/*- * Copyright (c) 2008 David Schultz * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD: src/tools/regression/lib/msun/test-fma.c,v 1.6 2013/05/28 00:27:56 svnexp Exp $ */ /* * Tests for fma{,f,l}(). */ #include #include #include #include #include #define ALL_STD_EXCEPT (FE_DIVBYZERO | FE_INEXACT | FE_INVALID | \ FE_OVERFLOW | FE_UNDERFLOW) #pragma STDC FENV_ACCESS ON /* * Test that a function returns the correct value and sets the * exception flags correctly. The exceptmask specifies which * exceptions we should check. We need to be lenient for several * reasons, but mainly because on some architectures it's impossible * to raise FE_OVERFLOW without raising FE_INEXACT. * * These are macros instead of functions so that assert provides more * meaningful error messages. */ #define test(func, x, y, z, result, exceptmask, excepts) do { \ assert(feclearexcept(FE_ALL_EXCEPT) == 0); \ assert(fpequal((func)((x), (y), (z)), (result))); \ assert(((func), fetestexcept(exceptmask) == (excepts))); \ } while (0) #define testall(x, y, z, result, exceptmask, excepts) do { \ test(fma, (x), (y), (z), (double)(result), (exceptmask), (excepts)); \ test(fmaf, (x), (y), (z), (float)(result), (exceptmask), (excepts)); \ test(fmal, (x), (y), (z), (result), (exceptmask), (excepts)); \ } while (0) /* Test in all rounding modes. */ #define testrnd(func, x, y, z, rn, ru, rd, rz, exceptmask, excepts) do { \ fesetround(FE_TONEAREST); \ test((func), (x), (y), (z), (rn), (exceptmask), (excepts)); \ fesetround(FE_UPWARD); \ test((func), (x), (y), (z), (ru), (exceptmask), (excepts)); \ fesetround(FE_DOWNWARD); \ test((func), (x), (y), (z), (rd), (exceptmask), (excepts)); \ fesetround(FE_TOWARDZERO); \ test((func), (x), (y), (z), (rz), (exceptmask), (excepts)); \ } while (0) /* * This is needed because clang constant-folds fma in ways that are incorrect * in rounding modes other than FE_TONEAREST. */ volatile double one = 1.0; /* * Determine whether x and y are equal, with two special rules: * +0.0 != -0.0 * NaN == NaN */ int fpequal(long double x, long double y) { return ((x == y && !signbit(x) == !signbit(y)) || (isnan(x) && isnan(y))); } static void test_zeroes(void) { const int rd = (fegetround() == FE_DOWNWARD); testall(0.0, 0.0, 0.0, 0.0, ALL_STD_EXCEPT, 0); testall(1.0, 0.0, 0.0, 0.0, ALL_STD_EXCEPT, 0); testall(0.0, 1.0, 0.0, 0.0, ALL_STD_EXCEPT, 0); testall(0.0, 0.0, 1.0, 1.0, ALL_STD_EXCEPT, 0); testall(-0.0, 0.0, 0.0, rd ? -0.0 : 0.0, ALL_STD_EXCEPT, 0); testall(0.0, -0.0, 0.0, rd ? -0.0 : 0.0, ALL_STD_EXCEPT, 0); testall(-0.0, -0.0, 0.0, 0.0, ALL_STD_EXCEPT, 0); testall(0.0, 0.0, -0.0, rd ? -0.0 : 0.0, ALL_STD_EXCEPT, 0); testall(-0.0, -0.0, -0.0, rd ? -0.0 : 0.0, ALL_STD_EXCEPT, 0); testall(-0.0, 0.0, -0.0, -0.0, ALL_STD_EXCEPT, 0); testall(0.0, -0.0, -0.0, -0.0, ALL_STD_EXCEPT, 0); testall(-one, one, one, rd ? -0.0 : 0.0, ALL_STD_EXCEPT, 0); testall(one, -one, one, rd ? -0.0 : 0.0, ALL_STD_EXCEPT, 0); testall(-one, -one, -one, rd ? -0.0 : 0.0, ALL_STD_EXCEPT, 0); switch (fegetround()) { case FE_TONEAREST: case FE_TOWARDZERO: test(fmaf, -FLT_MIN, FLT_MIN, 0.0, -0.0, ALL_STD_EXCEPT, FE_INEXACT | FE_UNDERFLOW); test(fma, -DBL_MIN, DBL_MIN, 0.0, -0.0, ALL_STD_EXCEPT, FE_INEXACT | FE_UNDERFLOW); test(fmal, -LDBL_MIN, LDBL_MIN, 0.0, -0.0, ALL_STD_EXCEPT, FE_INEXACT | FE_UNDERFLOW); } } static void test_infinities(void) { testall(INFINITY, 1.0, -1.0, INFINITY, ALL_STD_EXCEPT, 0); testall(-1.0, INFINITY, 0.0, -INFINITY, ALL_STD_EXCEPT, 0); testall(0.0, 0.0, INFINITY, INFINITY, ALL_STD_EXCEPT, 0); testall(1.0, 1.0, INFINITY, INFINITY, ALL_STD_EXCEPT, 0); testall(1.0, 1.0, -INFINITY, -INFINITY, ALL_STD_EXCEPT, 0); testall(INFINITY, -INFINITY, 1.0, -INFINITY, ALL_STD_EXCEPT, 0); testall(INFINITY, INFINITY, 1.0, INFINITY, ALL_STD_EXCEPT, 0); testall(-INFINITY, -INFINITY, INFINITY, INFINITY, ALL_STD_EXCEPT, 0); testall(0.0, INFINITY, 1.0, NAN, ALL_STD_EXCEPT, FE_INVALID); testall(INFINITY, 0.0, -0.0, NAN, ALL_STD_EXCEPT, FE_INVALID); /* The invalid exception is optional in this case. */ testall(INFINITY, 0.0, NAN, NAN, ALL_STD_EXCEPT & ~FE_INVALID, 0); testall(INFINITY, INFINITY, -INFINITY, NAN, ALL_STD_EXCEPT, FE_INVALID); testall(-INFINITY, INFINITY, INFINITY, NAN, ALL_STD_EXCEPT, FE_INVALID); testall(INFINITY, -1.0, INFINITY, NAN, ALL_STD_EXCEPT, FE_INVALID); test(fmaf, FLT_MAX, FLT_MAX, -INFINITY, -INFINITY, ALL_STD_EXCEPT, 0); test(fma, DBL_MAX, DBL_MAX, -INFINITY, -INFINITY, ALL_STD_EXCEPT, 0); test(fmal, LDBL_MAX, LDBL_MAX, -INFINITY, -INFINITY, ALL_STD_EXCEPT, 0); test(fmaf, FLT_MAX, -FLT_MAX, INFINITY, INFINITY, ALL_STD_EXCEPT, 0); test(fma, DBL_MAX, -DBL_MAX, INFINITY, INFINITY, ALL_STD_EXCEPT, 0); test(fmal, LDBL_MAX, -LDBL_MAX, INFINITY, INFINITY, ALL_STD_EXCEPT, 0); } static void test_nans(void) { testall(NAN, 0.0, 0.0, NAN, ALL_STD_EXCEPT, 0); testall(1.0, NAN, 1.0, NAN, ALL_STD_EXCEPT, 0); testall(1.0, -1.0, NAN, NAN, ALL_STD_EXCEPT, 0); testall(0.0, 0.0, NAN, NAN, ALL_STD_EXCEPT, 0); testall(NAN, NAN, NAN, NAN, ALL_STD_EXCEPT, 0); /* x*y should not raise an inexact/overflow/underflow if z is NaN. */ testall(M_PI, M_PI, NAN, NAN, ALL_STD_EXCEPT, 0); test(fmaf, FLT_MIN, FLT_MIN, NAN, NAN, ALL_STD_EXCEPT, 0); test(fma, DBL_MIN, DBL_MIN, NAN, NAN, ALL_STD_EXCEPT, 0); test(fmal, LDBL_MIN, LDBL_MIN, NAN, NAN, ALL_STD_EXCEPT, 0); test(fmaf, FLT_MAX, FLT_MAX, NAN, NAN, ALL_STD_EXCEPT, 0); test(fma, DBL_MAX, DBL_MAX, NAN, NAN, ALL_STD_EXCEPT, 0); test(fmal, LDBL_MAX, LDBL_MAX, NAN, NAN, ALL_STD_EXCEPT, 0); } /* * Tests for cases where z is very small compared to x*y. */ static void test_small_z(void) { /* x*y positive, z positive */ if (fegetround() == FE_UPWARD) { test(fmaf, one, one, 0x1.0p-100, 1.0 + FLT_EPSILON, ALL_STD_EXCEPT, FE_INEXACT); test(fma, one, one, 0x1.0p-200, 1.0 + DBL_EPSILON, ALL_STD_EXCEPT, FE_INEXACT); test(fmal, one, one, 0x1.0p-200, 1.0 + LDBL_EPSILON, ALL_STD_EXCEPT, FE_INEXACT); } else { testall(0x1.0p100, one, 0x1.0p-100, 0x1.0p100, ALL_STD_EXCEPT, FE_INEXACT); } /* x*y negative, z negative */ if (fegetround() == FE_DOWNWARD) { test(fmaf, -one, one, -0x1.0p-100, -(1.0 + FLT_EPSILON), ALL_STD_EXCEPT, FE_INEXACT); test(fma, -one, one, -0x1.0p-200, -(1.0 + DBL_EPSILON), ALL_STD_EXCEPT, FE_INEXACT); test(fmal, -one, one, -0x1.0p-200, -(1.0 + LDBL_EPSILON), ALL_STD_EXCEPT, FE_INEXACT); } else { testall(0x1.0p100, -one, -0x1.0p-100, -0x1.0p100, ALL_STD_EXCEPT, FE_INEXACT); } /* x*y positive, z negative */ if (fegetround() == FE_DOWNWARD || fegetround() == FE_TOWARDZERO) { test(fmaf, one, one, -0x1.0p-100, 1.0 - FLT_EPSILON / 2, ALL_STD_EXCEPT, FE_INEXACT); test(fma, one, one, -0x1.0p-200, 1.0 - DBL_EPSILON / 2, ALL_STD_EXCEPT, FE_INEXACT); test(fmal, one, one, -0x1.0p-200, 1.0 - LDBL_EPSILON / 2, ALL_STD_EXCEPT, FE_INEXACT); } else { testall(0x1.0p100, one, -0x1.0p-100, 0x1.0p100, ALL_STD_EXCEPT, FE_INEXACT); } /* x*y negative, z positive */ if (fegetround() == FE_UPWARD || fegetround() == FE_TOWARDZERO) { test(fmaf, -one, one, 0x1.0p-100, -1.0 + FLT_EPSILON / 2, ALL_STD_EXCEPT, FE_INEXACT); test(fma, -one, one, 0x1.0p-200, -1.0 + DBL_EPSILON / 2, ALL_STD_EXCEPT, FE_INEXACT); test(fmal, -one, one, 0x1.0p-200, -1.0 + LDBL_EPSILON / 2, ALL_STD_EXCEPT, FE_INEXACT); } else { testall(-0x1.0p100, one, 0x1.0p-100, -0x1.0p100, ALL_STD_EXCEPT, FE_INEXACT); } } /* * Tests for cases where z is very large compared to x*y. */ static void test_big_z(void) { /* z positive, x*y positive */ if (fegetround() == FE_UPWARD) { test(fmaf, 0x1.0p-50, 0x1.0p-50, 1.0, 1.0 + FLT_EPSILON, ALL_STD_EXCEPT, FE_INEXACT); test(fma, 0x1.0p-100, 0x1.0p-100, 1.0, 1.0 + DBL_EPSILON, ALL_STD_EXCEPT, FE_INEXACT); test(fmal, 0x1.0p-100, 0x1.0p-100, 1.0, 1.0 + LDBL_EPSILON, ALL_STD_EXCEPT, FE_INEXACT); } else { testall(-0x1.0p-50, -0x1.0p-50, 0x1.0p100, 0x1.0p100, ALL_STD_EXCEPT, FE_INEXACT); } /* z negative, x*y negative */ if (fegetround() == FE_DOWNWARD) { test(fmaf, -0x1.0p-50, 0x1.0p-50, -1.0, -(1.0 + FLT_EPSILON), ALL_STD_EXCEPT, FE_INEXACT); test(fma, -0x1.0p-100, 0x1.0p-100, -1.0, -(1.0 + DBL_EPSILON), ALL_STD_EXCEPT, FE_INEXACT); test(fmal, -0x1.0p-100, 0x1.0p-100, -1.0, -(1.0 + LDBL_EPSILON), ALL_STD_EXCEPT, FE_INEXACT); } else { testall(0x1.0p-50, -0x1.0p-50, -0x1.0p100, -0x1.0p100, ALL_STD_EXCEPT, FE_INEXACT); } /* z negative, x*y positive */ if (fegetround() == FE_UPWARD || fegetround() == FE_TOWARDZERO) { test(fmaf, -0x1.0p-50, -0x1.0p-50, -1.0, -1.0 + FLT_EPSILON / 2, ALL_STD_EXCEPT, FE_INEXACT); test(fma, -0x1.0p-100, -0x1.0p-100, -1.0, -1.0 + DBL_EPSILON / 2, ALL_STD_EXCEPT, FE_INEXACT); test(fmal, -0x1.0p-100, -0x1.0p-100, -1.0, -1.0 + LDBL_EPSILON / 2, ALL_STD_EXCEPT, FE_INEXACT); } else { testall(0x1.0p-50, 0x1.0p-50, -0x1.0p100, -0x1.0p100, ALL_STD_EXCEPT, FE_INEXACT); } /* z positive, x*y negative */ if (fegetround() == FE_DOWNWARD || fegetround() == FE_TOWARDZERO) { test(fmaf, 0x1.0p-50, -0x1.0p-50, 1.0, 1.0 - FLT_EPSILON / 2, ALL_STD_EXCEPT, FE_INEXACT); test(fma, 0x1.0p-100, -0x1.0p-100, 1.0, 1.0 - DBL_EPSILON / 2, ALL_STD_EXCEPT, FE_INEXACT); test(fmal, 0x1.0p-100, -0x1.0p-100, 1.0, 1.0 - LDBL_EPSILON / 2, ALL_STD_EXCEPT, FE_INEXACT); } else { testall(-0x1.0p-50, 0x1.0p-50, 0x1.0p100, 0x1.0p100, ALL_STD_EXCEPT, FE_INEXACT); } } static void test_accuracy(void) { /* ilogb(x*y) - ilogb(z) = 20 */ testrnd(fmaf, -0x1.c139d8p-51, -0x1.600e7ap32, 0x1.26558cp-38, 0x1.34e48ap-18, 0x1.34e48cp-18, 0x1.34e48ap-18, 0x1.34e48ap-18, ALL_STD_EXCEPT, FE_INEXACT); testrnd(fma, -0x1.c139d7b84f1a3p-51, -0x1.600e7a2a16484p32, 0x1.26558cac31580p-38, 0x1.34e48a78aae97p-18, 0x1.34e48a78aae97p-18, 0x1.34e48a78aae96p-18, 0x1.34e48a78aae96p-18, ALL_STD_EXCEPT, FE_INEXACT); #if LDBL_MANT_DIG == 113 testrnd(fmal, -0x1.c139d7b84f1a3079263afcc5bae3p-51L, -0x1.600e7a2a164840edbe2e7d301a72p32L, 0x1.26558cac315807eb07e448042101p-38L, 0x1.34e48a78aae96c76ed36077dd387p-18L, 0x1.34e48a78aae96c76ed36077dd388p-18L, 0x1.34e48a78aae96c76ed36077dd387p-18L, 0x1.34e48a78aae96c76ed36077dd387p-18L, ALL_STD_EXCEPT, FE_INEXACT); #elif LDBL_MANT_DIG == 64 testrnd(fmal, -0x1.c139d7b84f1a307ap-51L, -0x1.600e7a2a164840eep32L, 0x1.26558cac315807ecp-38L, 0x1.34e48a78aae96c78p-18L, 0x1.34e48a78aae96c78p-18L, 0x1.34e48a78aae96c76p-18L, 0x1.34e48a78aae96c76p-18L, ALL_STD_EXCEPT, FE_INEXACT); #elif LDBL_MANT_DIG == 53 testrnd(fmal, -0x1.c139d7b84f1a3p-51L, -0x1.600e7a2a16484p32L, 0x1.26558cac31580p-38L, 0x1.34e48a78aae97p-18L, 0x1.34e48a78aae97p-18L, 0x1.34e48a78aae96p-18L, 0x1.34e48a78aae96p-18L, ALL_STD_EXCEPT, FE_INEXACT); #endif /* ilogb(x*y) - ilogb(z) = -40 */ testrnd(fmaf, 0x1.98210ap53, 0x1.9556acp-24, 0x1.d87da4p70, 0x1.d87da4p70, 0x1.d87da6p70, 0x1.d87da4p70, 0x1.d87da4p70, ALL_STD_EXCEPT, FE_INEXACT); testrnd(fma, 0x1.98210ac83fe2bp53, 0x1.9556ac1475f0fp-24, 0x1.d87da3aafc60ep70, 0x1.d87da3aafda40p70, 0x1.d87da3aafda40p70, 0x1.d87da3aafda3fp70, 0x1.d87da3aafda3fp70, ALL_STD_EXCEPT, FE_INEXACT); #if LDBL_MANT_DIG == 113 testrnd(fmal, 0x1.98210ac83fe2a8f65b6278b74cebp53L, 0x1.9556ac1475f0f28968b61d0de65ap-24L, 0x1.d87da3aafc60d830aa4c6d73b749p70L, 0x1.d87da3aafda3f36a69eb86488224p70L, 0x1.d87da3aafda3f36a69eb86488225p70L, 0x1.d87da3aafda3f36a69eb86488224p70L, 0x1.d87da3aafda3f36a69eb86488224p70L, ALL_STD_EXCEPT, FE_INEXACT); #elif LDBL_MANT_DIG == 64 testrnd(fmal, 0x1.98210ac83fe2a8f6p53L, 0x1.9556ac1475f0f28ap-24L, 0x1.d87da3aafc60d83p70L, 0x1.d87da3aafda3f36ap70L, 0x1.d87da3aafda3f36ap70L, 0x1.d87da3aafda3f368p70L, 0x1.d87da3aafda3f368p70L, ALL_STD_EXCEPT, FE_INEXACT); #elif LDBL_MANT_DIG == 53 testrnd(fmal, 0x1.98210ac83fe2bp53L, 0x1.9556ac1475f0fp-24L, 0x1.d87da3aafc60ep70L, 0x1.d87da3aafda40p70L, 0x1.d87da3aafda40p70L, 0x1.d87da3aafda3fp70L, 0x1.d87da3aafda3fp70L, ALL_STD_EXCEPT, FE_INEXACT); #endif /* ilogb(x*y) - ilogb(z) = 0 */ testrnd(fmaf, 0x1.31ad02p+100, 0x1.2fbf7ap-42, -0x1.c3e106p+58, -0x1.64c27cp+56, -0x1.64c27ap+56, -0x1.64c27cp+56, -0x1.64c27ap+56, ALL_STD_EXCEPT, FE_INEXACT); testrnd(fma, 0x1.31ad012ede8aap+100, 0x1.2fbf79c839067p-42, -0x1.c3e106929056ep+58, -0x1.64c282b970a5fp+56, -0x1.64c282b970a5ep+56, -0x1.64c282b970a5fp+56, -0x1.64c282b970a5ep+56, ALL_STD_EXCEPT, FE_INEXACT); #if LDBL_MANT_DIG == 113 testrnd(fmal, 0x1.31ad012ede8aa282fa1c19376d16p+100L, 0x1.2fbf79c839066f0f5c68f6d2e814p-42L, -0x1.c3e106929056ec19de72bfe64215p+58L, -0x1.64c282b970a612598fc025ca8cddp+56L, -0x1.64c282b970a612598fc025ca8cddp+56L, -0x1.64c282b970a612598fc025ca8cdep+56L, -0x1.64c282b970a612598fc025ca8cddp+56L, ALL_STD_EXCEPT, FE_INEXACT); #elif LDBL_MANT_DIG == 64 testrnd(fmal, 0x1.31ad012ede8aa4eap+100L, 0x1.2fbf79c839066aeap-42L, -0x1.c3e106929056e61p+58L, -0x1.64c282b970a60298p+56L, -0x1.64c282b970a60298p+56L, -0x1.64c282b970a6029ap+56L, -0x1.64c282b970a60298p+56L, ALL_STD_EXCEPT, FE_INEXACT); #elif LDBL_MANT_DIG == 53 testrnd(fmal, 0x1.31ad012ede8aap+100L, 0x1.2fbf79c839067p-42L, -0x1.c3e106929056ep+58L, -0x1.64c282b970a5fp+56L, -0x1.64c282b970a5ep+56L, -0x1.64c282b970a5fp+56L, -0x1.64c282b970a5ep+56L, ALL_STD_EXCEPT, FE_INEXACT); #endif /* x*y (rounded) ~= -z */ /* XXX spurious inexact exceptions */ testrnd(fmaf, 0x1.bbffeep-30, -0x1.1d164cp-74, 0x1.ee7296p-104, -0x1.c46ea8p-128, -0x1.c46ea8p-128, -0x1.c46ea8p-128, -0x1.c46ea8p-128, ALL_STD_EXCEPT & ~FE_INEXACT, 0); testrnd(fma, 0x1.bbffeea6fc7d6p-30, 0x1.1d164c6cbf078p-74, -0x1.ee72993aff948p-104, -0x1.71f72ac7d9d8p-159, -0x1.71f72ac7d9d8p-159, -0x1.71f72ac7d9d8p-159, -0x1.71f72ac7d9d8p-159, ALL_STD_EXCEPT & ~FE_INEXACT, 0); #if LDBL_MANT_DIG == 113 testrnd(fmal, 0x1.bbffeea6fc7d65927d147f437675p-30L, 0x1.1d164c6cbf078b7a22607d1cd6a2p-74L, -0x1.ee72993aff94973876031bec0944p-104L, 0x1.64e086175b3a2adc36e607058814p-217L, 0x1.64e086175b3a2adc36e607058814p-217L, 0x1.64e086175b3a2adc36e607058814p-217L, 0x1.64e086175b3a2adc36e607058814p-217L, ALL_STD_EXCEPT & ~FE_INEXACT, 0); #elif LDBL_MANT_DIG == 64 testrnd(fmal, 0x1.bbffeea6fc7d6592p-30L, 0x1.1d164c6cbf078b7ap-74L, -0x1.ee72993aff949736p-104L, 0x1.af190e7a1ee6ad94p-168L, 0x1.af190e7a1ee6ad94p-168L, 0x1.af190e7a1ee6ad94p-168L, 0x1.af190e7a1ee6ad94p-168L, ALL_STD_EXCEPT & ~FE_INEXACT, 0); #elif LDBL_MANT_DIG == 53 testrnd(fmal, 0x1.bbffeea6fc7d6p-30L, 0x1.1d164c6cbf078p-74L, -0x1.ee72993aff948p-104L, -0x1.71f72ac7d9d8p-159L, -0x1.71f72ac7d9d8p-159L, -0x1.71f72ac7d9d8p-159L, -0x1.71f72ac7d9d8p-159L, ALL_STD_EXCEPT & ~FE_INEXACT, 0); #endif } static void test_double_rounding(void) { /* * a = 0x1.8000000000001p0 * b = 0x1.8000000000001p0 * c = -0x0.0000000000000000000000000080...1p+1 * a * b = 0x1.2000000000001800000000000080p+1 * * The correct behavior is to round DOWN to 0x1.2000000000001p+1 in * round-to-nearest mode. An implementation that computes a*b+c in * double+double precision, however, will get 0x1.20000000000018p+1, * and then round UP. */ fesetround(FE_TONEAREST); test(fma, 0x1.8000000000001p0, 0x1.8000000000001p0, -0x1.0000000000001p-104, 0x1.2000000000001p+1, ALL_STD_EXCEPT, FE_INEXACT); fesetround(FE_DOWNWARD); test(fma, 0x1.8000000000001p0, 0x1.8000000000001p0, -0x1.0000000000001p-104, 0x1.2000000000001p+1, ALL_STD_EXCEPT, FE_INEXACT); fesetround(FE_UPWARD); test(fma, 0x1.8000000000001p0, 0x1.8000000000001p0, -0x1.0000000000001p-104, 0x1.2000000000002p+1, ALL_STD_EXCEPT, FE_INEXACT); fesetround(FE_TONEAREST); test(fmaf, 0x1.800002p+0, 0x1.800002p+0, -0x1.000002p-46, 0x1.200002p+1, ALL_STD_EXCEPT, FE_INEXACT); fesetround(FE_DOWNWARD); test(fmaf, 0x1.800002p+0, 0x1.800002p+0, -0x1.000002p-46, 0x1.200002p+1, ALL_STD_EXCEPT, FE_INEXACT); fesetround(FE_UPWARD); test(fmaf, 0x1.800002p+0, 0x1.800002p+0, -0x1.000002p-46, 0x1.200004p+1, ALL_STD_EXCEPT, FE_INEXACT); fesetround(FE_TONEAREST); #if LDBL_MANT_DIG == 64 test(fmal, 0x1.4p+0L, 0x1.0000000000000004p+0L, 0x1p-128L, 0x1.4000000000000006p+0L, ALL_STD_EXCEPT, FE_INEXACT); #elif LDBL_MANT_DIG == 113 test(fmal, 0x1.8000000000000000000000000001p+0L, 0x1.8000000000000000000000000001p+0L, -0x1.0000000000000000000000000001p-224L, 0x1.2000000000000000000000000001p+1L, ALL_STD_EXCEPT, FE_INEXACT); #endif } int main(int argc, char *argv[]) { int rmodes[] = { FE_TONEAREST, FE_UPWARD, FE_DOWNWARD, FE_TOWARDZERO }; int i; printf("1..19\n"); for (i = 0; i < 4; i++) { fesetround(rmodes[i]); test_zeroes(); printf("ok %d - fma zeroes\n", i + 1); } for (i = 0; i < 4; i++) { fesetround(rmodes[i]); test_infinities(); printf("ok %d - fma infinities\n", i + 5); } fesetround(FE_TONEAREST); test_nans(); printf("ok 9 - fma NaNs\n"); for (i = 0; i < 4; i++) { fesetround(rmodes[i]); test_small_z(); printf("ok %d - fma small z\n", i + 10); } for (i = 0; i < 4; i++) { fesetround(rmodes[i]); test_big_z(); printf("ok %d - fma big z\n", i + 14); } fesetround(FE_TONEAREST); test_accuracy(); printf("ok 18 - fma accuracy\n"); test_double_rounding(); printf("ok 19 - fma double rounding\n"); /* * TODO: * - Tests for subnormals * - Cancellation tests (e.g., z = (double)x*y, but x*y is inexact) */ return (0); }