nlookup represents * a mount-point or cross-mount situation. e.g. * open("/var/cache", O_CREAT), where /var/cache is a * mount point or a null-mount point. */ if (error == 0 && nd->nl_dvp == NULL) error = EINVAL; } else { /* * NORMAL OPEN FILE CASE */ error = nlookup(nd); } if (error) return (error); /* * split case to allow us to re-resolve and retry the ncp in case * we get ESTALE. * * (error is 0 on entry / retry) */ again: /* * Checks for (likely) filesystem-modifying cases and allows * the filesystem to stall the front-end. */ if ((fmode & (FWRITE | O_TRUNC)) || ((fmode & O_CREAT) && nd->nl_nch.ncp->nc_vp == NULL)) { error = ncp_writechk(&nd->nl_nch); if (error) return error; } vpexcl = 1; if (fmode & O_CREAT) { if (nd->nl_nch.ncp->nc_vp == NULL) { VATTR_NULL(vap); vap->va_type = VREG; vap->va_mode = cmode; vap->va_fuseflags = fmode; /* FUSE */ if (fmode & O_EXCL) vap->va_vaflags |= VA_EXCLUSIVE; error = VOP_NCREATE(&nd->nl_nch, nd->nl_dvp, &vp, nd->nl_cred, vap); if (error) return (error); fmode &= ~O_TRUNC; /* locked vnode is returned */ } else { if (fmode & O_EXCL) { error = EEXIST; } else { error = cache_vget(&nd->nl_nch, cred, LK_EXCLUSIVE, &vp); } if (error) return (error); fmode &= ~O_CREAT; } } else { /* * In most other cases a shared lock on the vnode is * sufficient. However, the O_RDWR case needs an * exclusive lock if the vnode is executable. The * NLC_EXCLLOCK_IFEXEC and NCF_NOTX flags help resolve * this. * * NOTE: If NCF_NOTX is not set, we do not know the * the state of the 'x' bits and have to get * an exclusive lock for the EXCLLOCK_IFEXEC case. */ if ((nd->nl_flags & NLC_SHAREDLOCK) && ((nd->nl_flags & NLC_EXCLLOCK_IFEXEC) == 0 || nd->nl_nch.ncp->nc_flag & NCF_NOTX)) { error = cache_vget(&nd->nl_nch, cred, LK_SHARED, &vp); vpexcl = 0; } else { error = cache_vget(&nd->nl_nch, cred, LK_EXCLUSIVE, &vp); } if (error) return (error); } /* * We have a locked vnode and ncp now. Note that the ncp will * be cleaned up by the caller if nd->nl_nch is left intact. */ if (vp->v_type == VLNK) { error = EMLINK; goto bad; } if (vp->v_type == VSOCK) { error = EOPNOTSUPP; goto bad; } if (vp->v_type != VDIR && (fmode & O_DIRECTORY)) { error = ENOTDIR; goto bad; } if ((fmode & O_CREAT) == 0) { if (fmode & (FWRITE | O_TRUNC)) { if (vp->v_type == VDIR) { error = EISDIR; goto bad; } /* * Additional checks on vnode (does not substitute * for ncp_writechk()). */ error = vn_writechk(vp); if (error) { /* * Special stale handling, re-resolve the * vnode. */ if (error == ESTALE) { u_int dummy_gen = 0; vput(vp); vp = NULL; if (vpexcl == 0) { cache_unlock(&nd->nl_nch); cache_lock(&nd->nl_nch); } cache_setunresolved(&nd->nl_nch); error = cache_resolve(&nd->nl_nch, &dummy_gen, cred); if (error == 0) goto again; } goto bad; } } } if (fmode & O_TRUNC) { vn_unlock(vp); /* XXX */ vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); /* XXX */ osize = vp->v_filesize; VATTR_NULL(vap); vap->va_size = 0; error = VOP_SETATTR_FP(vp, vap, cred, fp); if (error) goto bad; error = VOP_GETATTR(vp, vap); if (error) goto bad; mp = vq_vptomp(vp); VFS_ACCOUNT(mp, vap->va_uid, vap->va_gid, -osize); } /* * Set or clear VNSWAPCACHE on the vp based on nd->nl_nch.ncp->nc_flag. * These particular bits a tracked all the way from the root. * * NOTE: Might not work properly on NFS servers due to the * disconnected namecache. */ flags = nd->nl_nch.ncp->nc_flag; if ((flags & (NCF_UF_CACHE | NCF_UF_PCACHE)) && (flags & (NCF_SF_NOCACHE | NCF_SF_PNOCACHE)) == 0) { vsetflags(vp, VSWAPCACHE); } else { vclrflags(vp, VSWAPCACHE); } /* * Setup the fp so VOP_OPEN can override it. No descriptor has been * associated with the fp yet so we own it clean. * * f_nchandle inherits nl_nch. This used to be necessary only for * directories but now we do it unconditionally so f*() ops * such as fchmod() can access the actual namespace that was * used to open the file. */ if (fp) { if (nd->nl_flags & NLC_APPENDONLY) fmode |= FAPPENDONLY; fp->f_nchandle = nd->nl_nch; cache_zero(&nd->nl_nch); cache_unlock(&fp->f_nchandle); } /* * Get rid of nl_nch. vn_open does not return it (it returns the * vnode or the file pointer). * * NOTE: We can't leave nl_nch locked through the VOP_OPEN anyway * since the VOP_OPEN may block, e.g. on /dev/ttyd0 * * NOTE: The VOP_OPEN() can replace the *fpp we supply with its own * (it will fdrop/fhold), and can also set the *fpp up however * it wants, not necessarily using DTYPE_VNODE. */ if (nd->nl_nch.ncp) cache_put(&nd->nl_nch); error = VOP_OPEN(vp, fmode, cred, fpp); fp = fpp ? *fpp : NULL; if (error) { /* * setting f_ops to &badfileops will prevent the descriptor * code from trying to close and release the vnode, since * the open failed we do not want to call close. */ if (fp) { fp->f_data = NULL; fp->f_ops = &badfileops; } goto bad; } #if 0 /* * Assert that VREG files have been setup for vmio. */ KASSERT(vp->v_type != VREG || vp->v_object != NULL, ("vn_open: regular file was not VMIO enabled!")); #endif /* * Return the vnode. XXX needs some cleaning up. The vnode is * only returned in the fp == NULL case. * * NOTE: vnode stored in fp may be different */ if (fp == NULL) { nd->nl_open_vp = vp; nd->nl_vp_fmode = fmode; if ((nd->nl_flags & NLC_LOCKVP) == 0) vn_unlock(vp); } else { vput(vp); } return (0); bad: if (vp) vput(vp); return (error); } int vn_opendisk(const char *devname, int fmode, struct vnode **vpp) { struct vnode *vp; int error; if (strncmp(devname, "/dev/", 5) == 0) devname += 5; if ((vp = getsynthvnode(devname)) == NULL) { error = ENODEV; } else { error = VOP_OPEN(vp, fmode, proc0.p_ucred, NULL); vn_unlock(vp); if (error) { vrele(vp); vp = NULL; } } *vpp = vp; return (error); } /* * Checks for special conditions on the vnode which might prevent writing * after the vnode has (likely) been locked. The vnode might or might not * be locked as of this call, but will be at least referenced. * * Also re-checks the mount RDONLY flag that ncp_writechk() checked prior * to the vnode being locked. */ int vn_writechk(struct vnode *vp) { /* * If there's shared text associated with * the vnode, try to free it up once. If * we fail, we can't allow writing. */ if (vp->v_flag & VTEXT) return (ETXTBSY); if (vp->v_mount && (vp->v_mount->mnt_flag & MNT_RDONLY)) return (EROFS); return 0; } /* * Check whether the underlying mount is read-only. The mount point * referenced by the namecache may be different from the mount point * used by the underlying vnode in the case of NULLFS, so a separate * check is needed. * * Must be called PRIOR to any vnodes being locked. */ int ncp_writechk(struct nchandle *nch) { struct mount *mp; if ((mp = nch->mount) != NULL) { if (mp->mnt_flag & MNT_RDONLY) return (EROFS); if (mp->mnt_op->vfs_modifying != vfs_stdmodifying) VFS_MODIFYING(mp); } return(0); } /* * Vnode close call * * MPSAFE */ int vn_close(struct vnode *vp, int flags, struct file *fp) { int error; error = vn_lock(vp, LK_SHARED | LK_RETRY | LK_FAILRECLAIM); if (error == 0) { error = VOP_CLOSE(vp, flags, fp); vn_unlock(vp); } vrele(vp); return (error); } /* * Sequential heuristic. * * MPSAFE (f_seqcount and f_nextoff are allowed to race) */ static __inline int sequential_heuristic(struct uio *uio, struct file *fp) { /* * Sequential heuristic - detect sequential operation * * NOTE: SMP: We allow f_seqcount updates to race. */ if ((uio->uio_offset == 0 && fp->f_seqcount > 0) || uio->uio_offset == fp->f_nextoff) { int tmpseq = fp->f_seqcount; tmpseq += howmany(uio->uio_resid, MAXBSIZE); if (tmpseq > IO_SEQMAX) tmpseq = IO_SEQMAX; fp->f_seqcount = tmpseq; return(fp->f_seqcount << IO_SEQSHIFT); } /* * Not sequential, quick draw-down of seqcount * * NOTE: SMP: We allow f_seqcount updates to race. */ if (fp->f_seqcount > 1) fp->f_seqcount = 1; else fp->f_seqcount = 0; return(0); } /* * get - lock and return the f_offset field. * set - set and unlock the f_offset field. * * These routines serve the dual purpose of serializing access to the * f_offset field (at least on x86) and guaranteeing operational integrity * when multiple read()ers and write()ers are present on the same fp. * * MPSAFE */ static __inline off_t vn_get_fpf_offset(struct file *fp) { u_int flags; u_int nflags; /* * Shortcut critical path. */ flags = fp->f_flag & ~FOFFSETLOCK; if (atomic_cmpset_int(&fp->f_flag, flags, flags | FOFFSETLOCK)) return(fp->f_offset); /* * The hard way */ for (;;) { flags = fp->f_flag; if (flags & FOFFSETLOCK) { nflags = flags | FOFFSETWAKE; tsleep_interlock(&fp->f_flag, 0); if (atomic_cmpset_int(&fp->f_flag, flags, nflags)) tsleep(&fp->f_flag, PINTERLOCKED, "fpoff", 0); } else { nflags = flags | FOFFSETLOCK; if (atomic_cmpset_int(&fp->f_flag, flags, nflags)) break; } } return(fp->f_offset); } /* * MPSAFE */ static __inline void vn_set_fpf_offset(struct file *fp, off_t offset) { u_int flags; u_int nflags; /* * We hold the lock so we can set the offset without interference. */ fp->f_offset = offset; /* * Normal release is already a reasonably critical path. */ for (;;) { flags = fp->f_flag; nflags = flags & ~(FOFFSETLOCK | FOFFSETWAKE); if (atomic_cmpset_int(&fp->f_flag, flags, nflags)) { if (flags & FOFFSETWAKE) wakeup(&fp->f_flag); break; } } } /* * MPSAFE */ static __inline off_t vn_poll_fpf_offset(struct file *fp) { #if defined(__x86_64__) return(fp->f_offset); #else off_t off = vn_get_fpf_offset(fp); vn_set_fpf_offset(fp, off); return(off); #endif } /* * Package up an I/O request on a vnode into a uio and do it. * * MPSAFE */ int vn_rdwr(enum uio_rw rw, struct vnode *vp, caddr_t base, int len, off_t offset, enum uio_seg segflg, int ioflg, struct ucred *cred, int *aresid) { struct uio auio; struct iovec aiov; int error; if ((ioflg & IO_NODELOCKED) == 0) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); auio.uio_iov = &aiov; auio.uio_iovcnt = 1; aiov.iov_base = base; aiov.iov_len = len; auio.uio_resid = len; auio.uio_offset = offset; auio.uio_segflg = segflg; auio.uio_rw = rw; auio.uio_td = curthread; if (rw == UIO_READ) { error = VOP_READ(vp, &auio, ioflg, cred); } else { error = VOP_WRITE(vp, &auio, ioflg, cred); } if (aresid) *aresid = auio.uio_resid; else if (auio.uio_resid && error == 0) error = EIO; if ((ioflg & IO_NODELOCKED) == 0) vn_unlock(vp); return (error); } /* * Package up an I/O request on a vnode into a uio and do it. The I/O * request is split up into smaller chunks and we try to avoid saturating * the buffer cache while potentially holding a vnode locked, so we * check bwillwrite() before calling vn_rdwr(). We also call lwkt_user_yield() * to give other processes a chance to lock the vnode (either other processes * core'ing the same binary, or unrelated processes scanning the directory). * * MPSAFE */ int vn_rdwr_inchunks(enum uio_rw rw, struct vnode *vp, caddr_t base, int len, off_t offset, enum uio_seg segflg, int ioflg, struct ucred *cred, int *aresid) { int error = 0; do { int chunk; /* * Force `offset' to a multiple of MAXBSIZE except possibly * for the first chunk, so that filesystems only need to * write full blocks except possibly for the first and last * chunks. */ chunk = MAXBSIZE - (uoff_t)offset % MAXBSIZE; if (chunk > len) chunk = len; if (vp->v_type == VREG && (ioflg & IO_RECURSE) == 0) { switch(rw) { case UIO_READ: bwillread(chunk); break; case UIO_WRITE: bwillwrite(chunk); break; } } error = vn_rdwr(rw, vp, base, chunk, offset, segflg, ioflg, cred, aresid); len -= chunk; /* aresid calc already includes length */ if (error) break; offset += chunk; base += chunk; lwkt_user_yield(); } while (len); if (aresid) *aresid += len; return (error); } /* * File pointers can no longer get ripped up by revoke so * we don't need to lock access to the vp. * * f_offset updates are not guaranteed against multiple readers */ static int vn_read(struct file *fp, struct uio *uio, struct ucred *cred, int flags) { struct vnode *vp; int error, ioflag; KASSERT(uio->uio_td == curthread, ("uio_td %p is not td %p", uio->uio_td, curthread)); vp = (struct vnode *)fp->f_data; ioflag = 0; if (flags & O_FBLOCKING) { /* ioflag &= ~IO_NDELAY; */ } else if (flags & O_FNONBLOCKING) { ioflag |= IO_NDELAY; } else if (fp->f_flag & FNONBLOCK) { ioflag |= IO_NDELAY; } if (fp->f_flag & O_DIRECT) { ioflag |= IO_DIRECT; } if ((flags & O_FOFFSET) == 0 && (vp->v_flag & VNOTSEEKABLE) == 0) uio->uio_offset = vn_get_fpf_offset(fp); vn_lock(vp, LK_SHARED | LK_RETRY); ioflag |= sequential_heuristic(uio, fp); error = VOP_READ_FP(vp, uio, ioflag, cred, fp); fp->f_nextoff = uio->uio_offset; vn_unlock(vp); if ((flags & O_FOFFSET) == 0 && (vp->v_flag & VNOTSEEKABLE) == 0) vn_set_fpf_offset(fp, uio->uio_offset); return (error); } /* * MPSAFE */ static int vn_write(struct file *fp, struct uio *uio, struct ucred *cred, int flags) { struct vnode *vp; int error, ioflag; KASSERT(uio->uio_td == curthread, ("uio_td %p is not p %p", uio->uio_td, curthread)); vp = (struct vnode *)fp->f_data; ioflag = IO_UNIT; if (vp->v_type == VREG && ((fp->f_flag & O_APPEND) || (flags & O_FAPPEND))) { ioflag |= IO_APPEND; } if (flags & O_FBLOCKING) { /* ioflag &= ~IO_NDELAY; */ } else if (flags & O_FNONBLOCKING) { ioflag |= IO_NDELAY; } else if (fp->f_flag & FNONBLOCK) { ioflag |= IO_NDELAY; } if (fp->f_flag & O_DIRECT) { ioflag |= IO_DIRECT; } if (flags & O_FASYNCWRITE) { /* ioflag &= ~IO_SYNC; */ } else if (flags & O_FSYNCWRITE) { ioflag |= IO_SYNC; } else if (fp->f_flag & O_FSYNC) { ioflag |= IO_SYNC; } if (vp->v_mount && (vp->v_mount->mnt_flag & MNT_SYNCHRONOUS)) ioflag |= IO_SYNC; if ((flags & O_FOFFSET) == 0) uio->uio_offset = vn_get_fpf_offset(fp); if (vp->v_mount) VFS_MODIFYING(vp->v_mount); vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); ioflag |= sequential_heuristic(uio, fp); error = VOP_WRITE_FP(vp, uio, ioflag, cred, fp); fp->f_nextoff = uio->uio_offset; vn_unlock(vp); if ((flags & O_FOFFSET) == 0) vn_set_fpf_offset(fp, uio->uio_offset); return (error); } /* * MPSAFE */ static int vn_statfile(struct file *fp, struct stat *sb, struct ucred *cred) { struct vnode *vp; int error; vp = (struct vnode *)fp->f_data; error = vn_stat(vp, sb, cred); return (error); } /* * MPSAFE */ int vn_stat(struct vnode *vp, struct stat *sb, struct ucred *cred) { struct vattr vattr; struct vattr *vap; int error; u_short mode; cdev_t dev; /* * vp already has a ref and is validated, can call unlocked. */ vap = &vattr; error = VOP_GETATTR(vp, vap); if (error) return (error); /* * Zero the spare stat fields */ sb->st_lspare = 0; sb->st_qspare2 = 0; /* * Copy from vattr table */ if (vap->va_fsid != VNOVAL) sb->st_dev = vap->va_fsid; else sb->st_dev = vp->v_mount->mnt_stat.f_fsid.val[0]; sb->st_ino = vap->va_fileid; mode = vap->va_mode; switch (vap->va_type) { case VREG: mode |= S_IFREG; break; case VDATABASE: mode |= S_IFDB; break; case VDIR: mode |= S_IFDIR; break; case VBLK: mode |= S_IFBLK; break; case VCHR: mode |= S_IFCHR; break; case VLNK: mode |= S_IFLNK; /* This is a cosmetic change, symlinks do not have a mode. */ if (vp->v_mount->mnt_flag & MNT_NOSYMFOLLOW) sb->st_mode &= ~ACCESSPERMS; /* 0000 */ else sb->st_mode |= ACCESSPERMS; /* 0777 */ break; case VSOCK: mode |= S_IFSOCK; break; case VFIFO: mode |= S_IFIFO; break; default: return (EBADF); } sb->st_mode = mode; if (vap->va_nlink > (nlink_t)-1) sb->st_nlink = (nlink_t)-1; else sb->st_nlink = vap->va_nlink; sb->st_uid = vap->va_uid; sb->st_gid = vap->va_gid; sb->st_rdev = devid_from_dev(vp->v_rdev); sb->st_size = vap->va_size; sb->st_atimespec = vap->va_atime; sb->st_mtimespec = vap->va_mtime; sb->st_ctimespec = vap->va_ctime; /* * A VCHR and VBLK device may track the last access and last modified * time independantly of the filesystem. This is particularly true * because device read and write calls may bypass the filesystem. */ if (vp->v_type == VCHR || vp->v_type == VBLK) { dev = vp->v_rdev; if (dev != NULL) { if (dev->si_lastread) { sb->st_atimespec.tv_sec = time_second + (dev->si_lastread - time_uptime); sb->st_atimespec.tv_nsec = 0; } if (dev->si_lastwrite) { sb->st_mtimespec.tv_sec = time_second + (dev->si_lastwrite - time_uptime); sb->st_mtimespec.tv_nsec = 0; } } } /* * According to www.opengroup.org, the meaning of st_blksize is * "a filesystem-specific preferred I/O block size for this * object. In some filesystem types, this may vary from file * to file" * Default to PAGE_SIZE after much discussion. */ if (vap->va_type == VREG) { sb->st_blksize = vap->va_blocksize; } else if (vn_isdisk(vp, NULL)) { /* * XXX this is broken. If the device is not yet open (aka * stat() call, aka v_rdev == NULL), how are we supposed * to get a valid block size out of it? */ dev = vp->v_rdev; sb->st_blksize = dev->si_bsize_best; if (sb->st_blksize < dev->si_bsize_phys) sb->st_blksize = dev->si_bsize_phys; if (sb->st_blksize < BLKDEV_IOSIZE) sb->st_blksize = BLKDEV_IOSIZE; } else { sb->st_blksize = PAGE_SIZE; } sb->st_flags = vap->va_flags; error = caps_priv_check(cred, SYSCAP_NOVFS_GENERATION); if (error) sb->st_gen = 0; else sb->st_gen = (u_int32_t)vap->va_gen; sb->st_blocks = vap->va_bytes / S_BLKSIZE; /* * This is for ABI compatibility <= 5.7 (for ABI change made in * 5.7 master). */ sb->__old_st_blksize = sb->st_blksize; return (0); } /* * MPALMOSTSAFE - acquires mplock */ static int vn_ioctl(struct file *fp, u_long com, caddr_t data, struct ucred *ucred, struct sysmsg *msg) { struct vnode *vp = ((struct vnode *)fp->f_data); struct vnode *ovp; struct vattr vattr; int error; off_t size; switch (vp->v_type) { case VREG: case VDIR: if (com == FIONREAD) { error = VOP_GETATTR(vp, &vattr); if (error) break; size = vattr.va_size; if ((vp->v_flag & VNOTSEEKABLE) == 0) size -= vn_poll_fpf_offset(fp); if (size > 0x7FFFFFFF) size = 0x7FFFFFFF; *(int *)data = size; error = 0; break; } if (com == FIOASYNC) { /* XXX */ error = 0; /* XXX */ break; } /* fall into ... */ default: #if 0 return (ENOTTY); #endif case VFIFO: case VCHR: case VBLK: if (com == FIODTYPE) { if (vp->v_type != VCHR && vp->v_type != VBLK) { error = ENOTTY; break; } *(int *)data = dev_dflags(vp->v_rdev) & D_TYPEMASK; error = 0; break; } error = VOP_IOCTL(vp, com, data, fp->f_flag, ucred, msg); if (error == 0 && com == TIOCSCTTY) { struct proc *p = curthread->td_proc; struct session *sess; if (p == NULL) { error = ENOTTY; break; } get_mplock(); sess = p->p_session; /* Do nothing if reassigning same control tty */ if (sess->s_ttyvp == vp) { error = 0; rel_mplock(); break; } /* Get rid of reference to old control tty */ ovp = sess->s_ttyvp; vref(vp); sess->s_ttyvp = vp; if (ovp) vrele(ovp); rel_mplock(); } break; } return (error); } /* * Obtain the requested vnode lock * * LK_RETRY Automatically retry on timeout * LK_FAILRECLAIM Fail if the vnode is being reclaimed * * Failures will occur if the vnode is undergoing recyclement, but not * all callers expect that the function will fail so the caller must pass * LK_FAILOK if it wants to process an error code. * * Errors can occur for other reasons if you pass in other LK_ flags, * regardless of whether you pass in LK_FAILRECLAIM */ int vn_lock(struct vnode *vp, int flags) { int error; do { error = lockmgr(&vp->v_lock, flags); if (error == 0) break; } while (flags & LK_RETRY); /* * Because we (had better!) have a ref on the vnode, once it * goes to VRECLAIMED state it will not be recycled until all * refs go away. So we can just check the flag. */ if (error == 0 && (vp->v_flag & VRECLAIMED)) { if (flags & LK_FAILRECLAIM) { lockmgr(&vp->v_lock, LK_RELEASE); error = ENOENT; } } return (error); } int vn_relock(struct vnode *vp, int flags) { int error; do { error = lockmgr(&vp->v_lock, flags); if (error == 0) break; } while (flags & LK_RETRY); return error; } #ifdef DEBUG_VN_UNLOCK void debug_vn_unlock(struct vnode *vp, const char *filename, int line) { kprintf("vn_unlock from %s:%d\n", filename, line); lockmgr(&vp->v_lock, LK_RELEASE); } #else void vn_unlock(struct vnode *vp) { lockmgr(&vp->v_lock, LK_RELEASE); } #endif /* * MPSAFE */ int vn_islocked(struct vnode *vp) { return (lockstatus(&vp->v_lock, curthread)); } /* * Return the lock status of a vnode and unlock the vnode * if we owned the lock. This is not a boolean, if the * caller cares what the lock status is the caller must * check the various possible values. * * This only unlocks exclusive locks held by the caller, * it will NOT unlock shared locks (there is no way to * tell who the shared lock belongs to). * * MPSAFE */ int vn_islocked_unlock(struct vnode *vp) { int vpls; vpls = lockstatus(&vp->v_lock, curthread); if (vpls == LK_EXCLUSIVE) lockmgr(&vp->v_lock, LK_RELEASE); return(vpls); } /* * Restore a vnode lock that we previously released via * vn_islocked_unlock(). This is a NOP if we did not * own the original lock. * * MPSAFE */ void vn_islocked_relock(struct vnode *vp, int vpls) { int error; if (vpls == LK_EXCLUSIVE) error = lockmgr(&vp->v_lock, vpls); } /* * MPSAFE */ static int vn_closefile(struct file *fp) { int error; fp->f_ops = &badfileops; error = vn_close(((struct vnode *)fp->f_data), fp->f_flag, fp); return (error); } /* * MPSAFE */ static int vn_kqfilter(struct file *fp, struct knote *kn) { int error; error = VOP_KQFILTER(((struct vnode *)fp->f_data), kn); return (error); }