/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ /* All Rights Reserved */ /* * Copyright 2008 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #ifndef _SYS_SYSMACROS_H #define _SYS_SYSMACROS_H #include #include #if defined(__FreeBSD__) && defined(_KERNEL) #include #endif #ifdef __cplusplus extern "C" { #endif /* * Some macros for units conversion */ /* * Disk blocks (sectors) and bytes. */ #ifndef dtob #define dtob(DD) ((DD) << DEV_BSHIFT) #endif #ifndef btod #define btod(BB) (((BB) + DEV_BSIZE - 1) >> DEV_BSHIFT) #endif #define btodt(BB) ((BB) >> DEV_BSHIFT) #define lbtod(BB) (((offset_t)(BB) + DEV_BSIZE - 1) >> DEV_BSHIFT) /* common macros */ #ifndef MIN #define MIN(a, b) ((a) < (b) ? (a) : (b)) #endif #ifndef MAX #define MAX(a, b) ((a) < (b) ? (b) : (a)) #endif #ifndef ABS #define ABS(a) ((a) < 0 ? -(a) : (a)) #endif #ifndef SIGNOF #define SIGNOF(a) ((a) < 0 ? -1 : (a) > 0) #endif #ifdef _KERNEL /* * Convert a single byte to/from binary-coded decimal (BCD). */ extern unsigned char byte_to_bcd[256]; extern unsigned char bcd_to_byte[256]; #define BYTE_TO_BCD(x) byte_to_bcd[(x) & 0xff] #define BCD_TO_BYTE(x) bcd_to_byte[(x) & 0xff] #endif /* _KERNEL */ /* * WARNING: The device number macros defined here should not be used by device * drivers or user software. Device drivers should use the device functions * defined in the DDI/DKI interface (see also ddi.h). Application software * should make use of the library routines available in makedev(3). A set of * new device macros are provided to operate on the expanded device number * format supported in SVR4. Macro versions of the DDI device functions are * provided for use by kernel proper routines only. Macro routines bmajor(), * major(), minor(), emajor(), eminor(), and makedev() will be removed or * their definitions changed at the next major release following SVR4. */ #define O_BITSMAJOR 7 /* # of SVR3 major device bits */ #define O_BITSMINOR 8 /* # of SVR3 minor device bits */ #define O_MAXMAJ 0x7f /* SVR3 max major value */ #define O_MAXMIN 0xff /* SVR3 max minor value */ #define L_BITSMAJOR32 14 /* # of SVR4 major device bits */ #define L_BITSMINOR32 18 /* # of SVR4 minor device bits */ #define L_MAXMAJ32 0x3fff /* SVR4 max major value */ #define L_MAXMIN32 0x3ffff /* MAX minor for 3b2 software drivers. */ /* For 3b2 hardware devices the minor is */ /* restricted to 256 (0-255) */ #ifdef _LP64 #define L_BITSMAJOR 32 /* # of major device bits in 64-bit Solaris */ #define L_BITSMINOR 32 /* # of minor device bits in 64-bit Solaris */ #define L_MAXMAJ 0xfffffffful /* max major value */ #define L_MAXMIN 0xfffffffful /* max minor value */ #else #define L_BITSMAJOR L_BITSMAJOR32 #define L_BITSMINOR L_BITSMINOR32 #define L_MAXMAJ L_MAXMAJ32 #define L_MAXMIN L_MAXMIN32 #endif #ifdef illumos #ifdef _KERNEL /* major part of a device internal to the kernel */ #define major(x) (major_t)((((unsigned)(x)) >> O_BITSMINOR) & O_MAXMAJ) #define bmajor(x) (major_t)((((unsigned)(x)) >> O_BITSMINOR) & O_MAXMAJ) /* get internal major part of expanded device number */ #define getmajor(x) (major_t)((((dev_t)(x)) >> L_BITSMINOR) & L_MAXMAJ) /* minor part of a device internal to the kernel */ #define minor(x) (minor_t)((x) & O_MAXMIN) /* get internal minor part of expanded device number */ #define getminor(x) (minor_t)((x) & L_MAXMIN) #else /* major part of a device external from the kernel (same as emajor below) */ #define major(x) (major_t)((((unsigned)(x)) >> O_BITSMINOR) & O_MAXMAJ) /* minor part of a device external from the kernel (same as eminor below) */ #define minor(x) (minor_t)((x) & O_MAXMIN) #endif /* _KERNEL */ /* create old device number */ #define makedev(x, y) (unsigned short)(((x) << O_BITSMINOR) | ((y) & O_MAXMIN)) /* make an new device number */ #define makedevice(x, y) (dev_t)(((dev_t)(x) << L_BITSMINOR) | ((y) & L_MAXMIN)) /* * emajor() allows kernel/driver code to print external major numbers * eminor() allows kernel/driver code to print external minor numbers */ #define emajor(x) \ (major_t)(((unsigned int)(x) >> O_BITSMINOR) > O_MAXMAJ) ? \ NODEV : (((unsigned int)(x) >> O_BITSMINOR) & O_MAXMAJ) #define eminor(x) \ (minor_t)((x) & O_MAXMIN) /* * get external major and minor device * components from expanded device number */ #define getemajor(x) (major_t)((((dev_t)(x) >> L_BITSMINOR) > L_MAXMAJ) ? \ NODEV : (((dev_t)(x) >> L_BITSMINOR) & L_MAXMAJ)) #define geteminor(x) (minor_t)((x) & L_MAXMIN) #endif /* illumos */ /* * These are versions of the kernel routines for compressing and * expanding long device numbers that don't return errors. */ #if (L_BITSMAJOR32 == L_BITSMAJOR) && (L_BITSMINOR32 == L_BITSMINOR) #define DEVCMPL(x) (x) #define DEVEXPL(x) (x) #else #define DEVCMPL(x) \ (dev32_t)((((x) >> L_BITSMINOR) > L_MAXMAJ32 || \ ((x) & L_MAXMIN) > L_MAXMIN32) ? NODEV32 : \ ((((x) >> L_BITSMINOR) << L_BITSMINOR32) | ((x) & L_MAXMIN32))) #define DEVEXPL(x) \ (((x) == NODEV32) ? NODEV : \ makedevice(((x) >> L_BITSMINOR32) & L_MAXMAJ32, (x) & L_MAXMIN32)) #endif /* L_BITSMAJOR32 ... */ /* convert to old (SVR3.2) dev format */ #define cmpdev(x) \ (o_dev_t)((((x) >> L_BITSMINOR) > O_MAXMAJ || \ ((x) & L_MAXMIN) > O_MAXMIN) ? NODEV : \ ((((x) >> L_BITSMINOR) << O_BITSMINOR) | ((x) & O_MAXMIN))) /* convert to new (SVR4) dev format */ #define expdev(x) \ (dev_t)(((dev_t)(((x) >> O_BITSMINOR) & O_MAXMAJ) << L_BITSMINOR) | \ ((x) & O_MAXMIN)) /* * Macro for checking power of 2 address alignment. */ #define IS_P2ALIGNED(v, a) ((((uintptr_t)(v)) & ((uintptr_t)(a) - 1)) == 0) /* * Macros for counting and rounding. */ #ifndef howmany #define howmany(x, y) (((x)+((y)-1))/(y)) #endif #ifndef roundup #define roundup(x, y) ((((x)+((y)-1))/(y))*(y)) #endif /* * Macro to determine if value is a power of 2 */ #define ISP2(x) (((x) & ((x) - 1)) == 0) /* * Macros for various sorts of alignment and rounding. The "align" must * be a power of 2. Often times it is a block, sector, or page. */ /* * return x rounded down to an align boundary * eg, P2ALIGN(1200, 1024) == 1024 (1*align) * eg, P2ALIGN(1024, 1024) == 1024 (1*align) * eg, P2ALIGN(0x1234, 0x100) == 0x1200 (0x12*align) * eg, P2ALIGN(0x5600, 0x100) == 0x5600 (0x56*align) */ #define P2ALIGN(x, align) ((x) & -(align)) /* * return x % (mod) align * eg, P2PHASE(0x1234, 0x100) == 0x34 (x-0x12*align) * eg, P2PHASE(0x5600, 0x100) == 0x00 (x-0x56*align) */ #define P2PHASE(x, align) ((x) & ((align) - 1)) /* * return how much space is left in this block (but if it's perfectly * aligned, return 0). * eg, P2NPHASE(0x1234, 0x100) == 0xcc (0x13*align-x) * eg, P2NPHASE(0x5600, 0x100) == 0x00 (0x56*align-x) */ #define P2NPHASE(x, align) (-(x) & ((align) - 1)) /* * return x rounded up to an align boundary * eg, P2ROUNDUP(0x1234, 0x100) == 0x1300 (0x13*align) * eg, P2ROUNDUP(0x5600, 0x100) == 0x5600 (0x56*align) */ #define P2ROUNDUP(x, align) (-(-(x) & -(align))) /* * return the ending address of the block that x is in * eg, P2END(0x1234, 0x100) == 0x12ff (0x13*align - 1) * eg, P2END(0x5600, 0x100) == 0x56ff (0x57*align - 1) */ #define P2END(x, align) (-(~(x) & -(align))) /* * return x rounded up to the next phase (offset) within align. * phase should be < align. * eg, P2PHASEUP(0x1234, 0x100, 0x10) == 0x1310 (0x13*align + phase) * eg, P2PHASEUP(0x5600, 0x100, 0x10) == 0x5610 (0x56*align + phase) */ #define P2PHASEUP(x, align, phase) ((phase) - (((phase) - (x)) & -(align))) /* * return TRUE if adding len to off would cause it to cross an align * boundary. * eg, P2BOUNDARY(0x1234, 0xe0, 0x100) == TRUE (0x1234 + 0xe0 == 0x1314) * eg, P2BOUNDARY(0x1234, 0x50, 0x100) == FALSE (0x1234 + 0x50 == 0x1284) */ #define P2BOUNDARY(off, len, align) \ (((off) ^ ((off) + (len) - 1)) > (align) - 1) /* * Return TRUE if they have the same highest bit set. * eg, P2SAMEHIGHBIT(0x1234, 0x1001) == TRUE (the high bit is 0x1000) * eg, P2SAMEHIGHBIT(0x1234, 0x3010) == FALSE (high bit of 0x3010 is 0x2000) */ #define P2SAMEHIGHBIT(x, y) (((x) ^ (y)) < ((x) & (y))) /* * Typed version of the P2* macros. These macros should be used to ensure * that the result is correctly calculated based on the data type of (x), * which is passed in as the last argument, regardless of the data * type of the alignment. For example, if (x) is of type uint64_t, * and we want to round it up to a page boundary using "PAGESIZE" as * the alignment, we can do either * P2ROUNDUP(x, (uint64_t)PAGESIZE) * or * P2ROUNDUP_TYPED(x, PAGESIZE, uint64_t) */ #define P2ALIGN_TYPED(x, align, type) \ ((type)(x) & -(type)(align)) #define P2PHASE_TYPED(x, align, type) \ ((type)(x) & ((type)(align) - 1)) #define P2NPHASE_TYPED(x, align, type) \ (-(type)(x) & ((type)(align) - 1)) #define P2ROUNDUP_TYPED(x, align, type) \ (-(-(type)(x) & -(type)(align))) #define P2END_TYPED(x, align, type) \ (-(~(type)(x) & -(type)(align))) #define P2PHASEUP_TYPED(x, align, phase, type) \ ((type)(phase) - (((type)(phase) - (type)(x)) & -(type)(align))) #define P2CROSS_TYPED(x, y, align, type) \ (((type)(x) ^ (type)(y)) > (type)(align) - 1) #define P2SAMEHIGHBIT_TYPED(x, y, type) \ (((type)(x) ^ (type)(y)) < ((type)(x) & (type)(y))) /* * Macros to atomically increment/decrement a variable. mutex and var * must be pointers. */ #define INCR_COUNT(var, mutex) mutex_enter(mutex), (*(var))++, mutex_exit(mutex) #define DECR_COUNT(var, mutex) mutex_enter(mutex), (*(var))--, mutex_exit(mutex) /* * Macros to declare bitfields - the order in the parameter list is * Low to High - that is, declare bit 0 first. We only support 8-bit bitfields * because if a field crosses a byte boundary it's not likely to be meaningful * without reassembly in its nonnative endianness. */ #if defined(_BIT_FIELDS_LTOH) #define DECL_BITFIELD2(_a, _b) \ uint8_t _a, _b #define DECL_BITFIELD3(_a, _b, _c) \ uint8_t _a, _b, _c #define DECL_BITFIELD4(_a, _b, _c, _d) \ uint8_t _a, _b, _c, _d #define DECL_BITFIELD5(_a, _b, _c, _d, _e) \ uint8_t _a, _b, _c, _d, _e #define DECL_BITFIELD6(_a, _b, _c, _d, _e, _f) \ uint8_t _a, _b, _c, _d, _e, _f #define DECL_BITFIELD7(_a, _b, _c, _d, _e, _f, _g) \ uint8_t _a, _b, _c, _d, _e, _f, _g #define DECL_BITFIELD8(_a, _b, _c, _d, _e, _f, _g, _h) \ uint8_t _a, _b, _c, _d, _e, _f, _g, _h #elif defined(_BIT_FIELDS_HTOL) #define DECL_BITFIELD2(_a, _b) \ uint8_t _b, _a #define DECL_BITFIELD3(_a, _b, _c) \ uint8_t _c, _b, _a #define DECL_BITFIELD4(_a, _b, _c, _d) \ uint8_t _d, _c, _b, _a #define DECL_BITFIELD5(_a, _b, _c, _d, _e) \ uint8_t _e, _d, _c, _b, _a #define DECL_BITFIELD6(_a, _b, _c, _d, _e, _f) \ uint8_t _f, _e, _d, _c, _b, _a #define DECL_BITFIELD7(_a, _b, _c, _d, _e, _f, _g) \ uint8_t _g, _f, _e, _d, _c, _b, _a #define DECL_BITFIELD8(_a, _b, _c, _d, _e, _f, _g, _h) \ uint8_t _h, _g, _f, _e, _d, _c, _b, _a #else #error One of _BIT_FIELDS_LTOH or _BIT_FIELDS_HTOL must be defined #endif /* _BIT_FIELDS_LTOH */ #if defined(_KERNEL) && !defined(_KMEMUSER) && !defined(offsetof) /* avoid any possibility of clashing with version */ #define offsetof(s, m) ((size_t)(&(((s *)0)->m))) #endif /* * Find highest one bit set. * Returns bit number + 1 of highest bit that is set, otherwise returns 0. * High order bit is 31 (or 63 in _LP64 kernel). */ static __inline int highbit(unsigned long i) { #if defined(__FreeBSD__) && defined(_KERNEL) && defined(HAVE_INLINE_FLSL) return (flsl(i)); #else int h = 1; if (i == 0) return (0); #ifdef _LP64 if (i & 0xffffffff00000000ul) { h += 32; i >>= 32; } #endif if (i & 0xffff0000) { h += 16; i >>= 16; } if (i & 0xff00) { h += 8; i >>= 8; } if (i & 0xf0) { h += 4; i >>= 4; } if (i & 0xc) { h += 2; i >>= 2; } if (i & 0x2) { h += 1; } return (h); #endif } /* * Find highest one bit set. * Returns bit number + 1 of highest bit that is set, otherwise returns 0. */ static __inline int highbit64(uint64_t i) { #if defined(__FreeBSD__) && defined(_KERNEL) && defined(HAVE_INLINE_FLSLL) return (flsll(i)); #else int h = 1; if (i == 0) return (0); if (i & 0xffffffff00000000ULL) { h += 32; i >>= 32; } if (i & 0xffff0000) { h += 16; i >>= 16; } if (i & 0xff00) { h += 8; i >>= 8; } if (i & 0xf0) { h += 4; i >>= 4; } if (i & 0xc) { h += 2; i >>= 2; } if (i & 0x2) { h += 1; } return (h); #endif } #ifdef __cplusplus } #endif #endif /* _SYS_SYSMACROS_H */