/* * Copyright (c) 2003, 2004 Jeffrey M. Hsu. All rights reserved. * Copyright (c) 2003, 2004 The DragonFly Project. All rights reserved. * * This code is derived from software contributed to The DragonFly Project * by Jeffrey M. Hsu. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of The DragonFly Project nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific, prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)tcp_timer.c 8.2 (Berkeley) 5/24/95 * $FreeBSD: src/sys/netinet/tcp_timer.c,v 1.34.2.14 2003/02/03 02:33:41 hsu Exp $ */ #include "opt_inet6.h" #include "opt_tcpdebug.h" #include #include #include #include #include #include #include #include #include #include #include #include #include /* before tcp_seq.h, for tcp_random18() */ #include #include #include #include #include #ifdef INET6 #include #endif #include #include #include #include #include #include #include #include #ifdef TCPDEBUG #include #endif #define TCP_TIMER_REXMT 0x01 #define TCP_TIMER_PERSIST 0x02 #define TCP_TIMER_KEEP 0x04 #define TCP_TIMER_2MSL 0x08 #define TCP_TIMER_DELACK 0x10 static struct tcpcb *tcp_timer_rexmt_handler(struct tcpcb *); static struct tcpcb *tcp_timer_persist_handler(struct tcpcb *); static struct tcpcb *tcp_timer_keep_handler(struct tcpcb *); static struct tcpcb *tcp_timer_2msl_handler(struct tcpcb *); static struct tcpcb *tcp_timer_delack_handler(struct tcpcb *); static const struct tcp_timer { uint32_t tt_task; struct tcpcb *(*tt_handler)(struct tcpcb *); } tcp_timer_handlers[] = { { TCP_TIMER_DELACK, tcp_timer_delack_handler }, { TCP_TIMER_REXMT, tcp_timer_rexmt_handler }, { TCP_TIMER_PERSIST, tcp_timer_persist_handler }, { TCP_TIMER_KEEP, tcp_timer_keep_handler }, { TCP_TIMER_2MSL, tcp_timer_2msl_handler }, { 0, NULL } }; static int sysctl_msec_to_ticks(SYSCTL_HANDLER_ARGS) { int error, s, tt; tt = *(int *)oidp->oid_arg1; s = (int)((int64_t)tt * 1000 / hz); error = sysctl_handle_int(oidp, &s, 0, req); if (error || !req->newptr) return (error); tt = (int)((int64_t)s * hz / 1000); if (tt < 1) return (EINVAL); *(int *)oidp->oid_arg1 = tt; return (0); } int tcp_keepinit; SYSCTL_PROC(_net_inet_tcp, TCPCTL_KEEPINIT, keepinit, CTLTYPE_INT|CTLFLAG_RW, &tcp_keepinit, 0, sysctl_msec_to_ticks, "I", "Time to establish TCP connection"); int tcp_keepidle; SYSCTL_PROC(_net_inet_tcp, TCPCTL_KEEPIDLE, keepidle, CTLTYPE_INT|CTLFLAG_RW, &tcp_keepidle, 0, sysctl_msec_to_ticks, "I", "Time before TCP keepalive probes begin"); int tcp_keepintvl; SYSCTL_PROC(_net_inet_tcp, TCPCTL_KEEPINTVL, keepintvl, CTLTYPE_INT|CTLFLAG_RW, &tcp_keepintvl, 0, sysctl_msec_to_ticks, "I", "Time between TCP keepalive probes"); int tcp_delacktime; SYSCTL_PROC(_net_inet_tcp, TCPCTL_DELACKTIME, delacktime, CTLTYPE_INT|CTLFLAG_RW, &tcp_delacktime, 0, sysctl_msec_to_ticks, "I", "Time before a delayed ACK is sent"); int tcp_msl; SYSCTL_PROC(_net_inet_tcp, OID_AUTO, msl, CTLTYPE_INT|CTLFLAG_RW, &tcp_msl, 0, sysctl_msec_to_ticks, "I", "Maximum segment lifetime"); int tcp_rexmit_min; SYSCTL_PROC(_net_inet_tcp, OID_AUTO, rexmit_min, CTLTYPE_INT|CTLFLAG_RW, &tcp_rexmit_min, 0, sysctl_msec_to_ticks, "I", "Minimum Retransmission Timeout"); int tcp_rexmit_slop; SYSCTL_PROC(_net_inet_tcp, OID_AUTO, rexmit_slop, CTLTYPE_INT|CTLFLAG_RW, &tcp_rexmit_slop, 0, sysctl_msec_to_ticks, "I", "Retransmission Timer Slop"); static int always_keepalive = 1; SYSCTL_INT(_net_inet_tcp, OID_AUTO, always_keepalive, CTLFLAG_RW, &always_keepalive , 0, "Assume SO_KEEPALIVE on all TCP connections"); /* max idle probes */ int tcp_keepcnt = TCPTV_KEEPCNT; SYSCTL_INT(_net_inet_tcp, OID_AUTO, keepcnt, CTLFLAG_RW, &tcp_keepcnt, 0, "Maximum number of keepalive probes to be sent"); static int tcp_do_eifel_response = 1; SYSCTL_INT(_net_inet_tcp, OID_AUTO, eifel_response, CTLFLAG_RW, &tcp_do_eifel_response, 0, "Eifel response algorithm (RFC 4015)"); int tcp_eifel_rtoinc = 2; SYSCTL_PROC(_net_inet_tcp, OID_AUTO, eifel_rtoinc, CTLTYPE_INT|CTLFLAG_RW, &tcp_eifel_rtoinc, 0, sysctl_msec_to_ticks, "I", "Eifel response RTO increment"); /* max idle time in persist */ int tcp_maxpersistidle; /* * Cancel all timers for TCP tp. */ void tcp_canceltimers(struct tcpcb *tp) { tcp_callout_stop(tp, tp->tt_2msl); tcp_callout_stop(tp, tp->tt_persist); tcp_callout_stop(tp, tp->tt_keep); tcp_callout_stop(tp, tp->tt_rexmt); } /* * Caller should be in critical section */ static void tcp_send_timermsg(struct tcpcb *tp, uint32_t task) { struct netmsg_tcp_timer *tmsg = tp->tt_msg; KKASSERT(tmsg != NULL && tmsg->tt_cpuid == mycpuid && tmsg->tt_tcb != NULL); tmsg->tt_tasks |= task; if (tmsg->tt_msg.lmsg.ms_flags & MSGF_DONE) lwkt_sendmsg_oncpu(tmsg->tt_msgport, &tmsg->tt_msg.lmsg); } int tcp_syn_backoff[TCP_MAXRXTSHIFT + 1] = { 1, 1, 1, 1, 1, 2, 4, 8, 16, 32, 64, 64, 64 }; int tcp_syn_backoff_low[TCP_MAXRXTSHIFT + 1] = { 1, 1, 2, 4, 8, 8, 16, 16, 32, 64, 64, 64, 64 }; int tcp_backoff[TCP_MAXRXTSHIFT + 1] = { 1, 2, 4, 8, 16, 32, 64, 64, 64, 64, 64, 64, 64 }; static int tcp_totbackoff = 511; /* sum of tcp_backoff[] */ /* Caller should be in critical section */ static struct tcpcb * tcp_timer_delack_handler(struct tcpcb *tp) { tp->t_flags |= TF_ACKNOW; tcpstat.tcps_delack++; tcp_output(tp); return tp; } /* * TCP timer processing. */ void tcp_timer_delack(void *xtp) { struct tcpcb *tp = xtp; struct callout *co = &tp->tt_delack->tc_callout; crit_enter(); if (callout_pending(co) || !callout_active(co)) { crit_exit(); return; } callout_deactivate(co); tcp_send_timermsg(tp, TCP_TIMER_DELACK); crit_exit(); } /* Caller should be in critical section */ static struct tcpcb * tcp_timer_2msl_handler(struct tcpcb *tp) { #ifdef TCPDEBUG int ostate; #endif #ifdef TCPDEBUG ostate = tp->t_state; #endif /* * 2 MSL timeout in shutdown went off. If we're closed but * still waiting for peer to close and connection has been idle * too long, or if 2MSL time is up from TIME_WAIT, delete connection * control block. Otherwise, check again in a bit. */ if (tp->t_state != TCPS_TIME_WAIT && (ticks - tp->t_rcvtime) <= tp->t_maxidle) { tcp_callout_reset(tp, tp->tt_2msl, tp->t_keepintvl, tcp_timer_2msl); } else { tp = tcp_close(tp); } #ifdef TCPDEBUG if (tp && (tp->t_inpcb->inp_socket->so_options & SO_DEBUG)) tcp_trace(TA_USER, ostate, tp, NULL, NULL, PRU_SLOWTIMO); #endif return tp; } void tcp_timer_2msl(void *xtp) { struct tcpcb *tp = xtp; struct callout *co = &tp->tt_2msl->tc_callout; crit_enter(); if (callout_pending(co) || !callout_active(co)) { crit_exit(); return; } callout_deactivate(co); tcp_send_timermsg(tp, TCP_TIMER_2MSL); crit_exit(); } /* Caller should be in critical section */ static struct tcpcb * tcp_timer_keep_handler(struct tcpcb *tp) { struct tcptemp *t_template; #ifdef TCPDEBUG int ostate = tp->t_state; #endif /* * Keep-alive timer went off; send something * or drop connection if idle for too long. */ tcpstat.tcps_keeptimeo++; if (tp->t_state < TCPS_ESTABLISHED) goto dropit; if ((always_keepalive || (tp->t_flags & TF_KEEPALIVE) || (tp->t_inpcb->inp_socket->so_options & SO_KEEPALIVE)) && tp->t_state <= TCPS_CLOSING) { if ((ticks - tp->t_rcvtime) >= tp->t_keepidle + tp->t_maxidle) goto dropit; /* * Send a packet designed to force a response * if the peer is up and reachable: * either an ACK if the connection is still alive, * or an RST if the peer has closed the connection * due to timeout or reboot. * Using sequence number tp->snd_una-1 * causes the transmitted zero-length segment * to lie outside the receive window; * by the protocol spec, this requires the * correspondent TCP to respond. */ tcpstat.tcps_keepprobe++; t_template = tcp_maketemplate(tp); if (t_template) { tcp_respond(tp, t_template->tt_ipgen, &t_template->tt_t, NULL, tp->rcv_nxt, tp->snd_una - 1, 0); tcp_freetemplate(t_template); } tcp_callout_reset(tp, tp->tt_keep, tp->t_keepintvl, tcp_timer_keep); } else { tcp_callout_reset(tp, tp->tt_keep, tp->t_keepidle, tcp_timer_keep); } #ifdef TCPDEBUG if (tp->t_inpcb->inp_socket->so_options & SO_DEBUG) tcp_trace(TA_USER, ostate, tp, NULL, NULL, PRU_SLOWTIMO); #endif return tp; dropit: tcpstat.tcps_keepdrops++; tp = tcp_drop(tp, ETIMEDOUT); #ifdef TCPDEBUG if (tp && (tp->t_inpcb->inp_socket->so_options & SO_DEBUG)) tcp_trace(TA_USER, ostate, tp, NULL, NULL, PRU_SLOWTIMO); #endif return tp; } void tcp_timer_keep(void *xtp) { struct tcpcb *tp = xtp; struct callout *co = &tp->tt_keep->tc_callout; crit_enter(); if (callout_pending(co) || !callout_active(co)) { crit_exit(); return; } callout_deactivate(co); tcp_send_timermsg(tp, TCP_TIMER_KEEP); crit_exit(); } /* Caller should be in critical section */ static struct tcpcb * tcp_timer_persist_handler(struct tcpcb *tp) { #ifdef TCPDEBUG int ostate; #endif #ifdef TCPDEBUG ostate = tp->t_state; #endif /* * Persistance timer into zero window. * Force a byte to be output, if possible. */ tcpstat.tcps_persisttimeo++; /* * Hack: if the peer is dead/unreachable, we do not * time out if the window is closed. After a full * backoff, drop the connection if the idle time * (no responses to probes) reaches the maximum * backoff that we would use if retransmitting. */ if (tp->t_rxtshift == TCP_MAXRXTSHIFT && ((ticks - tp->t_rcvtime) >= tcp_maxpersistidle || (ticks - tp->t_rcvtime) >= TCP_REXMTVAL(tp) * tcp_totbackoff)) { tcpstat.tcps_persistdrop++; tp = tcp_drop(tp, ETIMEDOUT); goto out; } tcp_setpersist(tp); tp->t_flags |= TF_FORCE; tcp_output(tp); tp->t_flags &= ~TF_FORCE; out: #ifdef TCPDEBUG if (tp && tp->t_inpcb->inp_socket->so_options & SO_DEBUG) tcp_trace(TA_USER, ostate, tp, NULL, NULL, PRU_SLOWTIMO); #endif return tp; } void tcp_timer_persist(void *xtp) { struct tcpcb *tp = xtp; struct callout *co = &tp->tt_persist->tc_callout; crit_enter(); if (callout_pending(co) || !callout_active(co)){ crit_exit(); return; } callout_deactivate(co); tcp_send_timermsg(tp, TCP_TIMER_PERSIST); crit_exit(); } void tcp_save_congestion_state(struct tcpcb *tp) { /* * Record connection's current states so that they could be * recovered, if this turns out to be a spurious retransmit. */ tp->snd_cwnd_prev = tp->snd_cwnd; tp->snd_wacked_prev = tp->snd_wacked; tp->snd_ssthresh_prev = tp->snd_ssthresh; tp->snd_recover_prev = tp->snd_recover; /* * State for Eifel response after spurious timeout retransmit * is detected. We save the current value of snd_max even if * we are called from fast retransmit code, so if RTO needs * rebase, it will be rebased using the RTT of segment that * is not sent during possible congestion. */ tp->snd_max_prev = tp->snd_max; if (IN_FASTRECOVERY(tp)) tp->rxt_flags |= TRXT_F_WASFRECOVERY; else tp->rxt_flags &= ~TRXT_F_WASFRECOVERY; if (tp->t_flags & TF_RCVD_TSTMP) { /* States for Eifel detection */ tp->t_rexmtTS = ticks; tp->rxt_flags |= TRXT_F_FIRSTACCACK; } #ifdef later tcp_sack_save_scoreboard(&tp->scb); #endif } void tcp_revert_congestion_state(struct tcpcb *tp) { tp->snd_cwnd = tp->snd_cwnd_prev; tp->snd_wacked = tp->snd_wacked_prev; tp->snd_ssthresh = tp->snd_ssthresh_prev; tp->snd_recover = tp->snd_recover_prev; if (tp->rxt_flags & TRXT_F_WASFRECOVERY) ENTER_FASTRECOVERY(tp); if (tp->rxt_flags & TRXT_F_FASTREXMT) { ++tcpstat.tcps_sndfastrexmitbad; if (tp->rxt_flags & TRXT_F_EARLYREXMT) ++tcpstat.tcps_sndearlyrexmitbad; } else { ++tcpstat.tcps_sndrtobad; tp->snd_last = ticks; if (tcp_do_eifel_response) tp->rxt_flags |= TRXT_F_REBASERTO; } tp->t_badrxtwin = 0; tp->t_rxtshift = 0; tp->snd_nxt = tp->snd_max; #ifdef later tcp_sack_revert_scoreboard(&tp->scb, tp->snd_una); #endif } /* Caller should be in critical section */ static struct tcpcb * tcp_timer_rexmt_handler(struct tcpcb *tp) { int rexmt; #ifdef TCPDEBUG int ostate; #endif #ifdef TCPDEBUG ostate = tp->t_state; #endif /* * Retransmission timer went off. Message has not * been acked within retransmit interval. Back off * to a longer retransmit interval and retransmit one segment. */ if (++tp->t_rxtshift > TCP_MAXRXTSHIFT) { tp->t_rxtshift = TCP_MAXRXTSHIFT; tcpstat.tcps_timeoutdrop++; tp = tcp_drop(tp, tp->t_softerror ? tp->t_softerror : ETIMEDOUT); goto out; } if (tp->t_rxtshift == 1) { /* * First retransmit. */ /* * State for "RTT based spurious timeout retransmit detection" * * RTT based spurious timeout retransmit detection: * A retransmit is considered spurious if an ACK for this * segment is received within RTT/2 interval; the assumption * here is that the ACK was already in flight. See * "On Estimating End-to-End Network Path Properties" by * Allman and Paxson for more details. */ tp->t_badrxtwin = ticks + (tp->t_srtt >> (TCP_RTT_SHIFT + 1)); /* * States for Eifel response after spurious timeout retransmit * is detected. */ tp->t_rxtcur_prev = tp->t_rxtcur; tp->t_srtt_prev = tp->t_srtt + (tcp_eifel_rtoinc << TCP_RTT_SHIFT); tp->t_rttvar_prev = tp->t_rttvar; tcp_save_congestion_state(tp); tp->rxt_flags &= ~(TRXT_F_FASTREXMT | TRXT_F_EARLYREXMT | TRXT_F_REBASERTO); } if (tp->t_state == TCPS_SYN_SENT || tp->t_state == TCPS_SYN_RECEIVED) { /* * Record the time that we spent in SYN or SYN|ACK * retransmition. * * Needed by RFC3390 and RFC6298. */ tp->t_rxtsyn += tp->t_rxtcur; } /* Throw away SACK blocks on a RTO, as specified by RFC2018. */ tcp_sack_discard(tp); tcpstat.tcps_rexmttimeo++; if (tp->t_state == TCPS_SYN_SENT) { if (tcp_low_rtobase) { rexmt = TCP_REXMTVAL(tp) * tcp_syn_backoff_low[tp->t_rxtshift]; } else { rexmt = TCP_REXMTVAL(tp) * tcp_syn_backoff[tp->t_rxtshift]; } } else { rexmt = TCP_REXMTVAL(tp) * tcp_backoff[tp->t_rxtshift]; } TCPT_RANGESET(tp->t_rxtcur, rexmt, tp->t_rttmin, TCPTV_REXMTMAX); /* * If losing, let the lower level know and try for * a better route. Also, if we backed off this far, * our srtt estimate is probably bogus. Clobber it * so we'll take the next rtt measurement as our srtt; * move the current srtt into rttvar to keep the current * retransmit times until then. */ if (tp->t_rxtshift > TCP_MAXRXTSHIFT / 4) { #ifdef INET6 if (INP_ISIPV6(tp->t_inpcb)) in6_losing(tp->t_inpcb); else #endif in_losing(tp->t_inpcb); tp->t_rttvar += (tp->t_srtt >> TCP_RTT_SHIFT); tp->t_srtt = 0; } tp->snd_nxt = tp->snd_una; tp->snd_recover = tp->snd_max; /* * Force a segment to be sent. */ tp->t_flags |= TF_ACKNOW; /* * If timing a segment in this window, stop the timer. */ tp->t_rtttime = 0; /* * Close the congestion window down to one segment * (we'll open it by one segment for each ack we get). * Since we probably have a window's worth of unacked * data accumulated, this "slow start" keeps us from * dumping all that data as back-to-back packets (which * might overwhelm an intermediate gateway). * * There are two phases to the opening: Initially we * open by one mss on each ack. This makes the window * size increase exponentially with time. If the * window is larger than the path can handle, this * exponential growth results in dropped packet(s) * almost immediately. To get more time between * drops but still "push" the network to take advantage * of improving conditions, we switch from exponential * to linear window opening at some threshhold size. * For a threshhold, we use half the current window * size, truncated to a multiple of the mss. * * (the minimum cwnd that will give us exponential * growth is 2 mss. We don't allow the threshhold * to go below this.) */ { u_int win = min(tp->snd_wnd, tp->snd_cwnd) / 2 / tp->t_maxseg; if (win < 2) win = 2; tp->snd_cwnd = tp->t_maxseg; tp->snd_wacked = 0; tp->snd_ssthresh = win * tp->t_maxseg; tp->t_dupacks = 0; } EXIT_FASTRECOVERY(tp); tcp_output(tp); out: #ifdef TCPDEBUG if (tp && (tp->t_inpcb->inp_socket->so_options & SO_DEBUG)) tcp_trace(TA_USER, ostate, tp, NULL, NULL, PRU_SLOWTIMO); #endif return tp; } void tcp_timer_rexmt(void *xtp) { struct tcpcb *tp = xtp; struct callout *co = &tp->tt_rexmt->tc_callout; crit_enter(); if (callout_pending(co) || !callout_active(co)) { crit_exit(); return; } callout_deactivate(co); tcp_send_timermsg(tp, TCP_TIMER_REXMT); crit_exit(); } static void tcp_timer_handler(netmsg_t msg) { struct netmsg_tcp_timer *tmsg = (struct netmsg_tcp_timer *)msg; const struct tcp_timer *tt; struct tcpcb *tp; crit_enter(); KKASSERT(tmsg->tt_cpuid == mycpuid && tmsg->tt_tcb != NULL); tp = tmsg->tt_tcb; /* Save pending tasks and reset the tasks in message */ tmsg->tt_running_tasks = tmsg->tt_tasks; tmsg->tt_prev_tasks = tmsg->tt_tasks; tmsg->tt_tasks = 0; /* Reply ASAP */ lwkt_replymsg(&tmsg->tt_msg.lmsg, 0); if (tmsg->tt_running_tasks == 0) { /* * All of the timers are cancelled when the message * is pending; bail out. */ crit_exit(); return; } for (tt = tcp_timer_handlers; tt->tt_handler != NULL; ++tt) { if ((tmsg->tt_running_tasks & tt->tt_task) == 0) continue; tmsg->tt_running_tasks &= ~tt->tt_task; tp = tt->tt_handler(tp); if (tp == NULL) break; if (tmsg->tt_running_tasks == 0) /* nothing left to do */ break; } crit_exit(); } void tcp_create_timermsg(struct tcpcb *tp, struct lwkt_port *msgport) { struct netmsg_tcp_timer *tmsg = tp->tt_msg; netmsg_init(&tmsg->tt_msg, NULL, &netisr_adone_rport, MSGF_DROPABLE | MSGF_PRIORITY, tcp_timer_handler); tmsg->tt_cpuid = mycpuid; tmsg->tt_msgport = msgport; tmsg->tt_tcb = tp; tmsg->tt_tasks = 0; } void tcp_destroy_timermsg(struct tcpcb *tp) { struct netmsg_tcp_timer *tmsg = tp->tt_msg; if (tmsg == NULL || /* listen socket */ tmsg->tt_tcb == NULL) /* only tcp_attach() is called */ return; KKASSERT(tmsg->tt_cpuid == mycpuid); /* * This message is still pending to be processed; * drop it. Optimized. */ crit_enter(); if ((tmsg->tt_msg.lmsg.ms_flags & MSGF_DONE) == 0) { lwkt_dropmsg(&tmsg->tt_msg.lmsg); } crit_exit(); } static __inline void tcp_callout_init(struct tcp_callout *tc, uint32_t task) { callout_init_mp(&tc->tc_callout); tc->tc_task = task; } void tcp_inittimers(struct tcpcb *tp) { tcp_callout_init(tp->tt_rexmt, TCP_TIMER_REXMT); tcp_callout_init(tp->tt_persist, TCP_TIMER_PERSIST); tcp_callout_init(tp->tt_keep, TCP_TIMER_KEEP); tcp_callout_init(tp->tt_2msl, TCP_TIMER_2MSL); tcp_callout_init(tp->tt_delack, TCP_TIMER_DELACK); }