/*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2012, 2016 Chelsio Communications, Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "opt_inet.h" #include #include #include "common.h" #include "t4_regs.h" #include "t4_regs_values.h" #include "firmware/t4fw_interface.h" #undef msleep #define msleep(x) do { \ if (cold) \ DELAY((x) * 1000); \ else \ pause("t4hw", (x) * hz / 1000); \ } while (0) /** * t4_wait_op_done_val - wait until an operation is completed * @adapter: the adapter performing the operation * @reg: the register to check for completion * @mask: a single-bit field within @reg that indicates completion * @polarity: the value of the field when the operation is completed * @attempts: number of check iterations * @delay: delay in usecs between iterations * @valp: where to store the value of the register at completion time * * Wait until an operation is completed by checking a bit in a register * up to @attempts times. If @valp is not NULL the value of the register * at the time it indicated completion is stored there. Returns 0 if the * operation completes and -EAGAIN otherwise. */ static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask, int polarity, int attempts, int delay, u32 *valp) { while (1) { u32 val = t4_read_reg(adapter, reg); if (!!(val & mask) == polarity) { if (valp) *valp = val; return 0; } if (--attempts == 0) return -EAGAIN; if (delay) udelay(delay); } } static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask, int polarity, int attempts, int delay) { return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts, delay, NULL); } /** * t4_set_reg_field - set a register field to a value * @adapter: the adapter to program * @addr: the register address * @mask: specifies the portion of the register to modify * @val: the new value for the register field * * Sets a register field specified by the supplied mask to the * given value. */ void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask, u32 val) { u32 v = t4_read_reg(adapter, addr) & ~mask; t4_write_reg(adapter, addr, v | val); (void) t4_read_reg(adapter, addr); /* flush */ } /** * t4_read_indirect - read indirectly addressed registers * @adap: the adapter * @addr_reg: register holding the indirect address * @data_reg: register holding the value of the indirect register * @vals: where the read register values are stored * @nregs: how many indirect registers to read * @start_idx: index of first indirect register to read * * Reads registers that are accessed indirectly through an address/data * register pair. */ void t4_read_indirect(struct adapter *adap, unsigned int addr_reg, unsigned int data_reg, u32 *vals, unsigned int nregs, unsigned int start_idx) { while (nregs--) { t4_write_reg(adap, addr_reg, start_idx); *vals++ = t4_read_reg(adap, data_reg); start_idx++; } } /** * t4_write_indirect - write indirectly addressed registers * @adap: the adapter * @addr_reg: register holding the indirect addresses * @data_reg: register holding the value for the indirect registers * @vals: values to write * @nregs: how many indirect registers to write * @start_idx: address of first indirect register to write * * Writes a sequential block of registers that are accessed indirectly * through an address/data register pair. */ void t4_write_indirect(struct adapter *adap, unsigned int addr_reg, unsigned int data_reg, const u32 *vals, unsigned int nregs, unsigned int start_idx) { while (nregs--) { t4_write_reg(adap, addr_reg, start_idx++); t4_write_reg(adap, data_reg, *vals++); } } /* * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor * mechanism. This guarantees that we get the real value even if we're * operating within a Virtual Machine and the Hypervisor is trapping our * Configuration Space accesses. * * N.B. This routine should only be used as a last resort: the firmware uses * the backdoor registers on a regular basis and we can end up * conflicting with it's uses! */ u32 t4_hw_pci_read_cfg4(adapter_t *adap, int reg) { u32 req = V_FUNCTION(adap->pf) | V_REGISTER(reg); u32 val; if (chip_id(adap) <= CHELSIO_T5) req |= F_ENABLE; else req |= F_T6_ENABLE; if (is_t4(adap)) req |= F_LOCALCFG; t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, req); val = t4_read_reg(adap, A_PCIE_CFG_SPACE_DATA); /* * Reset F_ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a * Configuration Space read. (None of the other fields matter when * F_ENABLE is 0 so a simple register write is easier than a * read-modify-write via t4_set_reg_field().) */ t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, 0); return val; } /* * t4_report_fw_error - report firmware error * @adap: the adapter * * The adapter firmware can indicate error conditions to the host. * If the firmware has indicated an error, print out the reason for * the firmware error. */ static void t4_report_fw_error(struct adapter *adap) { static const char *const reason[] = { "Crash", /* PCIE_FW_EVAL_CRASH */ "During Device Preparation", /* PCIE_FW_EVAL_PREP */ "During Device Configuration", /* PCIE_FW_EVAL_CONF */ "During Device Initialization", /* PCIE_FW_EVAL_INIT */ "Unexpected Event", /* PCIE_FW_EVAL_UNEXPECTEDEVENT */ "Insufficient Airflow", /* PCIE_FW_EVAL_OVERHEAT */ "Device Shutdown", /* PCIE_FW_EVAL_DEVICESHUTDOWN */ "Reserved", /* reserved */ }; u32 pcie_fw; pcie_fw = t4_read_reg(adap, A_PCIE_FW); if (pcie_fw & F_PCIE_FW_ERR) { adap->flags &= ~FW_OK; CH_ERR(adap, "firmware reports adapter error: %s (0x%08x)\n", reason[G_PCIE_FW_EVAL(pcie_fw)], pcie_fw); if (pcie_fw != 0xffffffff) t4_os_dump_devlog(adap); } } /* * Get the reply to a mailbox command and store it in @rpl in big-endian order. */ static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit, u32 mbox_addr) { for ( ; nflit; nflit--, mbox_addr += 8) *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr)); } /* * Handle a FW assertion reported in a mailbox. */ static void fw_asrt(struct adapter *adap, struct fw_debug_cmd *asrt) { CH_ALERT(adap, "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n", asrt->u.assert.filename_0_7, be32_to_cpu(asrt->u.assert.line), be32_to_cpu(asrt->u.assert.x), be32_to_cpu(asrt->u.assert.y)); } struct port_tx_state { uint64_t rx_pause; uint64_t tx_frames; }; static void read_tx_state_one(struct adapter *sc, int i, struct port_tx_state *tx_state) { uint32_t rx_pause_reg, tx_frames_reg; if (is_t4(sc)) { tx_frames_reg = PORT_REG(i, A_MPS_PORT_STAT_TX_PORT_FRAMES_L); rx_pause_reg = PORT_REG(i, A_MPS_PORT_STAT_RX_PORT_PAUSE_L); } else { tx_frames_reg = T5_PORT_REG(i, A_MPS_PORT_STAT_TX_PORT_FRAMES_L); rx_pause_reg = T5_PORT_REG(i, A_MPS_PORT_STAT_RX_PORT_PAUSE_L); } tx_state->rx_pause = t4_read_reg64(sc, rx_pause_reg); tx_state->tx_frames = t4_read_reg64(sc, tx_frames_reg); } static void read_tx_state(struct adapter *sc, struct port_tx_state *tx_state) { int i; for_each_port(sc, i) read_tx_state_one(sc, i, &tx_state[i]); } static void check_tx_state(struct adapter *sc, struct port_tx_state *tx_state) { uint32_t port_ctl_reg; uint64_t tx_frames, rx_pause; int i; for_each_port(sc, i) { rx_pause = tx_state[i].rx_pause; tx_frames = tx_state[i].tx_frames; read_tx_state_one(sc, i, &tx_state[i]); /* update */ if (is_t4(sc)) port_ctl_reg = PORT_REG(i, A_MPS_PORT_CTL); else port_ctl_reg = T5_PORT_REG(i, A_MPS_PORT_CTL); if (t4_read_reg(sc, port_ctl_reg) & F_PORTTXEN && rx_pause != tx_state[i].rx_pause && tx_frames == tx_state[i].tx_frames) { t4_set_reg_field(sc, port_ctl_reg, F_PORTTXEN, 0); mdelay(1); t4_set_reg_field(sc, port_ctl_reg, F_PORTTXEN, F_PORTTXEN); } } } #define X_CIM_PF_NOACCESS 0xeeeeeeee /** * t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox * @adap: the adapter * @mbox: index of the mailbox to use * @cmd: the command to write * @size: command length in bytes * @rpl: where to optionally store the reply * @sleep_ok: if true we may sleep while awaiting command completion * @timeout: time to wait for command to finish before timing out * (negative implies @sleep_ok=false) * * Sends the given command to FW through the selected mailbox and waits * for the FW to execute the command. If @rpl is not %NULL it is used to * store the FW's reply to the command. The command and its optional * reply are of the same length. Some FW commands like RESET and * INITIALIZE can take a considerable amount of time to execute. * @sleep_ok determines whether we may sleep while awaiting the response. * If sleeping is allowed we use progressive backoff otherwise we spin. * Note that passing in a negative @timeout is an alternate mechanism * for specifying @sleep_ok=false. This is useful when a higher level * interface allows for specification of @timeout but not @sleep_ok ... * * The return value is 0 on success or a negative errno on failure. A * failure can happen either because we are not able to execute the * command or FW executes it but signals an error. In the latter case * the return value is the error code indicated by FW (negated). */ int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd, int size, void *rpl, bool sleep_ok, int timeout) { /* * We delay in small increments at first in an effort to maintain * responsiveness for simple, fast executing commands but then back * off to larger delays to a maximum retry delay. */ static const int delay[] = { 1, 1, 3, 5, 10, 10, 20, 50, 100 }; u32 v; u64 res; int i, ms, delay_idx, ret, next_tx_check; u32 data_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_DATA); u32 ctl_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_CTRL); u32 ctl; __be64 cmd_rpl[MBOX_LEN/8]; u32 pcie_fw; struct port_tx_state tx_state[MAX_NPORTS]; if (adap->flags & CHK_MBOX_ACCESS) ASSERT_SYNCHRONIZED_OP(adap); if (size <= 0 || (size & 15) || size > MBOX_LEN) return -EINVAL; if (adap->flags & IS_VF) { if (is_t6(adap)) data_reg = FW_T6VF_MBDATA_BASE_ADDR; else data_reg = FW_T4VF_MBDATA_BASE_ADDR; ctl_reg = VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL); } /* * If we have a negative timeout, that implies that we can't sleep. */ if (timeout < 0) { sleep_ok = false; timeout = -timeout; } /* * Attempt to gain access to the mailbox. */ for (i = 0; i < 4; i++) { ctl = t4_read_reg(adap, ctl_reg); v = G_MBOWNER(ctl); if (v != X_MBOWNER_NONE) break; } /* * If we were unable to gain access, report the error to our caller. */ if (v != X_MBOWNER_PL) { t4_report_fw_error(adap); ret = (v == X_MBOWNER_FW) ? -EBUSY : -ETIMEDOUT; return ret; } /* * If we gain ownership of the mailbox and there's a "valid" message * in it, this is likely an asynchronous error message from the * firmware. So we'll report that and then proceed on with attempting * to issue our own command ... which may well fail if the error * presaged the firmware crashing ... */ if (ctl & F_MBMSGVALID) { CH_DUMP_MBOX(adap, mbox, data_reg, "VLD", NULL, true); } /* * Copy in the new mailbox command and send it on its way ... */ memset(cmd_rpl, 0, sizeof(cmd_rpl)); memcpy(cmd_rpl, cmd, size); CH_DUMP_MBOX(adap, mbox, 0, "cmd", cmd_rpl, false); for (i = 0; i < ARRAY_SIZE(cmd_rpl); i++) t4_write_reg64(adap, data_reg + i * 8, be64_to_cpu(cmd_rpl[i])); if (adap->flags & IS_VF) { /* * For the VFs, the Mailbox Data "registers" are * actually backed by T4's "MA" interface rather than * PL Registers (as is the case for the PFs). Because * these are in different coherency domains, the write * to the VF's PL-register-backed Mailbox Control can * race in front of the writes to the MA-backed VF * Mailbox Data "registers". So we need to do a * read-back on at least one byte of the VF Mailbox * Data registers before doing the write to the VF * Mailbox Control register. */ t4_read_reg(adap, data_reg); } t4_write_reg(adap, ctl_reg, F_MBMSGVALID | V_MBOWNER(X_MBOWNER_FW)); read_tx_state(adap, &tx_state[0]); /* also flushes the write_reg */ next_tx_check = 1000; delay_idx = 0; ms = delay[0]; /* * Loop waiting for the reply; bail out if we time out or the firmware * reports an error. */ pcie_fw = 0; for (i = 0; i < timeout; i += ms) { if (!(adap->flags & IS_VF)) { pcie_fw = t4_read_reg(adap, A_PCIE_FW); if (pcie_fw & F_PCIE_FW_ERR) break; } if (i >= next_tx_check) { check_tx_state(adap, &tx_state[0]); next_tx_check = i + 1000; } if (sleep_ok) { ms = delay[delay_idx]; /* last element may repeat */ if (delay_idx < ARRAY_SIZE(delay) - 1) delay_idx++; msleep(ms); } else { mdelay(ms); } v = t4_read_reg(adap, ctl_reg); if (v == X_CIM_PF_NOACCESS) continue; if (G_MBOWNER(v) == X_MBOWNER_PL) { if (!(v & F_MBMSGVALID)) { t4_write_reg(adap, ctl_reg, V_MBOWNER(X_MBOWNER_NONE)); continue; } /* * Retrieve the command reply and release the mailbox. */ get_mbox_rpl(adap, cmd_rpl, MBOX_LEN/8, data_reg); CH_DUMP_MBOX(adap, mbox, 0, "rpl", cmd_rpl, false); t4_write_reg(adap, ctl_reg, V_MBOWNER(X_MBOWNER_NONE)); res = be64_to_cpu(cmd_rpl[0]); if (G_FW_CMD_OP(res >> 32) == FW_DEBUG_CMD) { fw_asrt(adap, (struct fw_debug_cmd *)cmd_rpl); res = V_FW_CMD_RETVAL(EIO); } else if (rpl) memcpy(rpl, cmd_rpl, size); return -G_FW_CMD_RETVAL((int)res); } } /* * We timed out waiting for a reply to our mailbox command. Report * the error and also check to see if the firmware reported any * errors ... */ CH_ERR(adap, "command %#x in mbox %d timed out (0x%08x).\n", *(const u8 *)cmd, mbox, pcie_fw); CH_DUMP_MBOX(adap, mbox, 0, "cmdsent", cmd_rpl, true); CH_DUMP_MBOX(adap, mbox, data_reg, "current", NULL, true); if (pcie_fw & F_PCIE_FW_ERR) { ret = -ENXIO; t4_report_fw_error(adap); } else { ret = -ETIMEDOUT; t4_os_dump_devlog(adap); } t4_fatal_err(adap, true); return ret; } int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size, void *rpl, bool sleep_ok) { return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok, FW_CMD_MAX_TIMEOUT); } static int t4_edc_err_read(struct adapter *adap, int idx) { u32 edc_ecc_err_addr_reg; u32 edc_bist_status_rdata_reg; if (is_t4(adap)) { CH_WARN(adap, "%s: T4 NOT supported.\n", __func__); return 0; } if (idx != MEM_EDC0 && idx != MEM_EDC1) { CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx); return 0; } edc_ecc_err_addr_reg = EDC_T5_REG(A_EDC_H_ECC_ERR_ADDR, idx); edc_bist_status_rdata_reg = EDC_T5_REG(A_EDC_H_BIST_STATUS_RDATA, idx); CH_WARN(adap, "edc%d err addr 0x%x: 0x%x.\n", idx, edc_ecc_err_addr_reg, t4_read_reg(adap, edc_ecc_err_addr_reg)); CH_WARN(adap, "bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n", edc_bist_status_rdata_reg, (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg), (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 8), (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 16), (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 24), (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 32), (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 40), (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 48), (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 56), (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 64)); return 0; } /** * t4_mc_read - read from MC through backdoor accesses * @adap: the adapter * @idx: which MC to access * @addr: address of first byte requested * @data: 64 bytes of data containing the requested address * @ecc: where to store the corresponding 64-bit ECC word * * Read 64 bytes of data from MC starting at a 64-byte-aligned address * that covers the requested address @addr. If @parity is not %NULL it * is assigned the 64-bit ECC word for the read data. */ int t4_mc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc) { int i; u32 mc_bist_cmd_reg, mc_bist_cmd_addr_reg, mc_bist_cmd_len_reg; u32 mc_bist_status_rdata_reg, mc_bist_data_pattern_reg; if (is_t4(adap)) { mc_bist_cmd_reg = A_MC_BIST_CMD; mc_bist_cmd_addr_reg = A_MC_BIST_CMD_ADDR; mc_bist_cmd_len_reg = A_MC_BIST_CMD_LEN; mc_bist_status_rdata_reg = A_MC_BIST_STATUS_RDATA; mc_bist_data_pattern_reg = A_MC_BIST_DATA_PATTERN; } else { mc_bist_cmd_reg = MC_REG(A_MC_P_BIST_CMD, idx); mc_bist_cmd_addr_reg = MC_REG(A_MC_P_BIST_CMD_ADDR, idx); mc_bist_cmd_len_reg = MC_REG(A_MC_P_BIST_CMD_LEN, idx); mc_bist_status_rdata_reg = MC_REG(A_MC_P_BIST_STATUS_RDATA, idx); mc_bist_data_pattern_reg = MC_REG(A_MC_P_BIST_DATA_PATTERN, idx); } if (t4_read_reg(adap, mc_bist_cmd_reg) & F_START_BIST) return -EBUSY; t4_write_reg(adap, mc_bist_cmd_addr_reg, addr & ~0x3fU); t4_write_reg(adap, mc_bist_cmd_len_reg, 64); t4_write_reg(adap, mc_bist_data_pattern_reg, 0xc); t4_write_reg(adap, mc_bist_cmd_reg, V_BIST_OPCODE(1) | F_START_BIST | V_BIST_CMD_GAP(1)); i = t4_wait_op_done(adap, mc_bist_cmd_reg, F_START_BIST, 0, 10, 1); if (i) return i; #define MC_DATA(i) MC_BIST_STATUS_REG(mc_bist_status_rdata_reg, i) for (i = 15; i >= 0; i--) *data++ = ntohl(t4_read_reg(adap, MC_DATA(i))); if (ecc) *ecc = t4_read_reg64(adap, MC_DATA(16)); #undef MC_DATA return 0; } /** * t4_edc_read - read from EDC through backdoor accesses * @adap: the adapter * @idx: which EDC to access * @addr: address of first byte requested * @data: 64 bytes of data containing the requested address * @ecc: where to store the corresponding 64-bit ECC word * * Read 64 bytes of data from EDC starting at a 64-byte-aligned address * that covers the requested address @addr. If @parity is not %NULL it * is assigned the 64-bit ECC word for the read data. */ int t4_edc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc) { int i; u32 edc_bist_cmd_reg, edc_bist_cmd_addr_reg, edc_bist_cmd_len_reg; u32 edc_bist_cmd_data_pattern, edc_bist_status_rdata_reg; if (is_t4(adap)) { edc_bist_cmd_reg = EDC_REG(A_EDC_BIST_CMD, idx); edc_bist_cmd_addr_reg = EDC_REG(A_EDC_BIST_CMD_ADDR, idx); edc_bist_cmd_len_reg = EDC_REG(A_EDC_BIST_CMD_LEN, idx); edc_bist_cmd_data_pattern = EDC_REG(A_EDC_BIST_DATA_PATTERN, idx); edc_bist_status_rdata_reg = EDC_REG(A_EDC_BIST_STATUS_RDATA, idx); } else { /* * These macro are missing in t4_regs.h file. * Added temporarily for testing. */ #define EDC_STRIDE_T5 (EDC_T51_BASE_ADDR - EDC_T50_BASE_ADDR) #define EDC_REG_T5(reg, idx) (reg + EDC_STRIDE_T5 * idx) edc_bist_cmd_reg = EDC_REG_T5(A_EDC_H_BIST_CMD, idx); edc_bist_cmd_addr_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_ADDR, idx); edc_bist_cmd_len_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_LEN, idx); edc_bist_cmd_data_pattern = EDC_REG_T5(A_EDC_H_BIST_DATA_PATTERN, idx); edc_bist_status_rdata_reg = EDC_REG_T5(A_EDC_H_BIST_STATUS_RDATA, idx); #undef EDC_REG_T5 #undef EDC_STRIDE_T5 } if (t4_read_reg(adap, edc_bist_cmd_reg) & F_START_BIST) return -EBUSY; t4_write_reg(adap, edc_bist_cmd_addr_reg, addr & ~0x3fU); t4_write_reg(adap, edc_bist_cmd_len_reg, 64); t4_write_reg(adap, edc_bist_cmd_data_pattern, 0xc); t4_write_reg(adap, edc_bist_cmd_reg, V_BIST_OPCODE(1) | V_BIST_CMD_GAP(1) | F_START_BIST); i = t4_wait_op_done(adap, edc_bist_cmd_reg, F_START_BIST, 0, 10, 1); if (i) return i; #define EDC_DATA(i) EDC_BIST_STATUS_REG(edc_bist_status_rdata_reg, i) for (i = 15; i >= 0; i--) *data++ = ntohl(t4_read_reg(adap, EDC_DATA(i))); if (ecc) *ecc = t4_read_reg64(adap, EDC_DATA(16)); #undef EDC_DATA return 0; } /** * t4_mem_read - read EDC 0, EDC 1 or MC into buffer * @adap: the adapter * @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC * @addr: address within indicated memory type * @len: amount of memory to read * @buf: host memory buffer * * Reads an [almost] arbitrary memory region in the firmware: the * firmware memory address, length and host buffer must be aligned on * 32-bit boudaries. The memory is returned as a raw byte sequence from * the firmware's memory. If this memory contains data structures which * contain multi-byte integers, it's the callers responsibility to * perform appropriate byte order conversions. */ int t4_mem_read(struct adapter *adap, int mtype, u32 addr, u32 len, __be32 *buf) { u32 pos, start, end, offset; int ret; /* * Argument sanity checks ... */ if ((addr & 0x3) || (len & 0x3)) return -EINVAL; /* * The underlaying EDC/MC read routines read 64 bytes at a time so we * need to round down the start and round up the end. We'll start * copying out of the first line at (addr - start) a word at a time. */ start = rounddown2(addr, 64); end = roundup2(addr + len, 64); offset = (addr - start)/sizeof(__be32); for (pos = start; pos < end; pos += 64, offset = 0) { __be32 data[16]; /* * Read the chip's memory block and bail if there's an error. */ if ((mtype == MEM_MC) || (mtype == MEM_MC1)) ret = t4_mc_read(adap, mtype - MEM_MC, pos, data, NULL); else ret = t4_edc_read(adap, mtype, pos, data, NULL); if (ret) return ret; /* * Copy the data into the caller's memory buffer. */ while (offset < 16 && len > 0) { *buf++ = data[offset++]; len -= sizeof(__be32); } } return 0; } /* * Return the specified PCI-E Configuration Space register from our Physical * Function. We try first via a Firmware LDST Command (if fw_attach != 0) * since we prefer to let the firmware own all of these registers, but if that * fails we go for it directly ourselves. */ u32 t4_read_pcie_cfg4(struct adapter *adap, int reg, int drv_fw_attach) { /* * If fw_attach != 0, construct and send the Firmware LDST Command to * retrieve the specified PCI-E Configuration Space register. */ if (drv_fw_attach != 0) { struct fw_ldst_cmd ldst_cmd; int ret; memset(&ldst_cmd, 0, sizeof(ldst_cmd)); ldst_cmd.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_READ | V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FUNC_PCIE)); ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd)); ldst_cmd.u.pcie.select_naccess = V_FW_LDST_CMD_NACCESS(1); ldst_cmd.u.pcie.ctrl_to_fn = (F_FW_LDST_CMD_LC | V_FW_LDST_CMD_FN(adap->pf)); ldst_cmd.u.pcie.r = reg; /* * If the LDST Command succeeds, return the result, otherwise * fall through to reading it directly ourselves ... */ ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd), &ldst_cmd); if (ret == 0) return be32_to_cpu(ldst_cmd.u.pcie.data[0]); CH_WARN(adap, "Firmware failed to return " "Configuration Space register %d, err = %d\n", reg, -ret); } /* * Read the desired Configuration Space register via the PCI-E * Backdoor mechanism. */ return t4_hw_pci_read_cfg4(adap, reg); } /** * t4_get_regs_len - return the size of the chips register set * @adapter: the adapter * * Returns the size of the chip's BAR0 register space. */ unsigned int t4_get_regs_len(struct adapter *adapter) { unsigned int chip_version = chip_id(adapter); switch (chip_version) { case CHELSIO_T4: if (adapter->flags & IS_VF) return FW_T4VF_REGMAP_SIZE; return T4_REGMAP_SIZE; case CHELSIO_T5: case CHELSIO_T6: if (adapter->flags & IS_VF) return FW_T4VF_REGMAP_SIZE; return T5_REGMAP_SIZE; } CH_ERR(adapter, "Unsupported chip version %d\n", chip_version); return 0; } /** * t4_get_regs - read chip registers into provided buffer * @adap: the adapter * @buf: register buffer * @buf_size: size (in bytes) of register buffer * * If the provided register buffer isn't large enough for the chip's * full register range, the register dump will be truncated to the * register buffer's size. */ void t4_get_regs(struct adapter *adap, u8 *buf, size_t buf_size) { static const unsigned int t4_reg_ranges[] = { 0x1008, 0x1108, 0x1180, 0x1184, 0x1190, 0x1194, 0x11a0, 0x11a4, 0x11b0, 0x11b4, 0x11fc, 0x123c, 0x1300, 0x173c, 0x1800, 0x18fc, 0x3000, 0x30d8, 0x30e0, 0x30e4, 0x30ec, 0x5910, 0x5920, 0x5924, 0x5960, 0x5960, 0x5968, 0x5968, 0x5970, 0x5970, 0x5978, 0x5978, 0x5980, 0x5980, 0x5988, 0x5988, 0x5990, 0x5990, 0x5998, 0x5998, 0x59a0, 0x59d4, 0x5a00, 0x5ae0, 0x5ae8, 0x5ae8, 0x5af0, 0x5af0, 0x5af8, 0x5af8, 0x6000, 0x6098, 0x6100, 0x6150, 0x6200, 0x6208, 0x6240, 0x6248, 0x6280, 0x62b0, 0x62c0, 0x6338, 0x6370, 0x638c, 0x6400, 0x643c, 0x6500, 0x6524, 0x6a00, 0x6a04, 0x6a14, 0x6a38, 0x6a60, 0x6a70, 0x6a78, 0x6a78, 0x6b00, 0x6b0c, 0x6b1c, 0x6b84, 0x6bf0, 0x6bf8, 0x6c00, 0x6c0c, 0x6c1c, 0x6c84, 0x6cf0, 0x6cf8, 0x6d00, 0x6d0c, 0x6d1c, 0x6d84, 0x6df0, 0x6df8, 0x6e00, 0x6e0c, 0x6e1c, 0x6e84, 0x6ef0, 0x6ef8, 0x6f00, 0x6f0c, 0x6f1c, 0x6f84, 0x6ff0, 0x6ff8, 0x7000, 0x700c, 0x701c, 0x7084, 0x70f0, 0x70f8, 0x7100, 0x710c, 0x711c, 0x7184, 0x71f0, 0x71f8, 0x7200, 0x720c, 0x721c, 0x7284, 0x72f0, 0x72f8, 0x7300, 0x730c, 0x731c, 0x7384, 0x73f0, 0x73f8, 0x7400, 0x7450, 0x7500, 0x7530, 0x7600, 0x760c, 0x7614, 0x761c, 0x7680, 0x76cc, 0x7700, 0x7798, 0x77c0, 0x77fc, 0x7900, 0x79fc, 0x7b00, 0x7b58, 0x7b60, 0x7b84, 0x7b8c, 0x7c38, 0x7d00, 0x7d38, 0x7d40, 0x7d80, 0x7d8c, 0x7ddc, 0x7de4, 0x7e04, 0x7e10, 0x7e1c, 0x7e24, 0x7e38, 0x7e40, 0x7e44, 0x7e4c, 0x7e78, 0x7e80, 0x7ea4, 0x7eac, 0x7edc, 0x7ee8, 0x7efc, 0x8dc0, 0x8e04, 0x8e10, 0x8e1c, 0x8e30, 0x8e78, 0x8ea0, 0x8eb8, 0x8ec0, 0x8f6c, 0x8fc0, 0x9008, 0x9010, 0x9058, 0x9060, 0x9060, 0x9068, 0x9074, 0x90fc, 0x90fc, 0x9400, 0x9408, 0x9410, 0x9458, 0x9600, 0x9600, 0x9608, 0x9638, 0x9640, 0x96bc, 0x9800, 0x9808, 0x9820, 0x983c, 0x9850, 0x9864, 0x9c00, 0x9c6c, 0x9c80, 0x9cec, 0x9d00, 0x9d6c, 0x9d80, 0x9dec, 0x9e00, 0x9e6c, 0x9e80, 0x9eec, 0x9f00, 0x9f6c, 0x9f80, 0x9fec, 0xd004, 0xd004, 0xd010, 0xd03c, 0xdfc0, 0xdfe0, 0xe000, 0xea7c, 0xf000, 0x11110, 0x11118, 0x11190, 0x19040, 0x1906c, 0x19078, 0x19080, 0x1908c, 0x190e4, 0x190f0, 0x190f8, 0x19100, 0x19110, 0x19120, 0x19124, 0x19150, 0x19194, 0x1919c, 0x191b0, 0x191d0, 0x191e8, 0x19238, 0x1924c, 0x193f8, 0x1943c, 0x1944c, 0x19474, 0x19490, 0x194e0, 0x194f0, 0x194f8, 0x19800, 0x19c08, 0x19c10, 0x19c90, 0x19ca0, 0x19ce4, 0x19cf0, 0x19d40, 0x19d50, 0x19d94, 0x19da0, 0x19de8, 0x19df0, 0x19e40, 0x19e50, 0x19e90, 0x19ea0, 0x19f4c, 0x1a000, 0x1a004, 0x1a010, 0x1a06c, 0x1a0b0, 0x1a0e4, 0x1a0ec, 0x1a0f4, 0x1a100, 0x1a108, 0x1a114, 0x1a120, 0x1a128, 0x1a130, 0x1a138, 0x1a138, 0x1a190, 0x1a1c4, 0x1a1fc, 0x1a1fc, 0x1e040, 0x1e04c, 0x1e284, 0x1e28c, 0x1e2c0, 0x1e2c0, 0x1e2e0, 0x1e2e0, 0x1e300, 0x1e384, 0x1e3c0, 0x1e3c8, 0x1e440, 0x1e44c, 0x1e684, 0x1e68c, 0x1e6c0, 0x1e6c0, 0x1e6e0, 0x1e6e0, 0x1e700, 0x1e784, 0x1e7c0, 0x1e7c8, 0x1e840, 0x1e84c, 0x1ea84, 0x1ea8c, 0x1eac0, 0x1eac0, 0x1eae0, 0x1eae0, 0x1eb00, 0x1eb84, 0x1ebc0, 0x1ebc8, 0x1ec40, 0x1ec4c, 0x1ee84, 0x1ee8c, 0x1eec0, 0x1eec0, 0x1eee0, 0x1eee0, 0x1ef00, 0x1ef84, 0x1efc0, 0x1efc8, 0x1f040, 0x1f04c, 0x1f284, 0x1f28c, 0x1f2c0, 0x1f2c0, 0x1f2e0, 0x1f2e0, 0x1f300, 0x1f384, 0x1f3c0, 0x1f3c8, 0x1f440, 0x1f44c, 0x1f684, 0x1f68c, 0x1f6c0, 0x1f6c0, 0x1f6e0, 0x1f6e0, 0x1f700, 0x1f784, 0x1f7c0, 0x1f7c8, 0x1f840, 0x1f84c, 0x1fa84, 0x1fa8c, 0x1fac0, 0x1fac0, 0x1fae0, 0x1fae0, 0x1fb00, 0x1fb84, 0x1fbc0, 0x1fbc8, 0x1fc40, 0x1fc4c, 0x1fe84, 0x1fe8c, 0x1fec0, 0x1fec0, 0x1fee0, 0x1fee0, 0x1ff00, 0x1ff84, 0x1ffc0, 0x1ffc8, 0x20000, 0x2002c, 0x20100, 0x2013c, 0x20190, 0x201a0, 0x201a8, 0x201b8, 0x201c4, 0x201c8, 0x20200, 0x20318, 0x20400, 0x204b4, 0x204c0, 0x20528, 0x20540, 0x20614, 0x21000, 0x21040, 0x2104c, 0x21060, 0x210c0, 0x210ec, 0x21200, 0x21268, 0x21270, 0x21284, 0x212fc, 0x21388, 0x21400, 0x21404, 0x21500, 0x21500, 0x21510, 0x21518, 0x2152c, 0x21530, 0x2153c, 0x2153c, 0x21550, 0x21554, 0x21600, 0x21600, 0x21608, 0x2161c, 0x21624, 0x21628, 0x21630, 0x21634, 0x2163c, 0x2163c, 0x21700, 0x2171c, 0x21780, 0x2178c, 0x21800, 0x21818, 0x21820, 0x21828, 0x21830, 0x21848, 0x21850, 0x21854, 0x21860, 0x21868, 0x21870, 0x21870, 0x21878, 0x21898, 0x218a0, 0x218a8, 0x218b0, 0x218c8, 0x218d0, 0x218d4, 0x218e0, 0x218e8, 0x218f0, 0x218f0, 0x218f8, 0x21a18, 0x21a20, 0x21a28, 0x21a30, 0x21a48, 0x21a50, 0x21a54, 0x21a60, 0x21a68, 0x21a70, 0x21a70, 0x21a78, 0x21a98, 0x21aa0, 0x21aa8, 0x21ab0, 0x21ac8, 0x21ad0, 0x21ad4, 0x21ae0, 0x21ae8, 0x21af0, 0x21af0, 0x21af8, 0x21c18, 0x21c20, 0x21c20, 0x21c28, 0x21c30, 0x21c38, 0x21c38, 0x21c80, 0x21c98, 0x21ca0, 0x21ca8, 0x21cb0, 0x21cc8, 0x21cd0, 0x21cd4, 0x21ce0, 0x21ce8, 0x21cf0, 0x21cf0, 0x21cf8, 0x21d7c, 0x21e00, 0x21e04, 0x22000, 0x2202c, 0x22100, 0x2213c, 0x22190, 0x221a0, 0x221a8, 0x221b8, 0x221c4, 0x221c8, 0x22200, 0x22318, 0x22400, 0x224b4, 0x224c0, 0x22528, 0x22540, 0x22614, 0x23000, 0x23040, 0x2304c, 0x23060, 0x230c0, 0x230ec, 0x23200, 0x23268, 0x23270, 0x23284, 0x232fc, 0x23388, 0x23400, 0x23404, 0x23500, 0x23500, 0x23510, 0x23518, 0x2352c, 0x23530, 0x2353c, 0x2353c, 0x23550, 0x23554, 0x23600, 0x23600, 0x23608, 0x2361c, 0x23624, 0x23628, 0x23630, 0x23634, 0x2363c, 0x2363c, 0x23700, 0x2371c, 0x23780, 0x2378c, 0x23800, 0x23818, 0x23820, 0x23828, 0x23830, 0x23848, 0x23850, 0x23854, 0x23860, 0x23868, 0x23870, 0x23870, 0x23878, 0x23898, 0x238a0, 0x238a8, 0x238b0, 0x238c8, 0x238d0, 0x238d4, 0x238e0, 0x238e8, 0x238f0, 0x238f0, 0x238f8, 0x23a18, 0x23a20, 0x23a28, 0x23a30, 0x23a48, 0x23a50, 0x23a54, 0x23a60, 0x23a68, 0x23a70, 0x23a70, 0x23a78, 0x23a98, 0x23aa0, 0x23aa8, 0x23ab0, 0x23ac8, 0x23ad0, 0x23ad4, 0x23ae0, 0x23ae8, 0x23af0, 0x23af0, 0x23af8, 0x23c18, 0x23c20, 0x23c20, 0x23c28, 0x23c30, 0x23c38, 0x23c38, 0x23c80, 0x23c98, 0x23ca0, 0x23ca8, 0x23cb0, 0x23cc8, 0x23cd0, 0x23cd4, 0x23ce0, 0x23ce8, 0x23cf0, 0x23cf0, 0x23cf8, 0x23d7c, 0x23e00, 0x23e04, 0x24000, 0x2402c, 0x24100, 0x2413c, 0x24190, 0x241a0, 0x241a8, 0x241b8, 0x241c4, 0x241c8, 0x24200, 0x24318, 0x24400, 0x244b4, 0x244c0, 0x24528, 0x24540, 0x24614, 0x25000, 0x25040, 0x2504c, 0x25060, 0x250c0, 0x250ec, 0x25200, 0x25268, 0x25270, 0x25284, 0x252fc, 0x25388, 0x25400, 0x25404, 0x25500, 0x25500, 0x25510, 0x25518, 0x2552c, 0x25530, 0x2553c, 0x2553c, 0x25550, 0x25554, 0x25600, 0x25600, 0x25608, 0x2561c, 0x25624, 0x25628, 0x25630, 0x25634, 0x2563c, 0x2563c, 0x25700, 0x2571c, 0x25780, 0x2578c, 0x25800, 0x25818, 0x25820, 0x25828, 0x25830, 0x25848, 0x25850, 0x25854, 0x25860, 0x25868, 0x25870, 0x25870, 0x25878, 0x25898, 0x258a0, 0x258a8, 0x258b0, 0x258c8, 0x258d0, 0x258d4, 0x258e0, 0x258e8, 0x258f0, 0x258f0, 0x258f8, 0x25a18, 0x25a20, 0x25a28, 0x25a30, 0x25a48, 0x25a50, 0x25a54, 0x25a60, 0x25a68, 0x25a70, 0x25a70, 0x25a78, 0x25a98, 0x25aa0, 0x25aa8, 0x25ab0, 0x25ac8, 0x25ad0, 0x25ad4, 0x25ae0, 0x25ae8, 0x25af0, 0x25af0, 0x25af8, 0x25c18, 0x25c20, 0x25c20, 0x25c28, 0x25c30, 0x25c38, 0x25c38, 0x25c80, 0x25c98, 0x25ca0, 0x25ca8, 0x25cb0, 0x25cc8, 0x25cd0, 0x25cd4, 0x25ce0, 0x25ce8, 0x25cf0, 0x25cf0, 0x25cf8, 0x25d7c, 0x25e00, 0x25e04, 0x26000, 0x2602c, 0x26100, 0x2613c, 0x26190, 0x261a0, 0x261a8, 0x261b8, 0x261c4, 0x261c8, 0x26200, 0x26318, 0x26400, 0x264b4, 0x264c0, 0x26528, 0x26540, 0x26614, 0x27000, 0x27040, 0x2704c, 0x27060, 0x270c0, 0x270ec, 0x27200, 0x27268, 0x27270, 0x27284, 0x272fc, 0x27388, 0x27400, 0x27404, 0x27500, 0x27500, 0x27510, 0x27518, 0x2752c, 0x27530, 0x2753c, 0x2753c, 0x27550, 0x27554, 0x27600, 0x27600, 0x27608, 0x2761c, 0x27624, 0x27628, 0x27630, 0x27634, 0x2763c, 0x2763c, 0x27700, 0x2771c, 0x27780, 0x2778c, 0x27800, 0x27818, 0x27820, 0x27828, 0x27830, 0x27848, 0x27850, 0x27854, 0x27860, 0x27868, 0x27870, 0x27870, 0x27878, 0x27898, 0x278a0, 0x278a8, 0x278b0, 0x278c8, 0x278d0, 0x278d4, 0x278e0, 0x278e8, 0x278f0, 0x278f0, 0x278f8, 0x27a18, 0x27a20, 0x27a28, 0x27a30, 0x27a48, 0x27a50, 0x27a54, 0x27a60, 0x27a68, 0x27a70, 0x27a70, 0x27a78, 0x27a98, 0x27aa0, 0x27aa8, 0x27ab0, 0x27ac8, 0x27ad0, 0x27ad4, 0x27ae0, 0x27ae8, 0x27af0, 0x27af0, 0x27af8, 0x27c18, 0x27c20, 0x27c20, 0x27c28, 0x27c30, 0x27c38, 0x27c38, 0x27c80, 0x27c98, 0x27ca0, 0x27ca8, 0x27cb0, 0x27cc8, 0x27cd0, 0x27cd4, 0x27ce0, 0x27ce8, 0x27cf0, 0x27cf0, 0x27cf8, 0x27d7c, 0x27e00, 0x27e04, }; static const unsigned int t4vf_reg_ranges[] = { VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS), VF_MPS_REG(A_MPS_VF_CTL), VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H), VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_WHOAMI), VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL), VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS), FW_T4VF_MBDATA_BASE_ADDR, FW_T4VF_MBDATA_BASE_ADDR + ((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4), }; static const unsigned int t5_reg_ranges[] = { 0x1008, 0x10c0, 0x10cc, 0x10f8, 0x1100, 0x1100, 0x110c, 0x1148, 0x1180, 0x1184, 0x1190, 0x1194, 0x11a0, 0x11a4, 0x11b0, 0x11b4, 0x11fc, 0x123c, 0x1280, 0x173c, 0x1800, 0x18fc, 0x3000, 0x3028, 0x3060, 0x30b0, 0x30b8, 0x30d8, 0x30e0, 0x30fc, 0x3140, 0x357c, 0x35a8, 0x35cc, 0x35ec, 0x35ec, 0x3600, 0x5624, 0x56cc, 0x56ec, 0x56f4, 0x5720, 0x5728, 0x575c, 0x580c, 0x5814, 0x5890, 0x589c, 0x58a4, 0x58ac, 0x58b8, 0x58bc, 0x5940, 0x59c8, 0x59d0, 0x59dc, 0x59fc, 0x5a18, 0x5a60, 0x5a70, 0x5a80, 0x5a9c, 0x5b94, 0x5bfc, 0x6000, 0x6020, 0x6028, 0x6040, 0x6058, 0x609c, 0x60a8, 0x614c, 0x7700, 0x7798, 0x77c0, 0x78fc, 0x7b00, 0x7b58, 0x7b60, 0x7b84, 0x7b8c, 0x7c54, 0x7d00, 0x7d38, 0x7d40, 0x7d80, 0x7d8c, 0x7ddc, 0x7de4, 0x7e04, 0x7e10, 0x7e1c, 0x7e24, 0x7e38, 0x7e40, 0x7e44, 0x7e4c, 0x7e78, 0x7e80, 0x7edc, 0x7ee8, 0x7efc, 0x8dc0, 0x8de0, 0x8df8, 0x8e04, 0x8e10, 0x8e84, 0x8ea0, 0x8f84, 0x8fc0, 0x9058, 0x9060, 0x9060, 0x9068, 0x90f8, 0x9400, 0x9408, 0x9410, 0x9470, 0x9600, 0x9600, 0x9608, 0x9638, 0x9640, 0x96f4, 0x9800, 0x9808, 0x9810, 0x9864, 0x9c00, 0x9c6c, 0x9c80, 0x9cec, 0x9d00, 0x9d6c, 0x9d80, 0x9dec, 0x9e00, 0x9e6c, 0x9e80, 0x9eec, 0x9f00, 0x9f6c, 0x9f80, 0xa020, 0xd000, 0xd004, 0xd010, 0xd03c, 0xdfc0, 0xdfe0, 0xe000, 0x1106c, 0x11074, 0x11088, 0x1109c, 0x1117c, 0x11190, 0x11204, 0x19040, 0x1906c, 0x19078, 0x19080, 0x1908c, 0x190e8, 0x190f0, 0x190f8, 0x19100, 0x19110, 0x19120, 0x19124, 0x19150, 0x19194, 0x1919c, 0x191b0, 0x191d0, 0x191e8, 0x19238, 0x19290, 0x193f8, 0x19428, 0x19430, 0x19444, 0x1944c, 0x1946c, 0x19474, 0x19474, 0x19490, 0x194cc, 0x194f0, 0x194f8, 0x19c00, 0x19c08, 0x19c10, 0x19c60, 0x19c94, 0x19ce4, 0x19cf0, 0x19d40, 0x19d50, 0x19d94, 0x19da0, 0x19de8, 0x19df0, 0x19e10, 0x19e50, 0x19e90, 0x19ea0, 0x19f24, 0x19f34, 0x19f34, 0x19f40, 0x19f50, 0x19f90, 0x19fb4, 0x19fc4, 0x19fe4, 0x1a000, 0x1a004, 0x1a010, 0x1a06c, 0x1a0b0, 0x1a0e4, 0x1a0ec, 0x1a0f8, 0x1a100, 0x1a108, 0x1a114, 0x1a130, 0x1a138, 0x1a1c4, 0x1a1fc, 0x1a1fc, 0x1e008, 0x1e00c, 0x1e040, 0x1e044, 0x1e04c, 0x1e04c, 0x1e284, 0x1e290, 0x1e2c0, 0x1e2c0, 0x1e2e0, 0x1e2e0, 0x1e300, 0x1e384, 0x1e3c0, 0x1e3c8, 0x1e408, 0x1e40c, 0x1e440, 0x1e444, 0x1e44c, 0x1e44c, 0x1e684, 0x1e690, 0x1e6c0, 0x1e6c0, 0x1e6e0, 0x1e6e0, 0x1e700, 0x1e784, 0x1e7c0, 0x1e7c8, 0x1e808, 0x1e80c, 0x1e840, 0x1e844, 0x1e84c, 0x1e84c, 0x1ea84, 0x1ea90, 0x1eac0, 0x1eac0, 0x1eae0, 0x1eae0, 0x1eb00, 0x1eb84, 0x1ebc0, 0x1ebc8, 0x1ec08, 0x1ec0c, 0x1ec40, 0x1ec44, 0x1ec4c, 0x1ec4c, 0x1ee84, 0x1ee90, 0x1eec0, 0x1eec0, 0x1eee0, 0x1eee0, 0x1ef00, 0x1ef84, 0x1efc0, 0x1efc8, 0x1f008, 0x1f00c, 0x1f040, 0x1f044, 0x1f04c, 0x1f04c, 0x1f284, 0x1f290, 0x1f2c0, 0x1f2c0, 0x1f2e0, 0x1f2e0, 0x1f300, 0x1f384, 0x1f3c0, 0x1f3c8, 0x1f408, 0x1f40c, 0x1f440, 0x1f444, 0x1f44c, 0x1f44c, 0x1f684, 0x1f690, 0x1f6c0, 0x1f6c0, 0x1f6e0, 0x1f6e0, 0x1f700, 0x1f784, 0x1f7c0, 0x1f7c8, 0x1f808, 0x1f80c, 0x1f840, 0x1f844, 0x1f84c, 0x1f84c, 0x1fa84, 0x1fa90, 0x1fac0, 0x1fac0, 0x1fae0, 0x1fae0, 0x1fb00, 0x1fb84, 0x1fbc0, 0x1fbc8, 0x1fc08, 0x1fc0c, 0x1fc40, 0x1fc44, 0x1fc4c, 0x1fc4c, 0x1fe84, 0x1fe90, 0x1fec0, 0x1fec0, 0x1fee0, 0x1fee0, 0x1ff00, 0x1ff84, 0x1ffc0, 0x1ffc8, 0x30000, 0x30030, 0x30100, 0x30144, 0x30190, 0x301a0, 0x301a8, 0x301b8, 0x301c4, 0x301c8, 0x301d0, 0x301d0, 0x30200, 0x30318, 0x30400, 0x304b4, 0x304c0, 0x3052c, 0x30540, 0x3061c, 0x30800, 0x30828, 0x30834, 0x30834, 0x308c0, 0x30908, 0x30910, 0x309ac, 0x30a00, 0x30a14, 0x30a1c, 0x30a2c, 0x30a44, 0x30a50, 0x30a74, 0x30a74, 0x30a7c, 0x30afc, 0x30b08, 0x30c24, 0x30d00, 0x30d00, 0x30d08, 0x30d14, 0x30d1c, 0x30d20, 0x30d3c, 0x30d3c, 0x30d48, 0x30d50, 0x31200, 0x3120c, 0x31220, 0x31220, 0x31240, 0x31240, 0x31600, 0x3160c, 0x31a00, 0x31a1c, 0x31e00, 0x31e20, 0x31e38, 0x31e3c, 0x31e80, 0x31e80, 0x31e88, 0x31ea8, 0x31eb0, 0x31eb4, 0x31ec8, 0x31ed4, 0x31fb8, 0x32004, 0x32200, 0x32200, 0x32208, 0x32240, 0x32248, 0x32280, 0x32288, 0x322c0, 0x322c8, 0x322fc, 0x32600, 0x32630, 0x32a00, 0x32abc, 0x32b00, 0x32b10, 0x32b20, 0x32b30, 0x32b40, 0x32b50, 0x32b60, 0x32b70, 0x33000, 0x33028, 0x33030, 0x33048, 0x33060, 0x33068, 0x33070, 0x3309c, 0x330f0, 0x33128, 0x33130, 0x33148, 0x33160, 0x33168, 0x33170, 0x3319c, 0x331f0, 0x33238, 0x33240, 0x33240, 0x33248, 0x33250, 0x3325c, 0x33264, 0x33270, 0x332b8, 0x332c0, 0x332e4, 0x332f8, 0x33338, 0x33340, 0x33340, 0x33348, 0x33350, 0x3335c, 0x33364, 0x33370, 0x333b8, 0x333c0, 0x333e4, 0x333f8, 0x33428, 0x33430, 0x33448, 0x33460, 0x33468, 0x33470, 0x3349c, 0x334f0, 0x33528, 0x33530, 0x33548, 0x33560, 0x33568, 0x33570, 0x3359c, 0x335f0, 0x33638, 0x33640, 0x33640, 0x33648, 0x33650, 0x3365c, 0x33664, 0x33670, 0x336b8, 0x336c0, 0x336e4, 0x336f8, 0x33738, 0x33740, 0x33740, 0x33748, 0x33750, 0x3375c, 0x33764, 0x33770, 0x337b8, 0x337c0, 0x337e4, 0x337f8, 0x337fc, 0x33814, 0x33814, 0x3382c, 0x3382c, 0x33880, 0x3388c, 0x338e8, 0x338ec, 0x33900, 0x33928, 0x33930, 0x33948, 0x33960, 0x33968, 0x33970, 0x3399c, 0x339f0, 0x33a38, 0x33a40, 0x33a40, 0x33a48, 0x33a50, 0x33a5c, 0x33a64, 0x33a70, 0x33ab8, 0x33ac0, 0x33ae4, 0x33af8, 0x33b10, 0x33b28, 0x33b28, 0x33b3c, 0x33b50, 0x33bf0, 0x33c10, 0x33c28, 0x33c28, 0x33c3c, 0x33c50, 0x33cf0, 0x33cfc, 0x34000, 0x34030, 0x34100, 0x34144, 0x34190, 0x341a0, 0x341a8, 0x341b8, 0x341c4, 0x341c8, 0x341d0, 0x341d0, 0x34200, 0x34318, 0x34400, 0x344b4, 0x344c0, 0x3452c, 0x34540, 0x3461c, 0x34800, 0x34828, 0x34834, 0x34834, 0x348c0, 0x34908, 0x34910, 0x349ac, 0x34a00, 0x34a14, 0x34a1c, 0x34a2c, 0x34a44, 0x34a50, 0x34a74, 0x34a74, 0x34a7c, 0x34afc, 0x34b08, 0x34c24, 0x34d00, 0x34d00, 0x34d08, 0x34d14, 0x34d1c, 0x34d20, 0x34d3c, 0x34d3c, 0x34d48, 0x34d50, 0x35200, 0x3520c, 0x35220, 0x35220, 0x35240, 0x35240, 0x35600, 0x3560c, 0x35a00, 0x35a1c, 0x35e00, 0x35e20, 0x35e38, 0x35e3c, 0x35e80, 0x35e80, 0x35e88, 0x35ea8, 0x35eb0, 0x35eb4, 0x35ec8, 0x35ed4, 0x35fb8, 0x36004, 0x36200, 0x36200, 0x36208, 0x36240, 0x36248, 0x36280, 0x36288, 0x362c0, 0x362c8, 0x362fc, 0x36600, 0x36630, 0x36a00, 0x36abc, 0x36b00, 0x36b10, 0x36b20, 0x36b30, 0x36b40, 0x36b50, 0x36b60, 0x36b70, 0x37000, 0x37028, 0x37030, 0x37048, 0x37060, 0x37068, 0x37070, 0x3709c, 0x370f0, 0x37128, 0x37130, 0x37148, 0x37160, 0x37168, 0x37170, 0x3719c, 0x371f0, 0x37238, 0x37240, 0x37240, 0x37248, 0x37250, 0x3725c, 0x37264, 0x37270, 0x372b8, 0x372c0, 0x372e4, 0x372f8, 0x37338, 0x37340, 0x37340, 0x37348, 0x37350, 0x3735c, 0x37364, 0x37370, 0x373b8, 0x373c0, 0x373e4, 0x373f8, 0x37428, 0x37430, 0x37448, 0x37460, 0x37468, 0x37470, 0x3749c, 0x374f0, 0x37528, 0x37530, 0x37548, 0x37560, 0x37568, 0x37570, 0x3759c, 0x375f0, 0x37638, 0x37640, 0x37640, 0x37648, 0x37650, 0x3765c, 0x37664, 0x37670, 0x376b8, 0x376c0, 0x376e4, 0x376f8, 0x37738, 0x37740, 0x37740, 0x37748, 0x37750, 0x3775c, 0x37764, 0x37770, 0x377b8, 0x377c0, 0x377e4, 0x377f8, 0x377fc, 0x37814, 0x37814, 0x3782c, 0x3782c, 0x37880, 0x3788c, 0x378e8, 0x378ec, 0x37900, 0x37928, 0x37930, 0x37948, 0x37960, 0x37968, 0x37970, 0x3799c, 0x379f0, 0x37a38, 0x37a40, 0x37a40, 0x37a48, 0x37a50, 0x37a5c, 0x37a64, 0x37a70, 0x37ab8, 0x37ac0, 0x37ae4, 0x37af8, 0x37b10, 0x37b28, 0x37b28, 0x37b3c, 0x37b50, 0x37bf0, 0x37c10, 0x37c28, 0x37c28, 0x37c3c, 0x37c50, 0x37cf0, 0x37cfc, 0x38000, 0x38030, 0x38100, 0x38144, 0x38190, 0x381a0, 0x381a8, 0x381b8, 0x381c4, 0x381c8, 0x381d0, 0x381d0, 0x38200, 0x38318, 0x38400, 0x384b4, 0x384c0, 0x3852c, 0x38540, 0x3861c, 0x38800, 0x38828, 0x38834, 0x38834, 0x388c0, 0x38908, 0x38910, 0x389ac, 0x38a00, 0x38a14, 0x38a1c, 0x38a2c, 0x38a44, 0x38a50, 0x38a74, 0x38a74, 0x38a7c, 0x38afc, 0x38b08, 0x38c24, 0x38d00, 0x38d00, 0x38d08, 0x38d14, 0x38d1c, 0x38d20, 0x38d3c, 0x38d3c, 0x38d48, 0x38d50, 0x39200, 0x3920c, 0x39220, 0x39220, 0x39240, 0x39240, 0x39600, 0x3960c, 0x39a00, 0x39a1c, 0x39e00, 0x39e20, 0x39e38, 0x39e3c, 0x39e80, 0x39e80, 0x39e88, 0x39ea8, 0x39eb0, 0x39eb4, 0x39ec8, 0x39ed4, 0x39fb8, 0x3a004, 0x3a200, 0x3a200, 0x3a208, 0x3a240, 0x3a248, 0x3a280, 0x3a288, 0x3a2c0, 0x3a2c8, 0x3a2fc, 0x3a600, 0x3a630, 0x3aa00, 0x3aabc, 0x3ab00, 0x3ab10, 0x3ab20, 0x3ab30, 0x3ab40, 0x3ab50, 0x3ab60, 0x3ab70, 0x3b000, 0x3b028, 0x3b030, 0x3b048, 0x3b060, 0x3b068, 0x3b070, 0x3b09c, 0x3b0f0, 0x3b128, 0x3b130, 0x3b148, 0x3b160, 0x3b168, 0x3b170, 0x3b19c, 0x3b1f0, 0x3b238, 0x3b240, 0x3b240, 0x3b248, 0x3b250, 0x3b25c, 0x3b264, 0x3b270, 0x3b2b8, 0x3b2c0, 0x3b2e4, 0x3b2f8, 0x3b338, 0x3b340, 0x3b340, 0x3b348, 0x3b350, 0x3b35c, 0x3b364, 0x3b370, 0x3b3b8, 0x3b3c0, 0x3b3e4, 0x3b3f8, 0x3b428, 0x3b430, 0x3b448, 0x3b460, 0x3b468, 0x3b470, 0x3b49c, 0x3b4f0, 0x3b528, 0x3b530, 0x3b548, 0x3b560, 0x3b568, 0x3b570, 0x3b59c, 0x3b5f0, 0x3b638, 0x3b640, 0x3b640, 0x3b648, 0x3b650, 0x3b65c, 0x3b664, 0x3b670, 0x3b6b8, 0x3b6c0, 0x3b6e4, 0x3b6f8, 0x3b738, 0x3b740, 0x3b740, 0x3b748, 0x3b750, 0x3b75c, 0x3b764, 0x3b770, 0x3b7b8, 0x3b7c0, 0x3b7e4, 0x3b7f8, 0x3b7fc, 0x3b814, 0x3b814, 0x3b82c, 0x3b82c, 0x3b880, 0x3b88c, 0x3b8e8, 0x3b8ec, 0x3b900, 0x3b928, 0x3b930, 0x3b948, 0x3b960, 0x3b968, 0x3b970, 0x3b99c, 0x3b9f0, 0x3ba38, 0x3ba40, 0x3ba40, 0x3ba48, 0x3ba50, 0x3ba5c, 0x3ba64, 0x3ba70, 0x3bab8, 0x3bac0, 0x3bae4, 0x3baf8, 0x3bb10, 0x3bb28, 0x3bb28, 0x3bb3c, 0x3bb50, 0x3bbf0, 0x3bc10, 0x3bc28, 0x3bc28, 0x3bc3c, 0x3bc50, 0x3bcf0, 0x3bcfc, 0x3c000, 0x3c030, 0x3c100, 0x3c144, 0x3c190, 0x3c1a0, 0x3c1a8, 0x3c1b8, 0x3c1c4, 0x3c1c8, 0x3c1d0, 0x3c1d0, 0x3c200, 0x3c318, 0x3c400, 0x3c4b4, 0x3c4c0, 0x3c52c, 0x3c540, 0x3c61c, 0x3c800, 0x3c828, 0x3c834, 0x3c834, 0x3c8c0, 0x3c908, 0x3c910, 0x3c9ac, 0x3ca00, 0x3ca14, 0x3ca1c, 0x3ca2c, 0x3ca44, 0x3ca50, 0x3ca74, 0x3ca74, 0x3ca7c, 0x3cafc, 0x3cb08, 0x3cc24, 0x3cd00, 0x3cd00, 0x3cd08, 0x3cd14, 0x3cd1c, 0x3cd20, 0x3cd3c, 0x3cd3c, 0x3cd48, 0x3cd50, 0x3d200, 0x3d20c, 0x3d220, 0x3d220, 0x3d240, 0x3d240, 0x3d600, 0x3d60c, 0x3da00, 0x3da1c, 0x3de00, 0x3de20, 0x3de38, 0x3de3c, 0x3de80, 0x3de80, 0x3de88, 0x3dea8, 0x3deb0, 0x3deb4, 0x3dec8, 0x3ded4, 0x3dfb8, 0x3e004, 0x3e200, 0x3e200, 0x3e208, 0x3e240, 0x3e248, 0x3e280, 0x3e288, 0x3e2c0, 0x3e2c8, 0x3e2fc, 0x3e600, 0x3e630, 0x3ea00, 0x3eabc, 0x3eb00, 0x3eb10, 0x3eb20, 0x3eb30, 0x3eb40, 0x3eb50, 0x3eb60, 0x3eb70, 0x3f000, 0x3f028, 0x3f030, 0x3f048, 0x3f060, 0x3f068, 0x3f070, 0x3f09c, 0x3f0f0, 0x3f128, 0x3f130, 0x3f148, 0x3f160, 0x3f168, 0x3f170, 0x3f19c, 0x3f1f0, 0x3f238, 0x3f240, 0x3f240, 0x3f248, 0x3f250, 0x3f25c, 0x3f264, 0x3f270, 0x3f2b8, 0x3f2c0, 0x3f2e4, 0x3f2f8, 0x3f338, 0x3f340, 0x3f340, 0x3f348, 0x3f350, 0x3f35c, 0x3f364, 0x3f370, 0x3f3b8, 0x3f3c0, 0x3f3e4, 0x3f3f8, 0x3f428, 0x3f430, 0x3f448, 0x3f460, 0x3f468, 0x3f470, 0x3f49c, 0x3f4f0, 0x3f528, 0x3f530, 0x3f548, 0x3f560, 0x3f568, 0x3f570, 0x3f59c, 0x3f5f0, 0x3f638, 0x3f640, 0x3f640, 0x3f648, 0x3f650, 0x3f65c, 0x3f664, 0x3f670, 0x3f6b8, 0x3f6c0, 0x3f6e4, 0x3f6f8, 0x3f738, 0x3f740, 0x3f740, 0x3f748, 0x3f750, 0x3f75c, 0x3f764, 0x3f770, 0x3f7b8, 0x3f7c0, 0x3f7e4, 0x3f7f8, 0x3f7fc, 0x3f814, 0x3f814, 0x3f82c, 0x3f82c, 0x3f880, 0x3f88c, 0x3f8e8, 0x3f8ec, 0x3f900, 0x3f928, 0x3f930, 0x3f948, 0x3f960, 0x3f968, 0x3f970, 0x3f99c, 0x3f9f0, 0x3fa38, 0x3fa40, 0x3fa40, 0x3fa48, 0x3fa50, 0x3fa5c, 0x3fa64, 0x3fa70, 0x3fab8, 0x3fac0, 0x3fae4, 0x3faf8, 0x3fb10, 0x3fb28, 0x3fb28, 0x3fb3c, 0x3fb50, 0x3fbf0, 0x3fc10, 0x3fc28, 0x3fc28, 0x3fc3c, 0x3fc50, 0x3fcf0, 0x3fcfc, 0x40000, 0x4000c, 0x40040, 0x40050, 0x40060, 0x40068, 0x4007c, 0x4008c, 0x40094, 0x400b0, 0x400c0, 0x40144, 0x40180, 0x4018c, 0x40200, 0x40254, 0x40260, 0x40264, 0x40270, 0x40288, 0x40290, 0x40298, 0x402ac, 0x402c8, 0x402d0, 0x402e0, 0x402f0, 0x402f0, 0x40300, 0x4033c, 0x403f8, 0x403fc, 0x41304, 0x413c4, 0x41400, 0x4140c, 0x41414, 0x4141c, 0x41480, 0x414d0, 0x44000, 0x44054, 0x4405c, 0x44078, 0x440c0, 0x44174, 0x44180, 0x441ac, 0x441b4, 0x441b8, 0x441c0, 0x44254, 0x4425c, 0x44278, 0x442c0, 0x44374, 0x44380, 0x443ac, 0x443b4, 0x443b8, 0x443c0, 0x44454, 0x4445c, 0x44478, 0x444c0, 0x44574, 0x44580, 0x445ac, 0x445b4, 0x445b8, 0x445c0, 0x44654, 0x4465c, 0x44678, 0x446c0, 0x44774, 0x44780, 0x447ac, 0x447b4, 0x447b8, 0x447c0, 0x44854, 0x4485c, 0x44878, 0x448c0, 0x44974, 0x44980, 0x449ac, 0x449b4, 0x449b8, 0x449c0, 0x449fc, 0x45000, 0x45004, 0x45010, 0x45030, 0x45040, 0x45060, 0x45068, 0x45068, 0x45080, 0x45084, 0x450a0, 0x450b0, 0x45200, 0x45204, 0x45210, 0x45230, 0x45240, 0x45260, 0x45268, 0x45268, 0x45280, 0x45284, 0x452a0, 0x452b0, 0x460c0, 0x460e4, 0x47000, 0x4703c, 0x47044, 0x4708c, 0x47200, 0x47250, 0x47400, 0x47408, 0x47414, 0x47420, 0x47600, 0x47618, 0x47800, 0x47814, 0x48000, 0x4800c, 0x48040, 0x48050, 0x48060, 0x48068, 0x4807c, 0x4808c, 0x48094, 0x480b0, 0x480c0, 0x48144, 0x48180, 0x4818c, 0x48200, 0x48254, 0x48260, 0x48264, 0x48270, 0x48288, 0x48290, 0x48298, 0x482ac, 0x482c8, 0x482d0, 0x482e0, 0x482f0, 0x482f0, 0x48300, 0x4833c, 0x483f8, 0x483fc, 0x49304, 0x493c4, 0x49400, 0x4940c, 0x49414, 0x4941c, 0x49480, 0x494d0, 0x4c000, 0x4c054, 0x4c05c, 0x4c078, 0x4c0c0, 0x4c174, 0x4c180, 0x4c1ac, 0x4c1b4, 0x4c1b8, 0x4c1c0, 0x4c254, 0x4c25c, 0x4c278, 0x4c2c0, 0x4c374, 0x4c380, 0x4c3ac, 0x4c3b4, 0x4c3b8, 0x4c3c0, 0x4c454, 0x4c45c, 0x4c478, 0x4c4c0, 0x4c574, 0x4c580, 0x4c5ac, 0x4c5b4, 0x4c5b8, 0x4c5c0, 0x4c654, 0x4c65c, 0x4c678, 0x4c6c0, 0x4c774, 0x4c780, 0x4c7ac, 0x4c7b4, 0x4c7b8, 0x4c7c0, 0x4c854, 0x4c85c, 0x4c878, 0x4c8c0, 0x4c974, 0x4c980, 0x4c9ac, 0x4c9b4, 0x4c9b8, 0x4c9c0, 0x4c9fc, 0x4d000, 0x4d004, 0x4d010, 0x4d030, 0x4d040, 0x4d060, 0x4d068, 0x4d068, 0x4d080, 0x4d084, 0x4d0a0, 0x4d0b0, 0x4d200, 0x4d204, 0x4d210, 0x4d230, 0x4d240, 0x4d260, 0x4d268, 0x4d268, 0x4d280, 0x4d284, 0x4d2a0, 0x4d2b0, 0x4e0c0, 0x4e0e4, 0x4f000, 0x4f03c, 0x4f044, 0x4f08c, 0x4f200, 0x4f250, 0x4f400, 0x4f408, 0x4f414, 0x4f420, 0x4f600, 0x4f618, 0x4f800, 0x4f814, 0x50000, 0x50084, 0x50090, 0x500cc, 0x50400, 0x50400, 0x50800, 0x50884, 0x50890, 0x508cc, 0x50c00, 0x50c00, 0x51000, 0x5101c, 0x51300, 0x51308, }; static const unsigned int t5vf_reg_ranges[] = { VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS), VF_MPS_REG(A_MPS_VF_CTL), VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H), VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION), VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL), VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS), FW_T4VF_MBDATA_BASE_ADDR, FW_T4VF_MBDATA_BASE_ADDR + ((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4), }; static const unsigned int t6_reg_ranges[] = { 0x1008, 0x101c, 0x1024, 0x10a8, 0x10b4, 0x10f8, 0x1100, 0x1114, 0x111c, 0x112c, 0x1138, 0x113c, 0x1144, 0x114c, 0x1180, 0x1184, 0x1190, 0x1194, 0x11a0, 0x11a4, 0x11b0, 0x11c4, 0x11fc, 0x1274, 0x1280, 0x133c, 0x1800, 0x18fc, 0x3000, 0x302c, 0x3060, 0x30b0, 0x30b8, 0x30d8, 0x30e0, 0x30fc, 0x3140, 0x357c, 0x35a8, 0x35cc, 0x35ec, 0x35ec, 0x3600, 0x5624, 0x56cc, 0x56ec, 0x56f4, 0x5720, 0x5728, 0x575c, 0x580c, 0x5814, 0x5890, 0x589c, 0x58a4, 0x58ac, 0x58b8, 0x58bc, 0x5940, 0x595c, 0x5980, 0x598c, 0x59b0, 0x59c8, 0x59d0, 0x59dc, 0x59fc, 0x5a18, 0x5a60, 0x5a6c, 0x5a80, 0x5a8c, 0x5a94, 0x5a9c, 0x5b94, 0x5bfc, 0x5c10, 0x5e48, 0x5e50, 0x5e94, 0x5ea0, 0x5eb0, 0x5ec0, 0x5ec0, 0x5ec8, 0x5ed0, 0x5ee0, 0x5ee0, 0x5ef0, 0x5ef0, 0x5f00, 0x5f00, 0x6000, 0x6020, 0x6028, 0x6040, 0x6058, 0x609c, 0x60a8, 0x619c, 0x7700, 0x7798, 0x77c0, 0x7880, 0x78cc, 0x78fc, 0x7b00, 0x7b58, 0x7b60, 0x7b84, 0x7b8c, 0x7c54, 0x7d00, 0x7d38, 0x7d40, 0x7d84, 0x7d8c, 0x7ddc, 0x7de4, 0x7e04, 0x7e10, 0x7e1c, 0x7e24, 0x7e38, 0x7e40, 0x7e44, 0x7e4c, 0x7e78, 0x7e80, 0x7edc, 0x7ee8, 0x7efc, 0x8dc0, 0x8de0, 0x8df8, 0x8e04, 0x8e10, 0x8e84, 0x8ea0, 0x8f88, 0x8fb8, 0x9058, 0x9060, 0x9060, 0x9068, 0x90f8, 0x9100, 0x9124, 0x9400, 0x9470, 0x9600, 0x9600, 0x9608, 0x9638, 0x9640, 0x9704, 0x9710, 0x971c, 0x9800, 0x9808, 0x9810, 0x9864, 0x9c00, 0x9c6c, 0x9c80, 0x9cec, 0x9d00, 0x9d6c, 0x9d80, 0x9dec, 0x9e00, 0x9e6c, 0x9e80, 0x9eec, 0x9f00, 0x9f6c, 0x9f80, 0xa020, 0xd000, 0xd03c, 0xd100, 0xd118, 0xd200, 0xd214, 0xd220, 0xd234, 0xd240, 0xd254, 0xd260, 0xd274, 0xd280, 0xd294, 0xd2a0, 0xd2b4, 0xd2c0, 0xd2d4, 0xd2e0, 0xd2f4, 0xd300, 0xd31c, 0xdfc0, 0xdfe0, 0xe000, 0xf008, 0xf010, 0xf018, 0xf020, 0xf028, 0x11000, 0x11014, 0x11048, 0x1106c, 0x11074, 0x11088, 0x11098, 0x11120, 0x1112c, 0x1117c, 0x11190, 0x112e0, 0x11300, 0x1130c, 0x12000, 0x1206c, 0x19040, 0x1906c, 0x19078, 0x19080, 0x1908c, 0x190e8, 0x190f0, 0x190f8, 0x19100, 0x19110, 0x19120, 0x19124, 0x19150, 0x19194, 0x1919c, 0x191b0, 0x191d0, 0x191e8, 0x19238, 0x19290, 0x192a4, 0x192b0, 0x19348, 0x1934c, 0x193f8, 0x19418, 0x19420, 0x19428, 0x19430, 0x19444, 0x1944c, 0x1946c, 0x19474, 0x19474, 0x19490, 0x194cc, 0x194f0, 0x194f8, 0x19c00, 0x19c48, 0x19c50, 0x19c80, 0x19c94, 0x19c98, 0x19ca0, 0x19cbc, 0x19ce4, 0x19ce4, 0x19cf0, 0x19cf8, 0x19d00, 0x19d28, 0x19d50, 0x19d78, 0x19d94, 0x19d98, 0x19da0, 0x19de0, 0x19df0, 0x19e10, 0x19e50, 0x19e6c, 0x19ea0, 0x19ebc, 0x19ec4, 0x19ef4, 0x19f04, 0x19f2c, 0x19f34, 0x19f34, 0x19f40, 0x19f50, 0x19f90, 0x19fac, 0x19fc4, 0x19fc8, 0x19fd0, 0x19fe4, 0x1a000, 0x1a004, 0x1a010, 0x1a06c, 0x1a0b0, 0x1a0e4, 0x1a0ec, 0x1a0f8, 0x1a100, 0x1a108, 0x1a114, 0x1a130, 0x1a138, 0x1a1c4, 0x1a1fc, 0x1a1fc, 0x1e008, 0x1e00c, 0x1e040, 0x1e044, 0x1e04c, 0x1e04c, 0x1e284, 0x1e290, 0x1e2c0, 0x1e2c0, 0x1e2e0, 0x1e2e0, 0x1e300, 0x1e384, 0x1e3c0, 0x1e3c8, 0x1e408, 0x1e40c, 0x1e440, 0x1e444, 0x1e44c, 0x1e44c, 0x1e684, 0x1e690, 0x1e6c0, 0x1e6c0, 0x1e6e0, 0x1e6e0, 0x1e700, 0x1e784, 0x1e7c0, 0x1e7c8, 0x1e808, 0x1e80c, 0x1e840, 0x1e844, 0x1e84c, 0x1e84c, 0x1ea84, 0x1ea90, 0x1eac0, 0x1eac0, 0x1eae0, 0x1eae0, 0x1eb00, 0x1eb84, 0x1ebc0, 0x1ebc8, 0x1ec08, 0x1ec0c, 0x1ec40, 0x1ec44, 0x1ec4c, 0x1ec4c, 0x1ee84, 0x1ee90, 0x1eec0, 0x1eec0, 0x1eee0, 0x1eee0, 0x1ef00, 0x1ef84, 0x1efc0, 0x1efc8, 0x1f008, 0x1f00c, 0x1f040, 0x1f044, 0x1f04c, 0x1f04c, 0x1f284, 0x1f290, 0x1f2c0, 0x1f2c0, 0x1f2e0, 0x1f2e0, 0x1f300, 0x1f384, 0x1f3c0, 0x1f3c8, 0x1f408, 0x1f40c, 0x1f440, 0x1f444, 0x1f44c, 0x1f44c, 0x1f684, 0x1f690, 0x1f6c0, 0x1f6c0, 0x1f6e0, 0x1f6e0, 0x1f700, 0x1f784, 0x1f7c0, 0x1f7c8, 0x1f808, 0x1f80c, 0x1f840, 0x1f844, 0x1f84c, 0x1f84c, 0x1fa84, 0x1fa90, 0x1fac0, 0x1fac0, 0x1fae0, 0x1fae0, 0x1fb00, 0x1fb84, 0x1fbc0, 0x1fbc8, 0x1fc08, 0x1fc0c, 0x1fc40, 0x1fc44, 0x1fc4c, 0x1fc4c, 0x1fe84, 0x1fe90, 0x1fec0, 0x1fec0, 0x1fee0, 0x1fee0, 0x1ff00, 0x1ff84, 0x1ffc0, 0x1ffc8, 0x30000, 0x30030, 0x30100, 0x30168, 0x30190, 0x301a0, 0x301a8, 0x301b8, 0x301c4, 0x301c8, 0x301d0, 0x301d0, 0x30200, 0x30320, 0x30400, 0x304b4, 0x304c0, 0x3052c, 0x30540, 0x3061c, 0x30800, 0x308a0, 0x308c0, 0x30908, 0x30910, 0x309b8, 0x30a00, 0x30a04, 0x30a0c, 0x30a14, 0x30a1c, 0x30a2c, 0x30a44, 0x30a50, 0x30a74, 0x30a74, 0x30a7c, 0x30afc, 0x30b08, 0x30c24, 0x30d00, 0x30d14, 0x30d1c, 0x30d3c, 0x30d44, 0x30d4c, 0x30d54, 0x30d74, 0x30d7c, 0x30d7c, 0x30de0, 0x30de0, 0x30e00, 0x30ed4, 0x30f00, 0x30fa4, 0x30fc0, 0x30fc4, 0x31000, 0x31004, 0x31080, 0x310fc, 0x31208, 0x31220, 0x3123c, 0x31254, 0x31300, 0x31300, 0x31308, 0x3131c, 0x31338, 0x3133c, 0x31380, 0x31380, 0x31388, 0x313a8, 0x313b4, 0x313b4, 0x31400, 0x31420, 0x31438, 0x3143c, 0x31480, 0x31480, 0x314a8, 0x314a8, 0x314b0, 0x314b4, 0x314c8, 0x314d4, 0x31a40, 0x31a4c, 0x31af0, 0x31b20, 0x31b38, 0x31b3c, 0x31b80, 0x31b80, 0x31ba8, 0x31ba8, 0x31bb0, 0x31bb4, 0x31bc8, 0x31bd4, 0x32140, 0x3218c, 0x321f0, 0x321f4, 0x32200, 0x32200, 0x32218, 0x32218, 0x32400, 0x32400, 0x32408, 0x3241c, 0x32618, 0x32620, 0x32664, 0x32664, 0x326a8, 0x326a8, 0x326ec, 0x326ec, 0x32a00, 0x32abc, 0x32b00, 0x32b18, 0x32b20, 0x32b38, 0x32b40, 0x32b58, 0x32b60, 0x32b78, 0x32c00, 0x32c00, 0x32c08, 0x32c3c, 0x33000, 0x3302c, 0x33034, 0x33050, 0x33058, 0x33058, 0x33060, 0x3308c, 0x3309c, 0x330ac, 0x330c0, 0x330c0, 0x330c8, 0x330d0, 0x330d8, 0x330e0, 0x330ec, 0x3312c, 0x33134, 0x33150, 0x33158, 0x33158, 0x33160, 0x3318c, 0x3319c, 0x331ac, 0x331c0, 0x331c0, 0x331c8, 0x331d0, 0x331d8, 0x331e0, 0x331ec, 0x33290, 0x33298, 0x332c4, 0x332e4, 0x33390, 0x33398, 0x333c4, 0x333e4, 0x3342c, 0x33434, 0x33450, 0x33458, 0x33458, 0x33460, 0x3348c, 0x3349c, 0x334ac, 0x334c0, 0x334c0, 0x334c8, 0x334d0, 0x334d8, 0x334e0, 0x334ec, 0x3352c, 0x33534, 0x33550, 0x33558, 0x33558, 0x33560, 0x3358c, 0x3359c, 0x335ac, 0x335c0, 0x335c0, 0x335c8, 0x335d0, 0x335d8, 0x335e0, 0x335ec, 0x33690, 0x33698, 0x336c4, 0x336e4, 0x33790, 0x33798, 0x337c4, 0x337e4, 0x337fc, 0x33814, 0x33814, 0x33854, 0x33868, 0x33880, 0x3388c, 0x338c0, 0x338d0, 0x338e8, 0x338ec, 0x33900, 0x3392c, 0x33934, 0x33950, 0x33958, 0x33958, 0x33960, 0x3398c, 0x3399c, 0x339ac, 0x339c0, 0x339c0, 0x339c8, 0x339d0, 0x339d8, 0x339e0, 0x339ec, 0x33a90, 0x33a98, 0x33ac4, 0x33ae4, 0x33b10, 0x33b24, 0x33b28, 0x33b38, 0x33b50, 0x33bf0, 0x33c10, 0x33c24, 0x33c28, 0x33c38, 0x33c50, 0x33cf0, 0x33cfc, 0x34000, 0x34030, 0x34100, 0x34168, 0x34190, 0x341a0, 0x341a8, 0x341b8, 0x341c4, 0x341c8, 0x341d0, 0x341d0, 0x34200, 0x34320, 0x34400, 0x344b4, 0x344c0, 0x3452c, 0x34540, 0x3461c, 0x34800, 0x348a0, 0x348c0, 0x34908, 0x34910, 0x349b8, 0x34a00, 0x34a04, 0x34a0c, 0x34a14, 0x34a1c, 0x34a2c, 0x34a44, 0x34a50, 0x34a74, 0x34a74, 0x34a7c, 0x34afc, 0x34b08, 0x34c24, 0x34d00, 0x34d14, 0x34d1c, 0x34d3c, 0x34d44, 0x34d4c, 0x34d54, 0x34d74, 0x34d7c, 0x34d7c, 0x34de0, 0x34de0, 0x34e00, 0x34ed4, 0x34f00, 0x34fa4, 0x34fc0, 0x34fc4, 0x35000, 0x35004, 0x35080, 0x350fc, 0x35208, 0x35220, 0x3523c, 0x35254, 0x35300, 0x35300, 0x35308, 0x3531c, 0x35338, 0x3533c, 0x35380, 0x35380, 0x35388, 0x353a8, 0x353b4, 0x353b4, 0x35400, 0x35420, 0x35438, 0x3543c, 0x35480, 0x35480, 0x354a8, 0x354a8, 0x354b0, 0x354b4, 0x354c8, 0x354d4, 0x35a40, 0x35a4c, 0x35af0, 0x35b20, 0x35b38, 0x35b3c, 0x35b80, 0x35b80, 0x35ba8, 0x35ba8, 0x35bb0, 0x35bb4, 0x35bc8, 0x35bd4, 0x36140, 0x3618c, 0x361f0, 0x361f4, 0x36200, 0x36200, 0x36218, 0x36218, 0x36400, 0x36400, 0x36408, 0x3641c, 0x36618, 0x36620, 0x36664, 0x36664, 0x366a8, 0x366a8, 0x366ec, 0x366ec, 0x36a00, 0x36abc, 0x36b00, 0x36b18, 0x36b20, 0x36b38, 0x36b40, 0x36b58, 0x36b60, 0x36b78, 0x36c00, 0x36c00, 0x36c08, 0x36c3c, 0x37000, 0x3702c, 0x37034, 0x37050, 0x37058, 0x37058, 0x37060, 0x3708c, 0x3709c, 0x370ac, 0x370c0, 0x370c0, 0x370c8, 0x370d0, 0x370d8, 0x370e0, 0x370ec, 0x3712c, 0x37134, 0x37150, 0x37158, 0x37158, 0x37160, 0x3718c, 0x3719c, 0x371ac, 0x371c0, 0x371c0, 0x371c8, 0x371d0, 0x371d8, 0x371e0, 0x371ec, 0x37290, 0x37298, 0x372c4, 0x372e4, 0x37390, 0x37398, 0x373c4, 0x373e4, 0x3742c, 0x37434, 0x37450, 0x37458, 0x37458, 0x37460, 0x3748c, 0x3749c, 0x374ac, 0x374c0, 0x374c0, 0x374c8, 0x374d0, 0x374d8, 0x374e0, 0x374ec, 0x3752c, 0x37534, 0x37550, 0x37558, 0x37558, 0x37560, 0x3758c, 0x3759c, 0x375ac, 0x375c0, 0x375c0, 0x375c8, 0x375d0, 0x375d8, 0x375e0, 0x375ec, 0x37690, 0x37698, 0x376c4, 0x376e4, 0x37790, 0x37798, 0x377c4, 0x377e4, 0x377fc, 0x37814, 0x37814, 0x37854, 0x37868, 0x37880, 0x3788c, 0x378c0, 0x378d0, 0x378e8, 0x378ec, 0x37900, 0x3792c, 0x37934, 0x37950, 0x37958, 0x37958, 0x37960, 0x3798c, 0x3799c, 0x379ac, 0x379c0, 0x379c0, 0x379c8, 0x379d0, 0x379d8, 0x379e0, 0x379ec, 0x37a90, 0x37a98, 0x37ac4, 0x37ae4, 0x37b10, 0x37b24, 0x37b28, 0x37b38, 0x37b50, 0x37bf0, 0x37c10, 0x37c24, 0x37c28, 0x37c38, 0x37c50, 0x37cf0, 0x37cfc, 0x40040, 0x40040, 0x40080, 0x40084, 0x40100, 0x40100, 0x40140, 0x401bc, 0x40200, 0x40214, 0x40228, 0x40228, 0x40240, 0x40258, 0x40280, 0x40280, 0x40304, 0x40304, 0x40330, 0x4033c, 0x41304, 0x413c8, 0x413d0, 0x413dc, 0x413f0, 0x413f0, 0x41400, 0x4140c, 0x41414, 0x4141c, 0x41480, 0x414d0, 0x44000, 0x4407c, 0x440c0, 0x441ac, 0x441b4, 0x4427c, 0x442c0, 0x443ac, 0x443b4, 0x4447c, 0x444c0, 0x445ac, 0x445b4, 0x4467c, 0x446c0, 0x447ac, 0x447b4, 0x4487c, 0x448c0, 0x449ac, 0x449b4, 0x44a7c, 0x44ac0, 0x44bac, 0x44bb4, 0x44c7c, 0x44cc0, 0x44dac, 0x44db4, 0x44e7c, 0x44ec0, 0x44fac, 0x44fb4, 0x4507c, 0x450c0, 0x451ac, 0x451b4, 0x451fc, 0x45800, 0x45804, 0x45810, 0x45830, 0x45840, 0x45860, 0x45868, 0x45868, 0x45880, 0x45884, 0x458a0, 0x458b0, 0x45a00, 0x45a04, 0x45a10, 0x45a30, 0x45a40, 0x45a60, 0x45a68, 0x45a68, 0x45a80, 0x45a84, 0x45aa0, 0x45ab0, 0x460c0, 0x460e4, 0x47000, 0x4703c, 0x47044, 0x4708c, 0x47200, 0x47250, 0x47400, 0x47408, 0x47414, 0x47420, 0x47600, 0x47618, 0x47800, 0x47814, 0x47820, 0x4782c, 0x50000, 0x50084, 0x50090, 0x500cc, 0x50300, 0x50384, 0x50400, 0x50400, 0x50800, 0x50884, 0x50890, 0x508cc, 0x50b00, 0x50b84, 0x50c00, 0x50c00, 0x51000, 0x51020, 0x51028, 0x510b0, 0x51300, 0x51324, }; static const unsigned int t6vf_reg_ranges[] = { VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS), VF_MPS_REG(A_MPS_VF_CTL), VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H), VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION), VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL), VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS), FW_T6VF_MBDATA_BASE_ADDR, FW_T6VF_MBDATA_BASE_ADDR + ((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4), }; u32 *buf_end = (u32 *)(buf + buf_size); const unsigned int *reg_ranges; int reg_ranges_size, range; unsigned int chip_version = chip_id(adap); /* * Select the right set of register ranges to dump depending on the * adapter chip type. */ switch (chip_version) { case CHELSIO_T4: if (adap->flags & IS_VF) { reg_ranges = t4vf_reg_ranges; reg_ranges_size = ARRAY_SIZE(t4vf_reg_ranges); } else { reg_ranges = t4_reg_ranges; reg_ranges_size = ARRAY_SIZE(t4_reg_ranges); } break; case CHELSIO_T5: if (adap->flags & IS_VF) { reg_ranges = t5vf_reg_ranges; reg_ranges_size = ARRAY_SIZE(t5vf_reg_ranges); } else { reg_ranges = t5_reg_ranges; reg_ranges_size = ARRAY_SIZE(t5_reg_ranges); } break; case CHELSIO_T6: if (adap->flags & IS_VF) { reg_ranges = t6vf_reg_ranges; reg_ranges_size = ARRAY_SIZE(t6vf_reg_ranges); } else { reg_ranges = t6_reg_ranges; reg_ranges_size = ARRAY_SIZE(t6_reg_ranges); } break; default: CH_ERR(adap, "Unsupported chip version %d\n", chip_version); return; } /* * Clear the register buffer and insert the appropriate register * values selected by the above register ranges. */ memset(buf, 0, buf_size); for (range = 0; range < reg_ranges_size; range += 2) { unsigned int reg = reg_ranges[range]; unsigned int last_reg = reg_ranges[range + 1]; u32 *bufp = (u32 *)(buf + reg); /* * Iterate across the register range filling in the register * buffer but don't write past the end of the register buffer. */ while (reg <= last_reg && bufp < buf_end) { *bufp++ = t4_read_reg(adap, reg); reg += sizeof(u32); } } } /* * Partial EEPROM Vital Product Data structure. The VPD starts with one ID * header followed by one or more VPD-R sections, each with its own header. */ struct t4_vpd_hdr { u8 id_tag; u8 id_len[2]; u8 id_data[ID_LEN]; }; struct t4_vpdr_hdr { u8 vpdr_tag; u8 vpdr_len[2]; }; /* * EEPROM reads take a few tens of us while writes can take a bit over 5 ms. */ #define EEPROM_DELAY 10 /* 10us per poll spin */ #define EEPROM_MAX_POLL 5000 /* x 5000 == 50ms */ #define EEPROM_STAT_ADDR 0x7bfc #define VPD_SIZE 0x800 #define VPD_BASE 0x400 #define VPD_BASE_OLD 0 #define VPD_LEN 1024 #define VPD_INFO_FLD_HDR_SIZE 3 #define CHELSIO_VPD_UNIQUE_ID 0x82 /* * Small utility function to wait till any outstanding VPD Access is complete. * We have a per-adapter state variable "VPD Busy" to indicate when we have a * VPD Access in flight. This allows us to handle the problem of having a * previous VPD Access time out and prevent an attempt to inject a new VPD * Request before any in-flight VPD reguest has completed. */ static int t4_seeprom_wait(struct adapter *adapter) { unsigned int base = adapter->params.pci.vpd_cap_addr; int max_poll; /* * If no VPD Access is in flight, we can just return success right * away. */ if (!adapter->vpd_busy) return 0; /* * Poll the VPD Capability Address/Flag register waiting for it * to indicate that the operation is complete. */ max_poll = EEPROM_MAX_POLL; do { u16 val; udelay(EEPROM_DELAY); t4_os_pci_read_cfg2(adapter, base + PCI_VPD_ADDR, &val); /* * If the operation is complete, mark the VPD as no longer * busy and return success. */ if ((val & PCI_VPD_ADDR_F) == adapter->vpd_flag) { adapter->vpd_busy = 0; return 0; } } while (--max_poll); /* * Failure! Note that we leave the VPD Busy status set in order to * avoid pushing a new VPD Access request into the VPD Capability till * the current operation eventually succeeds. It's a bug to issue a * new request when an existing request is in flight and will result * in corrupt hardware state. */ return -ETIMEDOUT; } /** * t4_seeprom_read - read a serial EEPROM location * @adapter: adapter to read * @addr: EEPROM virtual address * @data: where to store the read data * * Read a 32-bit word from a location in serial EEPROM using the card's PCI * VPD capability. Note that this function must be called with a virtual * address. */ int t4_seeprom_read(struct adapter *adapter, u32 addr, u32 *data) { unsigned int base = adapter->params.pci.vpd_cap_addr; int ret; /* * VPD Accesses must alway be 4-byte aligned! */ if (addr >= EEPROMVSIZE || (addr & 3)) return -EINVAL; /* * Wait for any previous operation which may still be in flight to * complete. */ ret = t4_seeprom_wait(adapter); if (ret) { CH_ERR(adapter, "VPD still busy from previous operation\n"); return ret; } /* * Issue our new VPD Read request, mark the VPD as being busy and wait * for our request to complete. If it doesn't complete, note the * error and return it to our caller. Note that we do not reset the * VPD Busy status! */ t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR, (u16)addr); adapter->vpd_busy = 1; adapter->vpd_flag = PCI_VPD_ADDR_F; ret = t4_seeprom_wait(adapter); if (ret) { CH_ERR(adapter, "VPD read of address %#x failed\n", addr); return ret; } /* * Grab the returned data, swizzle it into our endianness and * return success. */ t4_os_pci_read_cfg4(adapter, base + PCI_VPD_DATA, data); *data = le32_to_cpu(*data); return 0; } /** * t4_seeprom_write - write a serial EEPROM location * @adapter: adapter to write * @addr: virtual EEPROM address * @data: value to write * * Write a 32-bit word to a location in serial EEPROM using the card's PCI * VPD capability. Note that this function must be called with a virtual * address. */ int t4_seeprom_write(struct adapter *adapter, u32 addr, u32 data) { unsigned int base = adapter->params.pci.vpd_cap_addr; int ret; u32 stats_reg; int max_poll; /* * VPD Accesses must alway be 4-byte aligned! */ if (addr >= EEPROMVSIZE || (addr & 3)) return -EINVAL; /* * Wait for any previous operation which may still be in flight to * complete. */ ret = t4_seeprom_wait(adapter); if (ret) { CH_ERR(adapter, "VPD still busy from previous operation\n"); return ret; } /* * Issue our new VPD Read request, mark the VPD as being busy and wait * for our request to complete. If it doesn't complete, note the * error and return it to our caller. Note that we do not reset the * VPD Busy status! */ t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA, cpu_to_le32(data)); t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR, (u16)addr | PCI_VPD_ADDR_F); adapter->vpd_busy = 1; adapter->vpd_flag = 0; ret = t4_seeprom_wait(adapter); if (ret) { CH_ERR(adapter, "VPD write of address %#x failed\n", addr); return ret; } /* * Reset PCI_VPD_DATA register after a transaction and wait for our * request to complete. If it doesn't complete, return error. */ t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA, 0); max_poll = EEPROM_MAX_POLL; do { udelay(EEPROM_DELAY); t4_seeprom_read(adapter, EEPROM_STAT_ADDR, &stats_reg); } while ((stats_reg & 0x1) && --max_poll); if (!max_poll) return -ETIMEDOUT; /* Return success! */ return 0; } /** * t4_eeprom_ptov - translate a physical EEPROM address to virtual * @phys_addr: the physical EEPROM address * @fn: the PCI function number * @sz: size of function-specific area * * Translate a physical EEPROM address to virtual. The first 1K is * accessed through virtual addresses starting at 31K, the rest is * accessed through virtual addresses starting at 0. * * The mapping is as follows: * [0..1K) -> [31K..32K) * [1K..1K+A) -> [ES-A..ES) * [1K+A..ES) -> [0..ES-A-1K) * * where A = @fn * @sz, and ES = EEPROM size. */ int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz) { fn *= sz; if (phys_addr < 1024) return phys_addr + (31 << 10); if (phys_addr < 1024 + fn) return EEPROMSIZE - fn + phys_addr - 1024; if (phys_addr < EEPROMSIZE) return phys_addr - 1024 - fn; return -EINVAL; } /** * t4_seeprom_wp - enable/disable EEPROM write protection * @adapter: the adapter * @enable: whether to enable or disable write protection * * Enables or disables write protection on the serial EEPROM. */ int t4_seeprom_wp(struct adapter *adapter, int enable) { return t4_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0); } /** * get_vpd_keyword_val - Locates an information field keyword in the VPD * @vpd: Pointer to buffered vpd data structure * @kw: The keyword to search for * @region: VPD region to search (starting from 0) * * Returns the value of the information field keyword or * -ENOENT otherwise. */ static int get_vpd_keyword_val(const u8 *vpd, const char *kw, int region) { int i, tag; unsigned int offset, len; const struct t4_vpdr_hdr *vpdr; offset = sizeof(struct t4_vpd_hdr); vpdr = (const void *)(vpd + offset); tag = vpdr->vpdr_tag; len = (u16)vpdr->vpdr_len[0] + ((u16)vpdr->vpdr_len[1] << 8); while (region--) { offset += sizeof(struct t4_vpdr_hdr) + len; vpdr = (const void *)(vpd + offset); if (++tag != vpdr->vpdr_tag) return -ENOENT; len = (u16)vpdr->vpdr_len[0] + ((u16)vpdr->vpdr_len[1] << 8); } offset += sizeof(struct t4_vpdr_hdr); if (offset + len > VPD_LEN) { return -ENOENT; } for (i = offset; i + VPD_INFO_FLD_HDR_SIZE <= offset + len;) { if (memcmp(vpd + i , kw , 2) == 0){ i += VPD_INFO_FLD_HDR_SIZE; return i; } i += VPD_INFO_FLD_HDR_SIZE + vpd[i+2]; } return -ENOENT; } /** * get_vpd_params - read VPD parameters from VPD EEPROM * @adapter: adapter to read * @p: where to store the parameters * @vpd: caller provided temporary space to read the VPD into * * Reads card parameters stored in VPD EEPROM. */ static int get_vpd_params(struct adapter *adapter, struct vpd_params *p, uint16_t device_id, u32 *buf) { int i, ret, addr; int ec, sn, pn, na, md; u8 csum; const u8 *vpd = (const u8 *)buf; /* * Card information normally starts at VPD_BASE but early cards had * it at 0. */ ret = t4_seeprom_read(adapter, VPD_BASE, buf); if (ret) return (ret); /* * The VPD shall have a unique identifier specified by the PCI SIG. * For chelsio adapters, the identifier is 0x82. The first byte of a VPD * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software * is expected to automatically put this entry at the * beginning of the VPD. */ addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD; for (i = 0; i < VPD_LEN; i += 4) { ret = t4_seeprom_read(adapter, addr + i, buf++); if (ret) return ret; } #define FIND_VPD_KW(var,name) do { \ var = get_vpd_keyword_val(vpd, name, 0); \ if (var < 0) { \ CH_ERR(adapter, "missing VPD keyword " name "\n"); \ return -EINVAL; \ } \ } while (0) FIND_VPD_KW(i, "RV"); for (csum = 0; i >= 0; i--) csum += vpd[i]; if (csum) { CH_ERR(adapter, "corrupted VPD EEPROM, actual csum %u\n", csum); return -EINVAL; } FIND_VPD_KW(ec, "EC"); FIND_VPD_KW(sn, "SN"); FIND_VPD_KW(pn, "PN"); FIND_VPD_KW(na, "NA"); #undef FIND_VPD_KW memcpy(p->id, vpd + offsetof(struct t4_vpd_hdr, id_data), ID_LEN); strstrip(p->id); memcpy(p->ec, vpd + ec, EC_LEN); strstrip(p->ec); i = vpd[sn - VPD_INFO_FLD_HDR_SIZE + 2]; memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN)); strstrip(p->sn); i = vpd[pn - VPD_INFO_FLD_HDR_SIZE + 2]; memcpy(p->pn, vpd + pn, min(i, PN_LEN)); strstrip((char *)p->pn); i = vpd[na - VPD_INFO_FLD_HDR_SIZE + 2]; memcpy(p->na, vpd + na, min(i, MACADDR_LEN)); strstrip((char *)p->na); if (device_id & 0x80) return 0; /* Custom card */ md = get_vpd_keyword_val(vpd, "VF", 1); if (md < 0) { snprintf(p->md, sizeof(p->md), "unknown"); } else { i = vpd[md - VPD_INFO_FLD_HDR_SIZE + 2]; memcpy(p->md, vpd + md, min(i, MD_LEN)); strstrip((char *)p->md); } return 0; } /* serial flash and firmware constants and flash config file constants */ enum { SF_ATTEMPTS = 10, /* max retries for SF operations */ /* flash command opcodes */ SF_PROG_PAGE = 2, /* program 256B page */ SF_WR_DISABLE = 4, /* disable writes */ SF_RD_STATUS = 5, /* read status register */ SF_WR_ENABLE = 6, /* enable writes */ SF_RD_DATA_FAST = 0xb, /* read flash */ SF_RD_ID = 0x9f, /* read ID */ SF_ERASE_SECTOR = 0xd8, /* erase 64KB sector */ }; /** * sf1_read - read data from the serial flash * @adapter: the adapter * @byte_cnt: number of bytes to read * @cont: whether another operation will be chained * @lock: whether to lock SF for PL access only * @valp: where to store the read data * * Reads up to 4 bytes of data from the serial flash. The location of * the read needs to be specified prior to calling this by issuing the * appropriate commands to the serial flash. */ static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont, int lock, u32 *valp) { int ret; if (!byte_cnt || byte_cnt > 4) return -EINVAL; if (t4_read_reg(adapter, A_SF_OP) & F_BUSY) return -EBUSY; t4_write_reg(adapter, A_SF_OP, V_SF_LOCK(lock) | V_CONT(cont) | V_BYTECNT(byte_cnt - 1)); ret = t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5); if (!ret) *valp = t4_read_reg(adapter, A_SF_DATA); return ret; } /** * sf1_write - write data to the serial flash * @adapter: the adapter * @byte_cnt: number of bytes to write * @cont: whether another operation will be chained * @lock: whether to lock SF for PL access only * @val: value to write * * Writes up to 4 bytes of data to the serial flash. The location of * the write needs to be specified prior to calling this by issuing the * appropriate commands to the serial flash. */ static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont, int lock, u32 val) { if (!byte_cnt || byte_cnt > 4) return -EINVAL; if (t4_read_reg(adapter, A_SF_OP) & F_BUSY) return -EBUSY; t4_write_reg(adapter, A_SF_DATA, val); t4_write_reg(adapter, A_SF_OP, V_SF_LOCK(lock) | V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1)); return t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5); } /** * flash_wait_op - wait for a flash operation to complete * @adapter: the adapter * @attempts: max number of polls of the status register * @delay: delay between polls in ms * * Wait for a flash operation to complete by polling the status register. */ static int flash_wait_op(struct adapter *adapter, int attempts, int delay) { int ret; u32 status; while (1) { if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 || (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0) return ret; if (!(status & 1)) return 0; if (--attempts == 0) return -EAGAIN; if (delay) msleep(delay); } } /** * t4_read_flash - read words from serial flash * @adapter: the adapter * @addr: the start address for the read * @nwords: how many 32-bit words to read * @data: where to store the read data * @byte_oriented: whether to store data as bytes or as words * * Read the specified number of 32-bit words from the serial flash. * If @byte_oriented is set the read data is stored as a byte array * (i.e., big-endian), otherwise as 32-bit words in the platform's * natural endianness. */ int t4_read_flash(struct adapter *adapter, unsigned int addr, unsigned int nwords, u32 *data, int byte_oriented) { int ret; if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3)) return -EINVAL; addr = swab32(addr) | SF_RD_DATA_FAST; if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 || (ret = sf1_read(adapter, 1, 1, 0, data)) != 0) return ret; for ( ; nwords; nwords--, data++) { ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data); if (nwords == 1) t4_write_reg(adapter, A_SF_OP, 0); /* unlock SF */ if (ret) return ret; if (byte_oriented) *data = (__force __u32)(cpu_to_be32(*data)); } return 0; } /** * t4_write_flash - write up to a page of data to the serial flash * @adapter: the adapter * @addr: the start address to write * @n: length of data to write in bytes * @data: the data to write * @byte_oriented: whether to store data as bytes or as words * * Writes up to a page of data (256 bytes) to the serial flash starting * at the given address. All the data must be written to the same page. * If @byte_oriented is set the write data is stored as byte stream * (i.e. matches what on disk), otherwise in big-endian. */ int t4_write_flash(struct adapter *adapter, unsigned int addr, unsigned int n, const u8 *data, int byte_oriented) { int ret; u32 buf[SF_PAGE_SIZE / 4]; unsigned int i, c, left, val, offset = addr & 0xff; if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE) return -EINVAL; val = swab32(addr) | SF_PROG_PAGE; if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 || (ret = sf1_write(adapter, 4, 1, 1, val)) != 0) goto unlock; for (left = n; left; left -= c) { c = min(left, 4U); for (val = 0, i = 0; i < c; ++i) val = (val << 8) + *data++; if (!byte_oriented) val = cpu_to_be32(val); ret = sf1_write(adapter, c, c != left, 1, val); if (ret) goto unlock; } ret = flash_wait_op(adapter, 8, 1); if (ret) goto unlock; t4_write_reg(adapter, A_SF_OP, 0); /* unlock SF */ /* Read the page to verify the write succeeded */ ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, byte_oriented); if (ret) return ret; if (memcmp(data - n, (u8 *)buf + offset, n)) { CH_ERR(adapter, "failed to correctly write the flash page at %#x\n", addr); return -EIO; } return 0; unlock: t4_write_reg(adapter, A_SF_OP, 0); /* unlock SF */ return ret; } /** * t4_get_fw_version - read the firmware version * @adapter: the adapter * @vers: where to place the version * * Reads the FW version from flash. */ int t4_get_fw_version(struct adapter *adapter, u32 *vers) { return t4_read_flash(adapter, FLASH_FW_START + offsetof(struct fw_hdr, fw_ver), 1, vers, 0); } /** * t4_get_fw_hdr - read the firmware header * @adapter: the adapter * @hdr: where to place the version * * Reads the FW header from flash into caller provided buffer. */ int t4_get_fw_hdr(struct adapter *adapter, struct fw_hdr *hdr) { return t4_read_flash(adapter, FLASH_FW_START, sizeof (*hdr) / sizeof (uint32_t), (uint32_t *)hdr, 1); } /** * t4_get_bs_version - read the firmware bootstrap version * @adapter: the adapter * @vers: where to place the version * * Reads the FW Bootstrap version from flash. */ int t4_get_bs_version(struct adapter *adapter, u32 *vers) { return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START + offsetof(struct fw_hdr, fw_ver), 1, vers, 0); } /** * t4_get_tp_version - read the TP microcode version * @adapter: the adapter * @vers: where to place the version * * Reads the TP microcode version from flash. */ int t4_get_tp_version(struct adapter *adapter, u32 *vers) { return t4_read_flash(adapter, FLASH_FW_START + offsetof(struct fw_hdr, tp_microcode_ver), 1, vers, 0); } /** * t4_get_exprom_version - return the Expansion ROM version (if any) * @adapter: the adapter * @vers: where to place the version * * Reads the Expansion ROM header from FLASH and returns the version * number (if present) through the @vers return value pointer. We return * this in the Firmware Version Format since it's convenient. Return * 0 on success, -ENOENT if no Expansion ROM is present. */ int t4_get_exprom_version(struct adapter *adapter, u32 *vers) { struct exprom_header { unsigned char hdr_arr[16]; /* must start with 0x55aa */ unsigned char hdr_ver[4]; /* Expansion ROM version */ } *hdr; u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header), sizeof(u32))]; int ret; ret = t4_read_flash(adapter, FLASH_EXP_ROM_START, ARRAY_SIZE(exprom_header_buf), exprom_header_buf, 0); if (ret) return ret; hdr = (struct exprom_header *)exprom_header_buf; if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa) return -ENOENT; *vers = (V_FW_HDR_FW_VER_MAJOR(hdr->hdr_ver[0]) | V_FW_HDR_FW_VER_MINOR(hdr->hdr_ver[1]) | V_FW_HDR_FW_VER_MICRO(hdr->hdr_ver[2]) | V_FW_HDR_FW_VER_BUILD(hdr->hdr_ver[3])); return 0; } /** * t4_get_scfg_version - return the Serial Configuration version * @adapter: the adapter * @vers: where to place the version * * Reads the Serial Configuration Version via the Firmware interface * (thus this can only be called once we're ready to issue Firmware * commands). The format of the Serial Configuration version is * adapter specific. Returns 0 on success, an error on failure. * * Note that early versions of the Firmware didn't include the ability * to retrieve the Serial Configuration version, so we zero-out the * return-value parameter in that case to avoid leaving it with * garbage in it. * * Also note that the Firmware will return its cached copy of the Serial * Initialization Revision ID, not the actual Revision ID as written in * the Serial EEPROM. This is only an issue if a new VPD has been written * and the Firmware/Chip haven't yet gone through a RESET sequence. So * it's best to defer calling this routine till after a FW_RESET_CMD has * been issued if the Host Driver will be performing a full adapter * initialization. */ int t4_get_scfg_version(struct adapter *adapter, u32 *vers) { u32 scfgrev_param; int ret; scfgrev_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_SCFGREV)); ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 1, &scfgrev_param, vers); if (ret) *vers = 0; return ret; } /** * t4_get_vpd_version - return the VPD version * @adapter: the adapter * @vers: where to place the version * * Reads the VPD via the Firmware interface (thus this can only be called * once we're ready to issue Firmware commands). The format of the * VPD version is adapter specific. Returns 0 on success, an error on * failure. * * Note that early versions of the Firmware didn't include the ability * to retrieve the VPD version, so we zero-out the return-value parameter * in that case to avoid leaving it with garbage in it. * * Also note that the Firmware will return its cached copy of the VPD * Revision ID, not the actual Revision ID as written in the Serial * EEPROM. This is only an issue if a new VPD has been written and the * Firmware/Chip haven't yet gone through a RESET sequence. So it's best * to defer calling this routine till after a FW_RESET_CMD has been issued * if the Host Driver will be performing a full adapter initialization. */ int t4_get_vpd_version(struct adapter *adapter, u32 *vers) { u32 vpdrev_param; int ret; vpdrev_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_VPDREV)); ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 1, &vpdrev_param, vers); if (ret) *vers = 0; return ret; } /** * t4_get_version_info - extract various chip/firmware version information * @adapter: the adapter * * Reads various chip/firmware version numbers and stores them into the * adapter Adapter Parameters structure. If any of the efforts fails * the first failure will be returned, but all of the version numbers * will be read. */ int t4_get_version_info(struct adapter *adapter) { int ret = 0; #define FIRST_RET(__getvinfo) \ do { \ int __ret = __getvinfo; \ if (__ret && !ret) \ ret = __ret; \ } while (0) FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers)); FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers)); FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers)); FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers)); FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers)); FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers)); #undef FIRST_RET return ret; } /** * t4_flash_erase_sectors - erase a range of flash sectors * @adapter: the adapter * @start: the first sector to erase * @end: the last sector to erase * * Erases the sectors in the given inclusive range. */ int t4_flash_erase_sectors(struct adapter *adapter, int start, int end) { int ret = 0; if (end >= adapter->params.sf_nsec) return -EINVAL; while (start <= end) { if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 || (ret = sf1_write(adapter, 4, 0, 1, SF_ERASE_SECTOR | (start << 8))) != 0 || (ret = flash_wait_op(adapter, 14, 500)) != 0) { CH_ERR(adapter, "erase of flash sector %d failed, error %d\n", start, ret); break; } start++; } t4_write_reg(adapter, A_SF_OP, 0); /* unlock SF */ return ret; } /** * t4_flash_cfg_addr - return the address of the flash configuration file * @adapter: the adapter * * Return the address within the flash where the Firmware Configuration * File is stored, or an error if the device FLASH is too small to contain * a Firmware Configuration File. */ int t4_flash_cfg_addr(struct adapter *adapter) { /* * If the device FLASH isn't large enough to hold a Firmware * Configuration File, return an error. */ if (adapter->params.sf_size < FLASH_CFG_START + FLASH_CFG_MAX_SIZE) return -ENOSPC; return FLASH_CFG_START; } /* * Return TRUE if the specified firmware matches the adapter. I.e. T4 * firmware for T4 adapters, T5 firmware for T5 adapters, etc. We go ahead * and emit an error message for mismatched firmware to save our caller the * effort ... */ static int t4_fw_matches_chip(struct adapter *adap, const struct fw_hdr *hdr) { /* * The expression below will return FALSE for any unsupported adapter * which will keep us "honest" in the future ... */ if ((is_t4(adap) && hdr->chip == FW_HDR_CHIP_T4) || (is_t5(adap) && hdr->chip == FW_HDR_CHIP_T5) || (is_t6(adap) && hdr->chip == FW_HDR_CHIP_T6)) return 1; CH_ERR(adap, "FW image (%d) is not suitable for this adapter (%d)\n", hdr->chip, chip_id(adap)); return 0; } /** * t4_load_fw - download firmware * @adap: the adapter * @fw_data: the firmware image to write * @size: image size * * Write the supplied firmware image to the card's serial flash. */ int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size) { u32 csum; int ret, addr; unsigned int i; u8 first_page[SF_PAGE_SIZE]; const u32 *p = (const u32 *)fw_data; const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data; unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec; unsigned int fw_start_sec; unsigned int fw_start; unsigned int fw_size; if (ntohl(hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP) { fw_start_sec = FLASH_FWBOOTSTRAP_START_SEC; fw_start = FLASH_FWBOOTSTRAP_START; fw_size = FLASH_FWBOOTSTRAP_MAX_SIZE; } else { fw_start_sec = FLASH_FW_START_SEC; fw_start = FLASH_FW_START; fw_size = FLASH_FW_MAX_SIZE; } if (!size) { CH_ERR(adap, "FW image has no data\n"); return -EINVAL; } if (size & 511) { CH_ERR(adap, "FW image size not multiple of 512 bytes\n"); return -EINVAL; } if ((unsigned int) be16_to_cpu(hdr->len512) * 512 != size) { CH_ERR(adap, "FW image size differs from size in FW header\n"); return -EINVAL; } if (size > fw_size) { CH_ERR(adap, "FW image too large, max is %u bytes\n", fw_size); return -EFBIG; } if (!t4_fw_matches_chip(adap, hdr)) return -EINVAL; for (csum = 0, i = 0; i < size / sizeof(csum); i++) csum += be32_to_cpu(p[i]); if (csum != 0xffffffff) { CH_ERR(adap, "corrupted firmware image, checksum %#x\n", csum); return -EINVAL; } i = DIV_ROUND_UP(size, sf_sec_size); /* # of sectors spanned */ ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1); if (ret) goto out; /* * We write the correct version at the end so the driver can see a bad * version if the FW write fails. Start by writing a copy of the * first page with a bad version. */ memcpy(first_page, fw_data, SF_PAGE_SIZE); ((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff); ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page, 1); if (ret) goto out; addr = fw_start; for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) { addr += SF_PAGE_SIZE; fw_data += SF_PAGE_SIZE; ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data, 1); if (ret) goto out; } ret = t4_write_flash(adap, fw_start + offsetof(struct fw_hdr, fw_ver), sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver, 1); out: if (ret) CH_ERR(adap, "firmware download failed, error %d\n", ret); return ret; } /** * t4_fwcache - firmware cache operation * @adap: the adapter * @op : the operation (flush or flush and invalidate) */ int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op) { struct fw_params_cmd c; memset(&c, 0, sizeof(c)); c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_WRITE | V_FW_PARAMS_CMD_PFN(adap->pf) | V_FW_PARAMS_CMD_VFN(0)); c.retval_len16 = cpu_to_be32(FW_LEN16(c)); c.param[0].mnem = cpu_to_be32(V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FWCACHE)); c.param[0].val = (__force __be32)op; return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL); } void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp, unsigned int *pif_req_wrptr, unsigned int *pif_rsp_wrptr) { int i, j; u32 cfg, val, req, rsp; cfg = t4_read_reg(adap, A_CIM_DEBUGCFG); if (cfg & F_LADBGEN) t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN); val = t4_read_reg(adap, A_CIM_DEBUGSTS); req = G_POLADBGWRPTR(val); rsp = G_PILADBGWRPTR(val); if (pif_req_wrptr) *pif_req_wrptr = req; if (pif_rsp_wrptr) *pif_rsp_wrptr = rsp; for (i = 0; i < CIM_PIFLA_SIZE; i++) { for (j = 0; j < 6; j++) { t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(req) | V_PILADBGRDPTR(rsp)); *pif_req++ = t4_read_reg(adap, A_CIM_PO_LA_DEBUGDATA); *pif_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_DEBUGDATA); req++; rsp++; } req = (req + 2) & M_POLADBGRDPTR; rsp = (rsp + 2) & M_PILADBGRDPTR; } t4_write_reg(adap, A_CIM_DEBUGCFG, cfg); } void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp) { u32 cfg; int i, j, idx; cfg = t4_read_reg(adap, A_CIM_DEBUGCFG); if (cfg & F_LADBGEN) t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN); for (i = 0; i < CIM_MALA_SIZE; i++) { for (j = 0; j < 5; j++) { idx = 8 * i + j; t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(idx) | V_PILADBGRDPTR(idx)); *ma_req++ = t4_read_reg(adap, A_CIM_PO_LA_MADEBUGDATA); *ma_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_MADEBUGDATA); } } t4_write_reg(adap, A_CIM_DEBUGCFG, cfg); } void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf) { unsigned int i, j; for (i = 0; i < 8; i++) { u32 *p = la_buf + i; t4_write_reg(adap, A_ULP_RX_LA_CTL, i); j = t4_read_reg(adap, A_ULP_RX_LA_WRPTR); t4_write_reg(adap, A_ULP_RX_LA_RDPTR, j); for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8) *p = t4_read_reg(adap, A_ULP_RX_LA_RDDATA); } } /** * fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits * @caps16: a 16-bit Port Capabilities value * * Returns the equivalent 32-bit Port Capabilities value. */ static uint32_t fwcaps16_to_caps32(uint16_t caps16) { uint32_t caps32 = 0; #define CAP16_TO_CAP32(__cap) \ do { \ if (caps16 & FW_PORT_CAP_##__cap) \ caps32 |= FW_PORT_CAP32_##__cap; \ } while (0) CAP16_TO_CAP32(SPEED_100M); CAP16_TO_CAP32(SPEED_1G); CAP16_TO_CAP32(SPEED_25G); CAP16_TO_CAP32(SPEED_10G); CAP16_TO_CAP32(SPEED_40G); CAP16_TO_CAP32(SPEED_100G); CAP16_TO_CAP32(FC_RX); CAP16_TO_CAP32(FC_TX); CAP16_TO_CAP32(ANEG); CAP16_TO_CAP32(FORCE_PAUSE); CAP16_TO_CAP32(MDIAUTO); CAP16_TO_CAP32(MDISTRAIGHT); CAP16_TO_CAP32(FEC_RS); CAP16_TO_CAP32(FEC_BASER_RS); CAP16_TO_CAP32(802_3_PAUSE); CAP16_TO_CAP32(802_3_ASM_DIR); #undef CAP16_TO_CAP32 return caps32; } /** * fwcaps32_to_caps16 - convert 32-bit Port Capabilities to 16-bits * @caps32: a 32-bit Port Capabilities value * * Returns the equivalent 16-bit Port Capabilities value. Note that * not all 32-bit Port Capabilities can be represented in the 16-bit * Port Capabilities and some fields/values may not make it. */ static uint16_t fwcaps32_to_caps16(uint32_t caps32) { uint16_t caps16 = 0; #define CAP32_TO_CAP16(__cap) \ do { \ if (caps32 & FW_PORT_CAP32_##__cap) \ caps16 |= FW_PORT_CAP_##__cap; \ } while (0) CAP32_TO_CAP16(SPEED_100M); CAP32_TO_CAP16(SPEED_1G); CAP32_TO_CAP16(SPEED_10G); CAP32_TO_CAP16(SPEED_25G); CAP32_TO_CAP16(SPEED_40G); CAP32_TO_CAP16(SPEED_100G); CAP32_TO_CAP16(FC_RX); CAP32_TO_CAP16(FC_TX); CAP32_TO_CAP16(802_3_PAUSE); CAP32_TO_CAP16(802_3_ASM_DIR); CAP32_TO_CAP16(ANEG); CAP32_TO_CAP16(FORCE_PAUSE); CAP32_TO_CAP16(MDIAUTO); CAP32_TO_CAP16(MDISTRAIGHT); CAP32_TO_CAP16(FEC_RS); CAP32_TO_CAP16(FEC_BASER_RS); #undef CAP32_TO_CAP16 return caps16; } static bool is_bt(struct port_info *pi) { return (pi->port_type == FW_PORT_TYPE_BT_SGMII || pi->port_type == FW_PORT_TYPE_BT_XFI || pi->port_type == FW_PORT_TYPE_BT_XAUI); } static int8_t fwcap_to_fec(uint32_t caps, bool unset_means_none) { int8_t fec = 0; if ((caps & V_FW_PORT_CAP32_FEC(M_FW_PORT_CAP32_FEC)) == 0) return (unset_means_none ? FEC_NONE : 0); if (caps & FW_PORT_CAP32_FEC_RS) fec |= FEC_RS; if (caps & FW_PORT_CAP32_FEC_BASER_RS) fec |= FEC_BASER_RS; if (caps & FW_PORT_CAP32_FEC_NO_FEC) fec |= FEC_NONE; return (fec); } /* * Note that 0 is not translated to NO_FEC. */ static uint32_t fec_to_fwcap(int8_t fec) { uint32_t caps = 0; /* Only real FECs allowed. */ MPASS((fec & ~M_FW_PORT_CAP32_FEC) == 0); if (fec & FEC_RS) caps |= FW_PORT_CAP32_FEC_RS; if (fec & FEC_BASER_RS) caps |= FW_PORT_CAP32_FEC_BASER_RS; if (fec & FEC_NONE) caps |= FW_PORT_CAP32_FEC_NO_FEC; return (caps); } /** * t4_link_l1cfg - apply link configuration to MAC/PHY * @phy: the PHY to setup * @mac: the MAC to setup * @lc: the requested link configuration * * Set up a port's MAC and PHY according to a desired link configuration. * - If the PHY can auto-negotiate first decide what to advertise, then * enable/disable auto-negotiation as desired, and reset. * - If the PHY does not auto-negotiate just reset it. * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC, * otherwise do it later based on the outcome of auto-negotiation. */ int t4_link_l1cfg(struct adapter *adap, unsigned int mbox, unsigned int port, struct link_config *lc) { struct fw_port_cmd c; unsigned int mdi = V_FW_PORT_CAP32_MDI(FW_PORT_CAP32_MDI_AUTO); unsigned int aneg, fc, fec, speed, rcap; fc = 0; if (lc->requested_fc & PAUSE_RX) fc |= FW_PORT_CAP32_FC_RX; if (lc->requested_fc & PAUSE_TX) fc |= FW_PORT_CAP32_FC_TX; if (!(lc->requested_fc & PAUSE_AUTONEG)) fc |= FW_PORT_CAP32_FORCE_PAUSE; if (lc->requested_aneg == AUTONEG_DISABLE) aneg = 0; else if (lc->requested_aneg == AUTONEG_ENABLE) aneg = FW_PORT_CAP32_ANEG; else aneg = lc->pcaps & FW_PORT_CAP32_ANEG; if (aneg) { speed = lc->pcaps & V_FW_PORT_CAP32_SPEED(M_FW_PORT_CAP32_SPEED); } else if (lc->requested_speed != 0) speed = speed_to_fwcap(lc->requested_speed); else speed = fwcap_top_speed(lc->pcaps); fec = 0; if (fec_supported(speed)) { if (lc->requested_fec == FEC_AUTO) { if (lc->pcaps & FW_PORT_CAP32_FORCE_FEC) { if (speed & FW_PORT_CAP32_SPEED_100G) { fec |= FW_PORT_CAP32_FEC_RS; fec |= FW_PORT_CAP32_FEC_NO_FEC; } else { fec |= FW_PORT_CAP32_FEC_RS; fec |= FW_PORT_CAP32_FEC_BASER_RS; fec |= FW_PORT_CAP32_FEC_NO_FEC; } } else { /* Set only 1b with old firmwares. */ fec |= fec_to_fwcap(lc->fec_hint); } } else { fec |= fec_to_fwcap(lc->requested_fec & M_FW_PORT_CAP32_FEC); if (lc->requested_fec & FEC_MODULE) fec |= fec_to_fwcap(lc->fec_hint); } if (lc->pcaps & FW_PORT_CAP32_FORCE_FEC) fec |= FW_PORT_CAP32_FORCE_FEC; else if (fec == FW_PORT_CAP32_FEC_NO_FEC) fec = 0; } /* Force AN on for BT cards. */ if (is_bt(adap->port[adap->chan_map[port]])) aneg = lc->pcaps & FW_PORT_CAP32_ANEG; rcap = aneg | speed | fc | fec; if ((rcap | lc->pcaps) != lc->pcaps) { #ifdef INVARIANTS CH_WARN(adap, "rcap 0x%08x, pcap 0x%08x, removed 0x%x\n", rcap, lc->pcaps, rcap & (rcap ^ lc->pcaps)); #endif rcap &= lc->pcaps; } rcap |= mdi; memset(&c, 0, sizeof(c)); c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_EXEC | V_FW_PORT_CMD_PORTID(port)); if (adap->params.port_caps32) { c.action_to_len16 = cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG32) | FW_LEN16(c)); c.u.l1cfg32.rcap32 = cpu_to_be32(rcap); } else { c.action_to_len16 = cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) | FW_LEN16(c)); c.u.l1cfg.rcap = cpu_to_be32(fwcaps32_to_caps16(rcap)); } return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL); } /** * t4_restart_aneg - restart autonegotiation * @adap: the adapter * @mbox: mbox to use for the FW command * @port: the port id * * Restarts autonegotiation for the selected port. */ int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port) { struct fw_port_cmd c; memset(&c, 0, sizeof(c)); c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_EXEC | V_FW_PORT_CMD_PORTID(port)); c.action_to_len16 = cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) | FW_LEN16(c)); c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG); return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); } struct intr_details { u32 mask; const char *msg; }; struct intr_action { u32 mask; int arg; bool (*action)(struct adapter *, int, bool); }; #define NONFATAL_IF_DISABLED 1 struct intr_info { const char *name; /* name of the INT_CAUSE register */ int cause_reg; /* INT_CAUSE register */ int enable_reg; /* INT_ENABLE register */ u32 fatal; /* bits that are fatal */ int flags; /* hints */ const struct intr_details *details; const struct intr_action *actions; }; static inline char intr_alert_char(u32 cause, u32 enable, u32 fatal) { if (cause & fatal) return ('!'); if (cause & enable) return ('*'); return ('-'); } static void t4_show_intr_info(struct adapter *adap, const struct intr_info *ii, u32 cause) { u32 enable, fatal, leftover; const struct intr_details *details; char alert; enable = t4_read_reg(adap, ii->enable_reg); if (ii->flags & NONFATAL_IF_DISABLED) fatal = ii->fatal & t4_read_reg(adap, ii->enable_reg); else fatal = ii->fatal; alert = intr_alert_char(cause, enable, fatal); CH_ALERT(adap, "%c %s 0x%x = 0x%08x, E 0x%08x, F 0x%08x\n", alert, ii->name, ii->cause_reg, cause, enable, fatal); leftover = cause; for (details = ii->details; details && details->mask != 0; details++) { u32 msgbits = details->mask & cause; if (msgbits == 0) continue; alert = intr_alert_char(msgbits, enable, ii->fatal); CH_ALERT(adap, " %c [0x%08x] %s\n", alert, msgbits, details->msg); leftover &= ~msgbits; } if (leftover != 0 && leftover != cause) CH_ALERT(adap, " ? [0x%08x]\n", leftover); } /* * Returns true for fatal error. */ static bool t4_handle_intr(struct adapter *adap, const struct intr_info *ii, u32 additional_cause, bool verbose) { u32 cause, fatal; bool rc; const struct intr_action *action; /* * Read and display cause. Note that the top level PL_INT_CAUSE is a * bit special and we need to completely ignore the bits that are not in * PL_INT_ENABLE. */ cause = t4_read_reg(adap, ii->cause_reg); if (ii->cause_reg == A_PL_INT_CAUSE) cause &= t4_read_reg(adap, ii->enable_reg); if (verbose || cause != 0) t4_show_intr_info(adap, ii, cause); fatal = cause & ii->fatal; if (fatal != 0 && ii->flags & NONFATAL_IF_DISABLED) fatal &= t4_read_reg(adap, ii->enable_reg); cause |= additional_cause; if (cause == 0) return (false); rc = fatal != 0; for (action = ii->actions; action && action->mask != 0; action++) { if (!(action->mask & cause)) continue; rc |= (action->action)(adap, action->arg, verbose); } /* clear */ t4_write_reg(adap, ii->cause_reg, cause); (void)t4_read_reg(adap, ii->cause_reg); return (rc); } /* * Interrupt handler for the PCIE module. */ static bool pcie_intr_handler(struct adapter *adap, int arg, bool verbose) { static const struct intr_details sysbus_intr_details[] = { { F_RNPP, "RXNP array parity error" }, { F_RPCP, "RXPC array parity error" }, { F_RCIP, "RXCIF array parity error" }, { F_RCCP, "Rx completions control array parity error" }, { F_RFTP, "RXFT array parity error" }, { 0 } }; static const struct intr_info sysbus_intr_info = { .name = "PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS", .cause_reg = A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS, .enable_reg = A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_INTERRUPT_ENABLE, .fatal = F_RFTP | F_RCCP | F_RCIP | F_RPCP | F_RNPP, .flags = 0, .details = sysbus_intr_details, .actions = NULL, }; static const struct intr_details pcie_port_intr_details[] = { { F_TPCP, "TXPC array parity error" }, { F_TNPP, "TXNP array parity error" }, { F_TFTP, "TXFT array parity error" }, { F_TCAP, "TXCA array parity error" }, { F_TCIP, "TXCIF array parity error" }, { F_RCAP, "RXCA array parity error" }, { F_OTDD, "outbound request TLP discarded" }, { F_RDPE, "Rx data parity error" }, { F_TDUE, "Tx uncorrectable data error" }, { 0 } }; static const struct intr_info pcie_port_intr_info = { .name = "PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS", .cause_reg = A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS, .enable_reg = A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_INTERRUPT_ENABLE, .fatal = F_TPCP | F_TNPP | F_TFTP | F_TCAP | F_TCIP | F_RCAP | F_OTDD | F_RDPE | F_TDUE, .flags = 0, .details = pcie_port_intr_details, .actions = NULL, }; static const struct intr_details pcie_intr_details[] = { { F_MSIADDRLPERR, "MSI AddrL parity error" }, { F_MSIADDRHPERR, "MSI AddrH parity error" }, { F_MSIDATAPERR, "MSI data parity error" }, { F_MSIXADDRLPERR, "MSI-X AddrL parity error" }, { F_MSIXADDRHPERR, "MSI-X AddrH parity error" }, { F_MSIXDATAPERR, "MSI-X data parity error" }, { F_MSIXDIPERR, "MSI-X DI parity error" }, { F_PIOCPLPERR, "PCIe PIO completion FIFO parity error" }, { F_PIOREQPERR, "PCIe PIO request FIFO parity error" }, { F_TARTAGPERR, "PCIe target tag FIFO parity error" }, { F_CCNTPERR, "PCIe CMD channel count parity error" }, { F_CREQPERR, "PCIe CMD channel request parity error" }, { F_CRSPPERR, "PCIe CMD channel response parity error" }, { F_DCNTPERR, "PCIe DMA channel count parity error" }, { F_DREQPERR, "PCIe DMA channel request parity error" }, { F_DRSPPERR, "PCIe DMA channel response parity error" }, { F_HCNTPERR, "PCIe HMA channel count parity error" }, { F_HREQPERR, "PCIe HMA channel request parity error" }, { F_HRSPPERR, "PCIe HMA channel response parity error" }, { F_CFGSNPPERR, "PCIe config snoop FIFO parity error" }, { F_FIDPERR, "PCIe FID parity error" }, { F_INTXCLRPERR, "PCIe INTx clear parity error" }, { F_MATAGPERR, "PCIe MA tag parity error" }, { F_PIOTAGPERR, "PCIe PIO tag parity error" }, { F_RXCPLPERR, "PCIe Rx completion parity error" }, { F_RXWRPERR, "PCIe Rx write parity error" }, { F_RPLPERR, "PCIe replay buffer parity error" }, { F_PCIESINT, "PCIe core secondary fault" }, { F_PCIEPINT, "PCIe core primary fault" }, { F_UNXSPLCPLERR, "PCIe unexpected split completion error" }, { 0 } }; static const struct intr_details t5_pcie_intr_details[] = { { F_IPGRPPERR, "Parity errors observed by IP" }, { F_NONFATALERR, "PCIe non-fatal error" }, { F_READRSPERR, "Outbound read error" }, { F_TRGT1GRPPERR, "PCIe TRGT1 group FIFOs parity error" }, { F_IPSOTPERR, "PCIe IP SOT buffer SRAM parity error" }, { F_IPRETRYPERR, "PCIe IP replay buffer parity error" }, { F_IPRXDATAGRPPERR, "PCIe IP Rx data group SRAMs parity error" }, { F_IPRXHDRGRPPERR, "PCIe IP Rx header group SRAMs parity error" }, { F_PIOTAGQPERR, "PIO tag queue FIFO parity error" }, { F_MAGRPPERR, "MA group FIFO parity error" }, { F_VFIDPERR, "VFID SRAM parity error" }, { F_FIDPERR, "FID SRAM parity error" }, { F_CFGSNPPERR, "config snoop FIFO parity error" }, { F_HRSPPERR, "HMA channel response data SRAM parity error" }, { F_HREQRDPERR, "HMA channel read request SRAM parity error" }, { F_HREQWRPERR, "HMA channel write request SRAM parity error" }, { F_DRSPPERR, "DMA channel response data SRAM parity error" }, { F_DREQRDPERR, "DMA channel write request SRAM parity error" }, { F_CRSPPERR, "CMD channel response data SRAM parity error" }, { F_CREQRDPERR, "CMD channel read request SRAM parity error" }, { F_MSTTAGQPERR, "PCIe master tag queue SRAM parity error" }, { F_TGTTAGQPERR, "PCIe target tag queue FIFO parity error" }, { F_PIOREQGRPPERR, "PIO request group FIFOs parity error" }, { F_PIOCPLGRPPERR, "PIO completion group FIFOs parity error" }, { F_MSIXDIPERR, "MSI-X DI SRAM parity error" }, { F_MSIXDATAPERR, "MSI-X data SRAM parity error" }, { F_MSIXADDRHPERR, "MSI-X AddrH SRAM parity error" }, { F_MSIXADDRLPERR, "MSI-X AddrL SRAM parity error" }, { F_MSIXSTIPERR, "MSI-X STI SRAM parity error" }, { F_MSTTIMEOUTPERR, "Master timeout FIFO parity error" }, { F_MSTGRPPERR, "Master response read queue SRAM parity error" }, { 0 } }; struct intr_info pcie_intr_info = { .name = "PCIE_INT_CAUSE", .cause_reg = A_PCIE_INT_CAUSE, .enable_reg = A_PCIE_INT_ENABLE, .fatal = 0xffffffff, .flags = NONFATAL_IF_DISABLED, .details = NULL, .actions = NULL, }; bool fatal = false; if (is_t4(adap)) { fatal |= t4_handle_intr(adap, &sysbus_intr_info, 0, verbose); fatal |= t4_handle_intr(adap, &pcie_port_intr_info, 0, verbose); pcie_intr_info.details = pcie_intr_details; } else { pcie_intr_info.details = t5_pcie_intr_details; } fatal |= t4_handle_intr(adap, &pcie_intr_info, 0, verbose); return (fatal); } /* * TP interrupt handler. */ static bool tp_intr_handler(struct adapter *adap, int arg, bool verbose) { static const struct intr_details tp_intr_details[] = { { 0x3fffffff, "TP parity error" }, { F_FLMTXFLSTEMPTY, "TP out of Tx pages" }, { 0 } }; static const struct intr_info tp_intr_info = { .name = "TP_INT_CAUSE", .cause_reg = A_TP_INT_CAUSE, .enable_reg = A_TP_INT_ENABLE, .fatal = 0x7fffffff, .flags = NONFATAL_IF_DISABLED, .details = tp_intr_details, .actions = NULL, }; return (t4_handle_intr(adap, &tp_intr_info, 0, verbose)); } /* * SGE interrupt handler. */ static bool sge_intr_handler(struct adapter *adap, int arg, bool verbose) { static const struct intr_info sge_int1_info = { .name = "SGE_INT_CAUSE1", .cause_reg = A_SGE_INT_CAUSE1, .enable_reg = A_SGE_INT_ENABLE1, .fatal = 0xffffffff, .flags = NONFATAL_IF_DISABLED, .details = NULL, .actions = NULL, }; static const struct intr_info sge_int2_info = { .name = "SGE_INT_CAUSE2", .cause_reg = A_SGE_INT_CAUSE2, .enable_reg = A_SGE_INT_ENABLE2, .fatal = 0xffffffff, .flags = NONFATAL_IF_DISABLED, .details = NULL, .actions = NULL, }; static const struct intr_details sge_int3_details[] = { { F_ERR_FLM_DBP, "DBP pointer delivery for invalid context or QID" }, { F_ERR_FLM_IDMA1 | F_ERR_FLM_IDMA0, "Invalid QID or header request by IDMA" }, { F_ERR_FLM_HINT, "FLM hint is for invalid context or QID" }, { F_ERR_PCIE_ERROR3, "SGE PCIe error for DBP thread 3" }, { F_ERR_PCIE_ERROR2, "SGE PCIe error for DBP thread 2" }, { F_ERR_PCIE_ERROR1, "SGE PCIe error for DBP thread 1" }, { F_ERR_PCIE_ERROR0, "SGE PCIe error for DBP thread 0" }, { F_ERR_TIMER_ABOVE_MAX_QID, "SGE GTS with timer 0-5 for IQID > 1023" }, { F_ERR_CPL_EXCEED_IQE_SIZE, "SGE received CPL exceeding IQE size" }, { F_ERR_INVALID_CIDX_INC, "SGE GTS CIDX increment too large" }, { F_ERR_ITP_TIME_PAUSED, "SGE ITP error" }, { F_ERR_CPL_OPCODE_0, "SGE received 0-length CPL" }, { F_ERR_DROPPED_DB, "SGE DB dropped" }, { F_ERR_DATA_CPL_ON_HIGH_QID1 | F_ERR_DATA_CPL_ON_HIGH_QID0, "SGE IQID > 1023 received CPL for FL" }, { F_ERR_BAD_DB_PIDX3 | F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 | F_ERR_BAD_DB_PIDX0, "SGE DBP pidx increment too large" }, { F_ERR_ING_PCIE_CHAN, "SGE Ingress PCIe channel mismatch" }, { F_ERR_ING_CTXT_PRIO, "Ingress context manager priority user error" }, { F_ERR_EGR_CTXT_PRIO, "Egress context manager priority user error" }, { F_DBFIFO_HP_INT, "High priority DB FIFO threshold reached" }, { F_DBFIFO_LP_INT, "Low priority DB FIFO threshold reached" }, { F_REG_ADDRESS_ERR, "Undefined SGE register accessed" }, { F_INGRESS_SIZE_ERR, "SGE illegal ingress QID" }, { F_EGRESS_SIZE_ERR, "SGE illegal egress QID" }, { 0x0000000f, "SGE context access for invalid queue" }, { 0 } }; static const struct intr_details t6_sge_int3_details[] = { { F_ERR_FLM_DBP, "DBP pointer delivery for invalid context or QID" }, { F_ERR_FLM_IDMA1 | F_ERR_FLM_IDMA0, "Invalid QID or header request by IDMA" }, { F_ERR_FLM_HINT, "FLM hint is for invalid context or QID" }, { F_ERR_PCIE_ERROR3, "SGE PCIe error for DBP thread 3" }, { F_ERR_PCIE_ERROR2, "SGE PCIe error for DBP thread 2" }, { F_ERR_PCIE_ERROR1, "SGE PCIe error for DBP thread 1" }, { F_ERR_PCIE_ERROR0, "SGE PCIe error for DBP thread 0" }, { F_ERR_TIMER_ABOVE_MAX_QID, "SGE GTS with timer 0-5 for IQID > 1023" }, { F_ERR_CPL_EXCEED_IQE_SIZE, "SGE received CPL exceeding IQE size" }, { F_ERR_INVALID_CIDX_INC, "SGE GTS CIDX increment too large" }, { F_ERR_ITP_TIME_PAUSED, "SGE ITP error" }, { F_ERR_CPL_OPCODE_0, "SGE received 0-length CPL" }, { F_ERR_DROPPED_DB, "SGE DB dropped" }, { F_ERR_DATA_CPL_ON_HIGH_QID1 | F_ERR_DATA_CPL_ON_HIGH_QID0, "SGE IQID > 1023 received CPL for FL" }, { F_ERR_BAD_DB_PIDX3 | F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 | F_ERR_BAD_DB_PIDX0, "SGE DBP pidx increment too large" }, { F_ERR_ING_PCIE_CHAN, "SGE Ingress PCIe channel mismatch" }, { F_ERR_ING_CTXT_PRIO, "Ingress context manager priority user error" }, { F_ERR_EGR_CTXT_PRIO, "Egress context manager priority user error" }, { F_DBP_TBUF_FULL, "SGE DBP tbuf full" }, { F_FATAL_WRE_LEN, "SGE WRE packet less than advertized length" }, { F_REG_ADDRESS_ERR, "Undefined SGE register accessed" }, { F_INGRESS_SIZE_ERR, "SGE illegal ingress QID" }, { F_EGRESS_SIZE_ERR, "SGE illegal egress QID" }, { 0x0000000f, "SGE context access for invalid queue" }, { 0 } }; struct intr_info sge_int3_info = { .name = "SGE_INT_CAUSE3", .cause_reg = A_SGE_INT_CAUSE3, .enable_reg = A_SGE_INT_ENABLE3, .fatal = F_ERR_CPL_EXCEED_IQE_SIZE, .flags = 0, .details = NULL, .actions = NULL, }; static const struct intr_info sge_int4_info = { .name = "SGE_INT_CAUSE4", .cause_reg = A_SGE_INT_CAUSE4, .enable_reg = A_SGE_INT_ENABLE4, .fatal = 0, .flags = 0, .details = NULL, .actions = NULL, }; static const struct intr_info sge_int5_info = { .name = "SGE_INT_CAUSE5", .cause_reg = A_SGE_INT_CAUSE5, .enable_reg = A_SGE_INT_ENABLE5, .fatal = 0xffffffff, .flags = NONFATAL_IF_DISABLED, .details = NULL, .actions = NULL, }; static const struct intr_info sge_int6_info = { .name = "SGE_INT_CAUSE6", .cause_reg = A_SGE_INT_CAUSE6, .enable_reg = A_SGE_INT_ENABLE6, .fatal = 0, .flags = 0, .details = NULL, .actions = NULL, }; bool fatal; u32 v; if (chip_id(adap) <= CHELSIO_T5) { sge_int3_info.details = sge_int3_details; } else { sge_int3_info.details = t6_sge_int3_details; } fatal = false; fatal |= t4_handle_intr(adap, &sge_int1_info, 0, verbose); fatal |= t4_handle_intr(adap, &sge_int2_info, 0, verbose); fatal |= t4_handle_intr(adap, &sge_int3_info, 0, verbose); fatal |= t4_handle_intr(adap, &sge_int4_info, 0, verbose); if (chip_id(adap) >= CHELSIO_T5) fatal |= t4_handle_intr(adap, &sge_int5_info, 0, verbose); if (chip_id(adap) >= CHELSIO_T6) fatal |= t4_handle_intr(adap, &sge_int6_info, 0, verbose); v = t4_read_reg(adap, A_SGE_ERROR_STATS); if (v & F_ERROR_QID_VALID) { CH_ERR(adap, "SGE error for QID %u\n", G_ERROR_QID(v)); if (v & F_UNCAPTURED_ERROR) CH_ERR(adap, "SGE UNCAPTURED_ERROR set (clearing)\n"); t4_write_reg(adap, A_SGE_ERROR_STATS, F_ERROR_QID_VALID | F_UNCAPTURED_ERROR); } return (fatal); } /* * CIM interrupt handler. */ static bool cim_intr_handler(struct adapter *adap, int arg, bool verbose) { static const struct intr_action cim_host_intr_actions[] = { { F_TIMER0INT, 0, t4_os_dump_cimla }, { 0 }, }; static const struct intr_details cim_host_intr_details[] = { /* T6+ */ { F_PCIE2CIMINTFPARERR, "CIM IBQ PCIe interface parity error" }, /* T5+ */ { F_MA_CIM_INTFPERR, "MA2CIM interface parity error" }, { F_PLCIM_MSTRSPDATAPARERR, "PL2CIM master response data parity error" }, { F_NCSI2CIMINTFPARERR, "CIM IBQ NC-SI interface parity error" }, { F_SGE2CIMINTFPARERR, "CIM IBQ SGE interface parity error" }, { F_ULP2CIMINTFPARERR, "CIM IBQ ULP_TX interface parity error" }, { F_TP2CIMINTFPARERR, "CIM IBQ TP interface parity error" }, { F_OBQSGERX1PARERR, "CIM OBQ SGE1_RX parity error" }, { F_OBQSGERX0PARERR, "CIM OBQ SGE0_RX parity error" }, /* T4+ */ { F_TIEQOUTPARERRINT, "CIM TIEQ outgoing FIFO parity error" }, { F_TIEQINPARERRINT, "CIM TIEQ incoming FIFO parity error" }, { F_MBHOSTPARERR, "CIM mailbox host read parity error" }, { F_MBUPPARERR, "CIM mailbox uP parity error" }, { F_IBQTP0PARERR, "CIM IBQ TP0 parity error" }, { F_IBQTP1PARERR, "CIM IBQ TP1 parity error" }, { F_IBQULPPARERR, "CIM IBQ ULP parity error" }, { F_IBQSGELOPARERR, "CIM IBQ SGE_LO parity error" }, { F_IBQSGEHIPARERR | F_IBQPCIEPARERR, /* same bit */ "CIM IBQ PCIe/SGE_HI parity error" }, { F_IBQNCSIPARERR, "CIM IBQ NC-SI parity error" }, { F_OBQULP0PARERR, "CIM OBQ ULP0 parity error" }, { F_OBQULP1PARERR, "CIM OBQ ULP1 parity error" }, { F_OBQULP2PARERR, "CIM OBQ ULP2 parity error" }, { F_OBQULP3PARERR, "CIM OBQ ULP3 parity error" }, { F_OBQSGEPARERR, "CIM OBQ SGE parity error" }, { F_OBQNCSIPARERR, "CIM OBQ NC-SI parity error" }, { F_TIMER1INT, "CIM TIMER0 interrupt" }, { F_TIMER0INT, "CIM TIMER0 interrupt" }, { F_PREFDROPINT, "CIM control register prefetch drop" }, { 0} }; static const struct intr_info cim_host_intr_info = { .name = "CIM_HOST_INT_CAUSE", .cause_reg = A_CIM_HOST_INT_CAUSE, .enable_reg = A_CIM_HOST_INT_ENABLE, .fatal = 0x007fffe6, .flags = NONFATAL_IF_DISABLED, .details = cim_host_intr_details, .actions = cim_host_intr_actions, }; static const struct intr_details cim_host_upacc_intr_details[] = { { F_EEPROMWRINT, "CIM EEPROM came out of busy state" }, { F_TIMEOUTMAINT, "CIM PIF MA timeout" }, { F_TIMEOUTINT, "CIM PIF timeout" }, { F_RSPOVRLOOKUPINT, "CIM response FIFO overwrite" }, { F_REQOVRLOOKUPINT, "CIM request FIFO overwrite" }, { F_BLKWRPLINT, "CIM block write to PL space" }, { F_BLKRDPLINT, "CIM block read from PL space" }, { F_SGLWRPLINT, "CIM single write to PL space with illegal BEs" }, { F_SGLRDPLINT, "CIM single read from PL space with illegal BEs" }, { F_BLKWRCTLINT, "CIM block write to CTL space" }, { F_BLKRDCTLINT, "CIM block read from CTL space" }, { F_SGLWRCTLINT, "CIM single write to CTL space with illegal BEs" }, { F_SGLRDCTLINT, "CIM single read from CTL space with illegal BEs" }, { F_BLKWREEPROMINT, "CIM block write to EEPROM space" }, { F_BLKRDEEPROMINT, "CIM block read from EEPROM space" }, { F_SGLWREEPROMINT, "CIM single write to EEPROM space with illegal BEs" }, { F_SGLRDEEPROMINT, "CIM single read from EEPROM space with illegal BEs" }, { F_BLKWRFLASHINT, "CIM block write to flash space" }, { F_BLKRDFLASHINT, "CIM block read from flash space" }, { F_SGLWRFLASHINT, "CIM single write to flash space" }, { F_SGLRDFLASHINT, "CIM single read from flash space with illegal BEs" }, { F_BLKWRBOOTINT, "CIM block write to boot space" }, { F_BLKRDBOOTINT, "CIM block read from boot space" }, { F_SGLWRBOOTINT, "CIM single write to boot space" }, { F_SGLRDBOOTINT, "CIM single read from boot space with illegal BEs" }, { F_ILLWRBEINT, "CIM illegal write BEs" }, { F_ILLRDBEINT, "CIM illegal read BEs" }, { F_ILLRDINT, "CIM illegal read" }, { F_ILLWRINT, "CIM illegal write" }, { F_ILLTRANSINT, "CIM illegal transaction" }, { F_RSVDSPACEINT, "CIM reserved space access" }, {0} }; static const struct intr_info cim_host_upacc_intr_info = { .name = "CIM_HOST_UPACC_INT_CAUSE", .cause_reg = A_CIM_HOST_UPACC_INT_CAUSE, .enable_reg = A_CIM_HOST_UPACC_INT_ENABLE, .fatal = 0x3fffeeff, .flags = NONFATAL_IF_DISABLED, .details = cim_host_upacc_intr_details, .actions = NULL, }; static const struct intr_info cim_pf_host_intr_info = { .name = "CIM_PF_HOST_INT_CAUSE", .cause_reg = MYPF_REG(A_CIM_PF_HOST_INT_CAUSE), .enable_reg = MYPF_REG(A_CIM_PF_HOST_INT_ENABLE), .fatal = 0, .flags = 0, .details = NULL, .actions = NULL, }; u32 val, fw_err; bool fatal; fw_err = t4_read_reg(adap, A_PCIE_FW); if (fw_err & F_PCIE_FW_ERR) t4_report_fw_error(adap); /* * When the Firmware detects an internal error which normally wouldn't * raise a Host Interrupt, it forces a CIM Timer0 interrupt in order * to make sure the Host sees the Firmware Crash. So if we have a * Timer0 interrupt and don't see a Firmware Crash, ignore the Timer0 * interrupt. */ val = t4_read_reg(adap, A_CIM_HOST_INT_CAUSE); if (val & F_TIMER0INT && (!(fw_err & F_PCIE_FW_ERR) || G_PCIE_FW_EVAL(fw_err) != PCIE_FW_EVAL_CRASH)) { t4_write_reg(adap, A_CIM_HOST_INT_CAUSE, F_TIMER0INT); } fatal = false; fatal |= t4_handle_intr(adap, &cim_host_intr_info, 0, verbose); fatal |= t4_handle_intr(adap, &cim_host_upacc_intr_info, 0, verbose); fatal |= t4_handle_intr(adap, &cim_pf_host_intr_info, 0, verbose); return (fatal); } /* * ULP RX interrupt handler. */ static bool ulprx_intr_handler(struct adapter *adap, int arg, bool verbose) { static const struct intr_details ulprx_intr_details[] = { /* T5+ */ { F_SE_CNT_MISMATCH_1, "ULPRX SE count mismatch in channel 1" }, { F_SE_CNT_MISMATCH_0, "ULPRX SE count mismatch in channel 0" }, /* T4+ */ { F_CAUSE_CTX_1, "ULPRX channel 1 context error" }, { F_CAUSE_CTX_0, "ULPRX channel 0 context error" }, { 0x007fffff, "ULPRX parity error" }, { 0 } }; static const struct intr_info ulprx_intr_info = { .name = "ULP_RX_INT_CAUSE", .cause_reg = A_ULP_RX_INT_CAUSE, .enable_reg = A_ULP_RX_INT_ENABLE, .fatal = 0x07ffffff, .flags = NONFATAL_IF_DISABLED, .details = ulprx_intr_details, .actions = NULL, }; static const struct intr_info ulprx_intr2_info = { .name = "ULP_RX_INT_CAUSE_2", .cause_reg = A_ULP_RX_INT_CAUSE_2, .enable_reg = A_ULP_RX_INT_ENABLE_2, .fatal = 0, .flags = 0, .details = NULL, .actions = NULL, }; bool fatal = false; fatal |= t4_handle_intr(adap, &ulprx_intr_info, 0, verbose); fatal |= t4_handle_intr(adap, &ulprx_intr2_info, 0, verbose); return (fatal); } /* * ULP TX interrupt handler. */ static bool ulptx_intr_handler(struct adapter *adap, int arg, bool verbose) { static const struct intr_details ulptx_intr_details[] = { { F_PBL_BOUND_ERR_CH3, "ULPTX channel 3 PBL out of bounds" }, { F_PBL_BOUND_ERR_CH2, "ULPTX channel 2 PBL out of bounds" }, { F_PBL_BOUND_ERR_CH1, "ULPTX channel 1 PBL out of bounds" }, { F_PBL_BOUND_ERR_CH0, "ULPTX channel 0 PBL out of bounds" }, { 0x0fffffff, "ULPTX parity error" }, { 0 } }; static const struct intr_info ulptx_intr_info = { .name = "ULP_TX_INT_CAUSE", .cause_reg = A_ULP_TX_INT_CAUSE, .enable_reg = A_ULP_TX_INT_ENABLE, .fatal = 0x0fffffff, .flags = NONFATAL_IF_DISABLED, .details = ulptx_intr_details, .actions = NULL, }; static const struct intr_info ulptx_intr2_info = { .name = "ULP_TX_INT_CAUSE_2", .cause_reg = A_ULP_TX_INT_CAUSE_2, .enable_reg = A_ULP_TX_INT_ENABLE_2, .fatal = 0xf0, .flags = NONFATAL_IF_DISABLED, .details = NULL, .actions = NULL, }; bool fatal = false; fatal |= t4_handle_intr(adap, &ulptx_intr_info, 0, verbose); fatal |= t4_handle_intr(adap, &ulptx_intr2_info, 0, verbose); return (fatal); } static bool pmtx_dump_dbg_stats(struct adapter *adap, int arg, bool verbose) { int i; u32 data[17]; t4_read_indirect(adap, A_PM_TX_DBG_CTRL, A_PM_TX_DBG_DATA, &data[0], ARRAY_SIZE(data), A_PM_TX_DBG_STAT0); for (i = 0; i < ARRAY_SIZE(data); i++) { CH_ALERT(adap, " - PM_TX_DBG_STAT%u (0x%x) = 0x%08x\n", i, A_PM_TX_DBG_STAT0 + i, data[i]); } return (false); } /* * PM TX interrupt handler. */ static bool pmtx_intr_handler(struct adapter *adap, int arg, bool verbose) { static const struct intr_action pmtx_intr_actions[] = { { 0xffffffff, 0, pmtx_dump_dbg_stats }, { 0 }, }; static const struct intr_details pmtx_intr_details[] = { { F_PCMD_LEN_OVFL0, "PMTX channel 0 pcmd too large" }, { F_PCMD_LEN_OVFL1, "PMTX channel 1 pcmd too large" }, { F_PCMD_LEN_OVFL2, "PMTX channel 2 pcmd too large" }, { F_ZERO_C_CMD_ERROR, "PMTX 0-length pcmd" }, { 0x0f000000, "PMTX icspi FIFO2X Rx framing error" }, { 0x00f00000, "PMTX icspi FIFO Rx framing error" }, { 0x000f0000, "PMTX icspi FIFO Tx framing error" }, { 0x0000f000, "PMTX oespi FIFO Rx framing error" }, { 0x00000f00, "PMTX oespi FIFO Tx framing error" }, { 0x000000f0, "PMTX oespi FIFO2X Tx framing error" }, { F_OESPI_PAR_ERROR, "PMTX oespi parity error" }, { F_DB_OPTIONS_PAR_ERROR, "PMTX db_options parity error" }, { F_ICSPI_PAR_ERROR, "PMTX icspi parity error" }, { F_C_PCMD_PAR_ERROR, "PMTX c_pcmd parity error" }, { 0 } }; static const struct intr_info pmtx_intr_info = { .name = "PM_TX_INT_CAUSE", .cause_reg = A_PM_TX_INT_CAUSE, .enable_reg = A_PM_TX_INT_ENABLE, .fatal = 0xffffffff, .flags = 0, .details = pmtx_intr_details, .actions = pmtx_intr_actions, }; return (t4_handle_intr(adap, &pmtx_intr_info, 0, verbose)); } /* * PM RX interrupt handler. */ static bool pmrx_intr_handler(struct adapter *adap, int arg, bool verbose) { static const struct intr_details pmrx_intr_details[] = { /* T6+ */ { 0x18000000, "PMRX ospi overflow" }, { F_MA_INTF_SDC_ERR, "PMRX MA interface SDC parity error" }, { F_BUNDLE_LEN_PARERR, "PMRX bundle len FIFO parity error" }, { F_BUNDLE_LEN_OVFL, "PMRX bundle len FIFO overflow" }, { F_SDC_ERR, "PMRX SDC error" }, /* T4+ */ { F_ZERO_E_CMD_ERROR, "PMRX 0-length pcmd" }, { 0x003c0000, "PMRX iespi FIFO2X Rx framing error" }, { 0x0003c000, "PMRX iespi Rx framing error" }, { 0x00003c00, "PMRX iespi Tx framing error" }, { 0x00000300, "PMRX ocspi Rx framing error" }, { 0x000000c0, "PMRX ocspi Tx framing error" }, { 0x00000030, "PMRX ocspi FIFO2X Tx framing error" }, { F_OCSPI_PAR_ERROR, "PMRX ocspi parity error" }, { F_DB_OPTIONS_PAR_ERROR, "PMRX db_options parity error" }, { F_IESPI_PAR_ERROR, "PMRX iespi parity error" }, { F_E_PCMD_PAR_ERROR, "PMRX e_pcmd parity error"}, { 0 } }; static const struct intr_info pmrx_intr_info = { .name = "PM_RX_INT_CAUSE", .cause_reg = A_PM_RX_INT_CAUSE, .enable_reg = A_PM_RX_INT_ENABLE, .fatal = 0x1fffffff, .flags = NONFATAL_IF_DISABLED, .details = pmrx_intr_details, .actions = NULL, }; return (t4_handle_intr(adap, &pmrx_intr_info, 0, verbose)); } /* * CPL switch interrupt handler. */ static bool cplsw_intr_handler(struct adapter *adap, int arg, bool verbose) { static const struct intr_details cplsw_intr_details[] = { /* T5+ */ { F_PERR_CPL_128TO128_1, "CPLSW 128TO128 FIFO1 parity error" }, { F_PERR_CPL_128TO128_0, "CPLSW 128TO128 FIFO0 parity error" }, /* T4+ */ { F_CIM_OP_MAP_PERR, "CPLSW CIM op_map parity error" }, { F_CIM_OVFL_ERROR, "CPLSW CIM overflow" }, { F_TP_FRAMING_ERROR, "CPLSW TP framing error" }, { F_SGE_FRAMING_ERROR, "CPLSW SGE framing error" }, { F_CIM_FRAMING_ERROR, "CPLSW CIM framing error" }, { F_ZERO_SWITCH_ERROR, "CPLSW no-switch error" }, { 0 } }; static const struct intr_info cplsw_intr_info = { .name = "CPL_INTR_CAUSE", .cause_reg = A_CPL_INTR_CAUSE, .enable_reg = A_CPL_INTR_ENABLE, .fatal = 0xff, .flags = NONFATAL_IF_DISABLED, .details = cplsw_intr_details, .actions = NULL, }; return (t4_handle_intr(adap, &cplsw_intr_info, 0, verbose)); } #define T4_LE_FATAL_MASK (F_PARITYERR | F_UNKNOWNCMD | F_REQQPARERR) #define T5_LE_FATAL_MASK (T4_LE_FATAL_MASK | F_VFPARERR) #define T6_LE_PERRCRC_MASK (F_PIPELINEERR | F_CLIPTCAMACCFAIL | \ F_SRVSRAMACCFAIL | F_CLCAMCRCPARERR | F_CLCAMINTPERR | F_SSRAMINTPERR | \ F_SRVSRAMPERR | F_VFSRAMPERR | F_TCAMINTPERR | F_TCAMCRCERR | \ F_HASHTBLMEMACCERR | F_MAIFWRINTPERR | F_HASHTBLMEMCRCERR) #define T6_LE_FATAL_MASK (T6_LE_PERRCRC_MASK | F_T6_UNKNOWNCMD | \ F_TCAMACCFAIL | F_HASHTBLACCFAIL | F_CMDTIDERR | F_CMDPRSRINTERR | \ F_TOTCNTERR | F_CLCAMFIFOERR | F_CLIPSUBERR) /* * LE interrupt handler. */ static bool le_intr_handler(struct adapter *adap, int arg, bool verbose) { static const struct intr_details le_intr_details[] = { { F_REQQPARERR, "LE request queue parity error" }, { F_UNKNOWNCMD, "LE unknown command" }, { F_ACTRGNFULL, "LE active region full" }, { F_PARITYERR, "LE parity error" }, { F_LIPMISS, "LE LIP miss" }, { F_LIP0, "LE 0 LIP error" }, { 0 } }; static const struct intr_details t6_le_intr_details[] = { { F_CLIPSUBERR, "LE CLIP CAM reverse substitution error" }, { F_CLCAMFIFOERR, "LE CLIP CAM internal FIFO error" }, { F_CTCAMINVLDENT, "Invalid IPv6 CLIP TCAM entry" }, { F_TCAMINVLDENT, "Invalid IPv6 TCAM entry" }, { F_TOTCNTERR, "LE total active < TCAM count" }, { F_CMDPRSRINTERR, "LE internal error in parser" }, { F_CMDTIDERR, "Incorrect tid in LE command" }, { F_T6_ACTRGNFULL, "LE active region full" }, { F_T6_ACTCNTIPV6TZERO, "LE IPv6 active open TCAM counter -ve" }, { F_T6_ACTCNTIPV4TZERO, "LE IPv4 active open TCAM counter -ve" }, { F_T6_ACTCNTIPV6ZERO, "LE IPv6 active open counter -ve" }, { F_T6_ACTCNTIPV4ZERO, "LE IPv4 active open counter -ve" }, { F_HASHTBLACCFAIL, "Hash table read error (proto conflict)" }, { F_TCAMACCFAIL, "LE TCAM access failure" }, { F_T6_UNKNOWNCMD, "LE unknown command" }, { F_T6_LIP0, "LE found 0 LIP during CLIP substitution" }, { F_T6_LIPMISS, "LE CLIP lookup miss" }, { T6_LE_PERRCRC_MASK, "LE parity/CRC error" }, { 0 } }; struct intr_info le_intr_info = { .name = "LE_DB_INT_CAUSE", .cause_reg = A_LE_DB_INT_CAUSE, .enable_reg = A_LE_DB_INT_ENABLE, .fatal = 0, .flags = NONFATAL_IF_DISABLED, .details = NULL, .actions = NULL, }; if (chip_id(adap) <= CHELSIO_T5) { le_intr_info.details = le_intr_details; le_intr_info.fatal = T5_LE_FATAL_MASK; } else { le_intr_info.details = t6_le_intr_details; le_intr_info.fatal = T6_LE_FATAL_MASK; } return (t4_handle_intr(adap, &le_intr_info, 0, verbose)); } /* * MPS interrupt handler. */ static bool mps_intr_handler(struct adapter *adap, int arg, bool verbose) { static const struct intr_details mps_rx_perr_intr_details[] = { { 0xffffffff, "MPS Rx parity error" }, { 0 } }; static const struct intr_info mps_rx_perr_intr_info = { .name = "MPS_RX_PERR_INT_CAUSE", .cause_reg = A_MPS_RX_PERR_INT_CAUSE, .enable_reg = A_MPS_RX_PERR_INT_ENABLE, .fatal = 0xffffffff, .flags = NONFATAL_IF_DISABLED, .details = mps_rx_perr_intr_details, .actions = NULL, }; static const struct intr_details mps_tx_intr_details[] = { { F_PORTERR, "MPS Tx destination port is disabled" }, { F_FRMERR, "MPS Tx framing error" }, { F_SECNTERR, "MPS Tx SOP/EOP error" }, { F_BUBBLE, "MPS Tx underflow" }, { V_TXDESCFIFO(M_TXDESCFIFO), "MPS Tx desc FIFO parity error" }, { V_TXDATAFIFO(M_TXDATAFIFO), "MPS Tx data FIFO parity error" }, { F_NCSIFIFO, "MPS Tx NC-SI FIFO parity error" }, { V_TPFIFO(M_TPFIFO), "MPS Tx TP FIFO parity error" }, { 0 } }; static const struct intr_info mps_tx_intr_info = { .name = "MPS_TX_INT_CAUSE", .cause_reg = A_MPS_TX_INT_CAUSE, .enable_reg = A_MPS_TX_INT_ENABLE, .fatal = 0x1ffff, .flags = NONFATAL_IF_DISABLED, .details = mps_tx_intr_details, .actions = NULL, }; static const struct intr_details mps_trc_intr_details[] = { { F_MISCPERR, "MPS TRC misc parity error" }, { V_PKTFIFO(M_PKTFIFO), "MPS TRC packet FIFO parity error" }, { V_FILTMEM(M_FILTMEM), "MPS TRC filter parity error" }, { 0 } }; static const struct intr_info mps_trc_intr_info = { .name = "MPS_TRC_INT_CAUSE", .cause_reg = A_MPS_TRC_INT_CAUSE, .enable_reg = A_MPS_TRC_INT_ENABLE, .fatal = F_MISCPERR | V_PKTFIFO(M_PKTFIFO) | V_FILTMEM(M_FILTMEM), .flags = 0, .details = mps_trc_intr_details, .actions = NULL, }; static const struct intr_details mps_stat_sram_intr_details[] = { { 0xffffffff, "MPS statistics SRAM parity error" }, { 0 } }; static const struct intr_info mps_stat_sram_intr_info = { .name = "MPS_STAT_PERR_INT_CAUSE_SRAM", .cause_reg = A_MPS_STAT_PERR_INT_CAUSE_SRAM, .enable_reg = A_MPS_STAT_PERR_INT_ENABLE_SRAM, .fatal = 0x1fffffff, .flags = NONFATAL_IF_DISABLED, .details = mps_stat_sram_intr_details, .actions = NULL, }; static const struct intr_details mps_stat_tx_intr_details[] = { { 0xffffff, "MPS statistics Tx FIFO parity error" }, { 0 } }; static const struct intr_info mps_stat_tx_intr_info = { .name = "MPS_STAT_PERR_INT_CAUSE_TX_FIFO", .cause_reg = A_MPS_STAT_PERR_INT_CAUSE_TX_FIFO, .enable_reg = A_MPS_STAT_PERR_INT_ENABLE_TX_FIFO, .fatal = 0xffffff, .flags = NONFATAL_IF_DISABLED, .details = mps_stat_tx_intr_details, .actions = NULL, }; static const struct intr_details mps_stat_rx_intr_details[] = { { 0xffffff, "MPS statistics Rx FIFO parity error" }, { 0 } }; static const struct intr_info mps_stat_rx_intr_info = { .name = "MPS_STAT_PERR_INT_CAUSE_RX_FIFO", .cause_reg = A_MPS_STAT_PERR_INT_CAUSE_RX_FIFO, .enable_reg = A_MPS_STAT_PERR_INT_ENABLE_RX_FIFO, .fatal = 0xffffff, .flags = 0, .details = mps_stat_rx_intr_details, .actions = NULL, }; static const struct intr_details mps_cls_intr_details[] = { { F_HASHSRAM, "MPS hash SRAM parity error" }, { F_MATCHTCAM, "MPS match TCAM parity error" }, { F_MATCHSRAM, "MPS match SRAM parity error" }, { 0 } }; static const struct intr_info mps_cls_intr_info = { .name = "MPS_CLS_INT_CAUSE", .cause_reg = A_MPS_CLS_INT_CAUSE, .enable_reg = A_MPS_CLS_INT_ENABLE, .fatal = F_MATCHSRAM | F_MATCHTCAM | F_HASHSRAM, .flags = 0, .details = mps_cls_intr_details, .actions = NULL, }; static const struct intr_details mps_stat_sram1_intr_details[] = { { 0xff, "MPS statistics SRAM1 parity error" }, { 0 } }; static const struct intr_info mps_stat_sram1_intr_info = { .name = "MPS_STAT_PERR_INT_CAUSE_SRAM1", .cause_reg = A_MPS_STAT_PERR_INT_CAUSE_SRAM1, .enable_reg = A_MPS_STAT_PERR_INT_ENABLE_SRAM1, .fatal = 0xff, .flags = 0, .details = mps_stat_sram1_intr_details, .actions = NULL, }; bool fatal; fatal = false; fatal |= t4_handle_intr(adap, &mps_rx_perr_intr_info, 0, verbose); fatal |= t4_handle_intr(adap, &mps_tx_intr_info, 0, verbose); fatal |= t4_handle_intr(adap, &mps_trc_intr_info, 0, verbose); fatal |= t4_handle_intr(adap, &mps_stat_sram_intr_info, 0, verbose); fatal |= t4_handle_intr(adap, &mps_stat_tx_intr_info, 0, verbose); fatal |= t4_handle_intr(adap, &mps_stat_rx_intr_info, 0, verbose); fatal |= t4_handle_intr(adap, &mps_cls_intr_info, 0, verbose); if (chip_id(adap) > CHELSIO_T4) { fatal |= t4_handle_intr(adap, &mps_stat_sram1_intr_info, 0, verbose); } t4_write_reg(adap, A_MPS_INT_CAUSE, is_t4(adap) ? 0 : 0xffffffff); t4_read_reg(adap, A_MPS_INT_CAUSE); /* flush */ return (fatal); } /* * EDC/MC interrupt handler. */ static bool mem_intr_handler(struct adapter *adap, int idx, bool verbose) { static const char name[4][5] = { "EDC0", "EDC1", "MC0", "MC1" }; unsigned int count_reg, v; static const struct intr_details mem_intr_details[] = { { F_ECC_UE_INT_CAUSE, "Uncorrectable ECC data error(s)" }, { F_ECC_CE_INT_CAUSE, "Correctable ECC data error(s)" }, { F_PERR_INT_CAUSE, "FIFO parity error" }, { 0 } }; struct intr_info ii = { .fatal = F_PERR_INT_CAUSE | F_ECC_UE_INT_CAUSE, .details = mem_intr_details, .flags = 0, .actions = NULL, }; bool fatal; switch (idx) { case MEM_EDC0: ii.name = "EDC0_INT_CAUSE"; ii.cause_reg = EDC_REG(A_EDC_INT_CAUSE, 0); ii.enable_reg = EDC_REG(A_EDC_INT_ENABLE, 0); count_reg = EDC_REG(A_EDC_ECC_STATUS, 0); break; case MEM_EDC1: ii.name = "EDC1_INT_CAUSE"; ii.cause_reg = EDC_REG(A_EDC_INT_CAUSE, 1); ii.enable_reg = EDC_REG(A_EDC_INT_ENABLE, 1); count_reg = EDC_REG(A_EDC_ECC_STATUS, 1); break; case MEM_MC0: ii.name = "MC0_INT_CAUSE"; if (is_t4(adap)) { ii.cause_reg = A_MC_INT_CAUSE; ii.enable_reg = A_MC_INT_ENABLE; count_reg = A_MC_ECC_STATUS; } else { ii.cause_reg = A_MC_P_INT_CAUSE; ii.enable_reg = A_MC_P_INT_ENABLE; count_reg = A_MC_P_ECC_STATUS; } break; case MEM_MC1: ii.name = "MC1_INT_CAUSE"; ii.cause_reg = MC_REG(A_MC_P_INT_CAUSE, 1); ii.enable_reg = MC_REG(A_MC_P_INT_ENABLE, 1); count_reg = MC_REG(A_MC_P_ECC_STATUS, 1); break; } fatal = t4_handle_intr(adap, &ii, 0, verbose); v = t4_read_reg(adap, count_reg); if (v != 0) { if (G_ECC_UECNT(v) != 0) { CH_ALERT(adap, "%s: %u uncorrectable ECC data error(s)\n", name[idx], G_ECC_UECNT(v)); } if (G_ECC_CECNT(v) != 0) { if (idx <= MEM_EDC1) t4_edc_err_read(adap, idx); CH_WARN_RATELIMIT(adap, "%s: %u correctable ECC data error(s)\n", name[idx], G_ECC_CECNT(v)); } t4_write_reg(adap, count_reg, 0xffffffff); } return (fatal); } static bool ma_wrap_status(struct adapter *adap, int arg, bool verbose) { u32 v; v = t4_read_reg(adap, A_MA_INT_WRAP_STATUS); CH_ALERT(adap, "MA address wrap-around error by client %u to address %#x\n", G_MEM_WRAP_CLIENT_NUM(v), G_MEM_WRAP_ADDRESS(v) << 4); t4_write_reg(adap, A_MA_INT_WRAP_STATUS, v); return (false); } /* * MA interrupt handler. */ static bool ma_intr_handler(struct adapter *adap, int arg, bool verbose) { static const struct intr_action ma_intr_actions[] = { { F_MEM_WRAP_INT_CAUSE, 0, ma_wrap_status }, { 0 }, }; static const struct intr_info ma_intr_info = { .name = "MA_INT_CAUSE", .cause_reg = A_MA_INT_CAUSE, .enable_reg = A_MA_INT_ENABLE, .fatal = F_MEM_PERR_INT_CAUSE | F_MEM_TO_INT_CAUSE, .flags = NONFATAL_IF_DISABLED, .details = NULL, .actions = ma_intr_actions, }; static const struct intr_info ma_perr_status1 = { .name = "MA_PARITY_ERROR_STATUS1", .cause_reg = A_MA_PARITY_ERROR_STATUS1, .enable_reg = A_MA_PARITY_ERROR_ENABLE1, .fatal = 0xffffffff, .flags = 0, .details = NULL, .actions = NULL, }; static const struct intr_info ma_perr_status2 = { .name = "MA_PARITY_ERROR_STATUS2", .cause_reg = A_MA_PARITY_ERROR_STATUS2, .enable_reg = A_MA_PARITY_ERROR_ENABLE2, .fatal = 0xffffffff, .flags = 0, .details = NULL, .actions = NULL, }; bool fatal; fatal = false; fatal |= t4_handle_intr(adap, &ma_intr_info, 0, verbose); fatal |= t4_handle_intr(adap, &ma_perr_status1, 0, verbose); if (chip_id(adap) > CHELSIO_T4) fatal |= t4_handle_intr(adap, &ma_perr_status2, 0, verbose); return (fatal); } /* * SMB interrupt handler. */ static bool smb_intr_handler(struct adapter *adap, int arg, bool verbose) { static const struct intr_details smb_intr_details[] = { { F_MSTTXFIFOPARINT, "SMB master Tx FIFO parity error" }, { F_MSTRXFIFOPARINT, "SMB master Rx FIFO parity error" }, { F_SLVFIFOPARINT, "SMB slave FIFO parity error" }, { 0 } }; static const struct intr_info smb_intr_info = { .name = "SMB_INT_CAUSE", .cause_reg = A_SMB_INT_CAUSE, .enable_reg = A_SMB_INT_ENABLE, .fatal = F_SLVFIFOPARINT | F_MSTRXFIFOPARINT | F_MSTTXFIFOPARINT, .flags = 0, .details = smb_intr_details, .actions = NULL, }; return (t4_handle_intr(adap, &smb_intr_info, 0, verbose)); } /* * NC-SI interrupt handler. */ static bool ncsi_intr_handler(struct adapter *adap, int arg, bool verbose) { static const struct intr_details ncsi_intr_details[] = { { F_CIM_DM_PRTY_ERR, "NC-SI CIM parity error" }, { F_MPS_DM_PRTY_ERR, "NC-SI MPS parity error" }, { F_TXFIFO_PRTY_ERR, "NC-SI Tx FIFO parity error" }, { F_RXFIFO_PRTY_ERR, "NC-SI Rx FIFO parity error" }, { 0 } }; static const struct intr_info ncsi_intr_info = { .name = "NCSI_INT_CAUSE", .cause_reg = A_NCSI_INT_CAUSE, .enable_reg = A_NCSI_INT_ENABLE, .fatal = F_RXFIFO_PRTY_ERR | F_TXFIFO_PRTY_ERR | F_MPS_DM_PRTY_ERR | F_CIM_DM_PRTY_ERR, .flags = 0, .details = ncsi_intr_details, .actions = NULL, }; return (t4_handle_intr(adap, &ncsi_intr_info, 0, verbose)); } /* * MAC interrupt handler. */ static bool mac_intr_handler(struct adapter *adap, int port, bool verbose) { static const struct intr_details mac_intr_details[] = { { F_TXFIFO_PRTY_ERR, "MAC Tx FIFO parity error" }, { F_RXFIFO_PRTY_ERR, "MAC Rx FIFO parity error" }, { 0 } }; char name[32]; struct intr_info ii; bool fatal = false; if (is_t4(adap)) { snprintf(name, sizeof(name), "XGMAC_PORT%u_INT_CAUSE", port); ii.name = &name[0]; ii.cause_reg = PORT_REG(port, A_XGMAC_PORT_INT_CAUSE); ii.enable_reg = PORT_REG(port, A_XGMAC_PORT_INT_EN); ii.fatal = F_TXFIFO_PRTY_ERR | F_RXFIFO_PRTY_ERR; ii.flags = 0; ii.details = mac_intr_details; ii.actions = NULL; } else { snprintf(name, sizeof(name), "MAC_PORT%u_INT_CAUSE", port); ii.name = &name[0]; ii.cause_reg = T5_PORT_REG(port, A_MAC_PORT_INT_CAUSE); ii.enable_reg = T5_PORT_REG(port, A_MAC_PORT_INT_EN); ii.fatal = F_TXFIFO_PRTY_ERR | F_RXFIFO_PRTY_ERR; ii.flags = 0; ii.details = mac_intr_details; ii.actions = NULL; } fatal |= t4_handle_intr(adap, &ii, 0, verbose); if (chip_id(adap) >= CHELSIO_T5) { snprintf(name, sizeof(name), "MAC_PORT%u_PERR_INT_CAUSE", port); ii.name = &name[0]; ii.cause_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_CAUSE); ii.enable_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_EN); ii.fatal = 0; ii.flags = 0; ii.details = NULL; ii.actions = NULL; fatal |= t4_handle_intr(adap, &ii, 0, verbose); } if (chip_id(adap) >= CHELSIO_T6) { snprintf(name, sizeof(name), "MAC_PORT%u_PERR_INT_CAUSE_100G", port); ii.name = &name[0]; ii.cause_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_CAUSE_100G); ii.enable_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_EN_100G); ii.fatal = 0; ii.flags = 0; ii.details = NULL; ii.actions = NULL; fatal |= t4_handle_intr(adap, &ii, 0, verbose); } return (fatal); } static bool plpl_intr_handler(struct adapter *adap, int arg, bool verbose) { static const struct intr_details plpl_intr_details[] = { { F_FATALPERR, "Fatal parity error" }, { F_PERRVFID, "VFID_MAP parity error" }, { 0 } }; static const struct intr_info plpl_intr_info = { .name = "PL_PL_INT_CAUSE", .cause_reg = A_PL_PL_INT_CAUSE, .enable_reg = A_PL_PL_INT_ENABLE, .fatal = F_FATALPERR | F_PERRVFID, .flags = NONFATAL_IF_DISABLED, .details = plpl_intr_details, .actions = NULL, }; return (t4_handle_intr(adap, &plpl_intr_info, 0, verbose)); } /** * t4_slow_intr_handler - control path interrupt handler * @adap: the adapter * @verbose: increased verbosity, for debug * * T4 interrupt handler for non-data global interrupt events, e.g., errors. * The designation 'slow' is because it involves register reads, while * data interrupts typically don't involve any MMIOs. */ int t4_slow_intr_handler(struct adapter *adap, bool verbose) { static const struct intr_details pl_intr_details[] = { { F_MC1, "MC1" }, { F_UART, "UART" }, { F_ULP_TX, "ULP TX" }, { F_SGE, "SGE" }, { F_HMA, "HMA" }, { F_CPL_SWITCH, "CPL Switch" }, { F_ULP_RX, "ULP RX" }, { F_PM_RX, "PM RX" }, { F_PM_TX, "PM TX" }, { F_MA, "MA" }, { F_TP, "TP" }, { F_LE, "LE" }, { F_EDC1, "EDC1" }, { F_EDC0, "EDC0" }, { F_MC, "MC0" }, { F_PCIE, "PCIE" }, { F_PMU, "PMU" }, { F_MAC3, "MAC3" }, { F_MAC2, "MAC2" }, { F_MAC1, "MAC1" }, { F_MAC0, "MAC0" }, { F_SMB, "SMB" }, { F_SF, "SF" }, { F_PL, "PL" }, { F_NCSI, "NC-SI" }, { F_MPS, "MPS" }, { F_MI, "MI" }, { F_DBG, "DBG" }, { F_I2CM, "I2CM" }, { F_CIM, "CIM" }, { 0 } }; static const struct intr_info pl_perr_cause = { .name = "PL_PERR_CAUSE", .cause_reg = A_PL_PERR_CAUSE, .enable_reg = A_PL_PERR_ENABLE, .fatal = 0xffffffff, .flags = 0, .details = pl_intr_details, .actions = NULL, }; static const struct intr_action pl_intr_action[] = { { F_MC1, MEM_MC1, mem_intr_handler }, { F_ULP_TX, -1, ulptx_intr_handler }, { F_SGE, -1, sge_intr_handler }, { F_CPL_SWITCH, -1, cplsw_intr_handler }, { F_ULP_RX, -1, ulprx_intr_handler }, { F_PM_RX, -1, pmrx_intr_handler}, { F_PM_TX, -1, pmtx_intr_handler}, { F_MA, -1, ma_intr_handler }, { F_TP, -1, tp_intr_handler }, { F_LE, -1, le_intr_handler }, { F_EDC1, MEM_EDC1, mem_intr_handler }, { F_EDC0, MEM_EDC0, mem_intr_handler }, { F_MC0, MEM_MC0, mem_intr_handler }, { F_PCIE, -1, pcie_intr_handler }, { F_MAC3, 3, mac_intr_handler}, { F_MAC2, 2, mac_intr_handler}, { F_MAC1, 1, mac_intr_handler}, { F_MAC0, 0, mac_intr_handler}, { F_SMB, -1, smb_intr_handler}, { F_PL, -1, plpl_intr_handler }, { F_NCSI, -1, ncsi_intr_handler}, { F_MPS, -1, mps_intr_handler }, { F_CIM, -1, cim_intr_handler }, { 0 } }; static const struct intr_info pl_intr_info = { .name = "PL_INT_CAUSE", .cause_reg = A_PL_INT_CAUSE, .enable_reg = A_PL_INT_ENABLE, .fatal = 0, .flags = 0, .details = pl_intr_details, .actions = pl_intr_action, }; bool fatal; u32 perr; perr = t4_read_reg(adap, pl_perr_cause.cause_reg); if (verbose || perr != 0) { t4_show_intr_info(adap, &pl_perr_cause, perr); if (perr != 0) t4_write_reg(adap, pl_perr_cause.cause_reg, perr); if (verbose) perr |= t4_read_reg(adap, pl_intr_info.enable_reg); } fatal = t4_handle_intr(adap, &pl_intr_info, perr, verbose); if (fatal) t4_fatal_err(adap, false); return (0); } #define PF_INTR_MASK (F_PFSW | F_PFCIM) /** * t4_intr_enable - enable interrupts * @adapter: the adapter whose interrupts should be enabled * * Enable PF-specific interrupts for the calling function and the top-level * interrupt concentrator for global interrupts. Interrupts are already * enabled at each module, here we just enable the roots of the interrupt * hierarchies. * * Note: this function should be called only when the driver manages * non PF-specific interrupts from the various HW modules. Only one PCI * function at a time should be doing this. */ void t4_intr_enable(struct adapter *adap) { u32 val = 0; if (chip_id(adap) <= CHELSIO_T5) val = F_ERR_DROPPED_DB | F_ERR_EGR_CTXT_PRIO | F_DBFIFO_HP_INT; else val = F_ERR_PCIE_ERROR0 | F_ERR_PCIE_ERROR1 | F_FATAL_WRE_LEN; val |= F_ERR_CPL_EXCEED_IQE_SIZE | F_ERR_INVALID_CIDX_INC | F_ERR_CPL_OPCODE_0 | F_ERR_DATA_CPL_ON_HIGH_QID1 | F_INGRESS_SIZE_ERR | F_ERR_DATA_CPL_ON_HIGH_QID0 | F_ERR_BAD_DB_PIDX3 | F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 | F_ERR_BAD_DB_PIDX0 | F_ERR_ING_CTXT_PRIO | F_DBFIFO_LP_INT | F_EGRESS_SIZE_ERR; t4_set_reg_field(adap, A_SGE_INT_ENABLE3, val, val); t4_write_reg(adap, MYPF_REG(A_PL_PF_INT_ENABLE), PF_INTR_MASK); t4_set_reg_field(adap, A_PL_INT_ENABLE, F_SF | F_I2CM, 0); t4_set_reg_field(adap, A_PL_INT_MAP0, 0, 1 << adap->pf); } /** * t4_intr_disable - disable interrupts * @adap: the adapter whose interrupts should be disabled * * Disable interrupts. We only disable the top-level interrupt * concentrators. The caller must be a PCI function managing global * interrupts. */ void t4_intr_disable(struct adapter *adap) { t4_write_reg(adap, MYPF_REG(A_PL_PF_INT_ENABLE), 0); t4_set_reg_field(adap, A_PL_INT_MAP0, 1 << adap->pf, 0); } /** * t4_intr_clear - clear all interrupts * @adap: the adapter whose interrupts should be cleared * * Clears all interrupts. The caller must be a PCI function managing * global interrupts. */ void t4_intr_clear(struct adapter *adap) { static const u32 cause_reg[] = { A_CIM_HOST_INT_CAUSE, A_CIM_HOST_UPACC_INT_CAUSE, MYPF_REG(A_CIM_PF_HOST_INT_CAUSE), A_CPL_INTR_CAUSE, EDC_REG(A_EDC_INT_CAUSE, 0), EDC_REG(A_EDC_INT_CAUSE, 1), A_LE_DB_INT_CAUSE, A_MA_INT_WRAP_STATUS, A_MA_PARITY_ERROR_STATUS1, A_MA_INT_CAUSE, A_MPS_CLS_INT_CAUSE, A_MPS_RX_PERR_INT_CAUSE, A_MPS_STAT_PERR_INT_CAUSE_RX_FIFO, A_MPS_STAT_PERR_INT_CAUSE_SRAM, A_MPS_TRC_INT_CAUSE, A_MPS_TX_INT_CAUSE, A_MPS_STAT_PERR_INT_CAUSE_TX_FIFO, A_NCSI_INT_CAUSE, A_PCIE_INT_CAUSE, A_PCIE_NONFAT_ERR, A_PL_PL_INT_CAUSE, A_PM_RX_INT_CAUSE, A_PM_TX_INT_CAUSE, A_SGE_INT_CAUSE1, A_SGE_INT_CAUSE2, A_SGE_INT_CAUSE3, A_SGE_INT_CAUSE4, A_SMB_INT_CAUSE, A_TP_INT_CAUSE, A_ULP_RX_INT_CAUSE, A_ULP_RX_INT_CAUSE_2, A_ULP_TX_INT_CAUSE, A_ULP_TX_INT_CAUSE_2, MYPF_REG(A_PL_PF_INT_CAUSE), }; int i; const int nchan = adap->chip_params->nchan; for (i = 0; i < ARRAY_SIZE(cause_reg); i++) t4_write_reg(adap, cause_reg[i], 0xffffffff); if (is_t4(adap)) { t4_write_reg(adap, A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS, 0xffffffff); t4_write_reg(adap, A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS, 0xffffffff); t4_write_reg(adap, A_MC_INT_CAUSE, 0xffffffff); for (i = 0; i < nchan; i++) { t4_write_reg(adap, PORT_REG(i, A_XGMAC_PORT_INT_CAUSE), 0xffffffff); } } if (chip_id(adap) >= CHELSIO_T5) { t4_write_reg(adap, A_MA_PARITY_ERROR_STATUS2, 0xffffffff); t4_write_reg(adap, A_MPS_STAT_PERR_INT_CAUSE_SRAM1, 0xffffffff); t4_write_reg(adap, A_SGE_INT_CAUSE5, 0xffffffff); t4_write_reg(adap, A_MC_P_INT_CAUSE, 0xffffffff); if (is_t5(adap)) { t4_write_reg(adap, MC_REG(A_MC_P_INT_CAUSE, 1), 0xffffffff); } for (i = 0; i < nchan; i++) { t4_write_reg(adap, T5_PORT_REG(i, A_MAC_PORT_PERR_INT_CAUSE), 0xffffffff); if (chip_id(adap) > CHELSIO_T5) { t4_write_reg(adap, T5_PORT_REG(i, A_MAC_PORT_PERR_INT_CAUSE_100G), 0xffffffff); } t4_write_reg(adap, T5_PORT_REG(i, A_MAC_PORT_INT_CAUSE), 0xffffffff); } } if (chip_id(adap) >= CHELSIO_T6) { t4_write_reg(adap, A_SGE_INT_CAUSE6, 0xffffffff); } t4_write_reg(adap, A_MPS_INT_CAUSE, is_t4(adap) ? 0 : 0xffffffff); t4_write_reg(adap, A_PL_PERR_CAUSE, 0xffffffff); t4_write_reg(adap, A_PL_INT_CAUSE, 0xffffffff); (void) t4_read_reg(adap, A_PL_INT_CAUSE); /* flush */ } /** * hash_mac_addr - return the hash value of a MAC address * @addr: the 48-bit Ethernet MAC address * * Hashes a MAC address according to the hash function used by HW inexact * (hash) address matching. */ static int hash_mac_addr(const u8 *addr) { u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2]; u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5]; a ^= b; a ^= (a >> 12); a ^= (a >> 6); return a & 0x3f; } /** * t4_config_rss_range - configure a portion of the RSS mapping table * @adapter: the adapter * @mbox: mbox to use for the FW command * @viid: virtual interface whose RSS subtable is to be written * @start: start entry in the table to write * @n: how many table entries to write * @rspq: values for the "response queue" (Ingress Queue) lookup table * @nrspq: number of values in @rspq * * Programs the selected part of the VI's RSS mapping table with the * provided values. If @nrspq < @n the supplied values are used repeatedly * until the full table range is populated. * * The caller must ensure the values in @rspq are in the range allowed for * @viid. */ int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid, int start, int n, const u16 *rspq, unsigned int nrspq) { int ret; const u16 *rsp = rspq; const u16 *rsp_end = rspq + nrspq; struct fw_rss_ind_tbl_cmd cmd; memset(&cmd, 0, sizeof(cmd)); cmd.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_IND_TBL_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_WRITE | V_FW_RSS_IND_TBL_CMD_VIID(viid)); cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); /* * Each firmware RSS command can accommodate up to 32 RSS Ingress * Queue Identifiers. These Ingress Queue IDs are packed three to * a 32-bit word as 10-bit values with the upper remaining 2 bits * reserved. */ while (n > 0) { int nq = min(n, 32); int nq_packed = 0; __be32 *qp = &cmd.iq0_to_iq2; /* * Set up the firmware RSS command header to send the next * "nq" Ingress Queue IDs to the firmware. */ cmd.niqid = cpu_to_be16(nq); cmd.startidx = cpu_to_be16(start); /* * "nq" more done for the start of the next loop. */ start += nq; n -= nq; /* * While there are still Ingress Queue IDs to stuff into the * current firmware RSS command, retrieve them from the * Ingress Queue ID array and insert them into the command. */ while (nq > 0) { /* * Grab up to the next 3 Ingress Queue IDs (wrapping * around the Ingress Queue ID array if necessary) and * insert them into the firmware RSS command at the * current 3-tuple position within the commad. */ u16 qbuf[3]; u16 *qbp = qbuf; int nqbuf = min(3, nq); nq -= nqbuf; qbuf[0] = qbuf[1] = qbuf[2] = 0; while (nqbuf && nq_packed < 32) { nqbuf--; nq_packed++; *qbp++ = *rsp++; if (rsp >= rsp_end) rsp = rspq; } *qp++ = cpu_to_be32(V_FW_RSS_IND_TBL_CMD_IQ0(qbuf[0]) | V_FW_RSS_IND_TBL_CMD_IQ1(qbuf[1]) | V_FW_RSS_IND_TBL_CMD_IQ2(qbuf[2])); } /* * Send this portion of the RRS table update to the firmware; * bail out on any errors. */ ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL); if (ret) return ret; } return 0; } /** * t4_config_glbl_rss - configure the global RSS mode * @adapter: the adapter * @mbox: mbox to use for the FW command * @mode: global RSS mode * @flags: mode-specific flags * * Sets the global RSS mode. */ int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode, unsigned int flags) { struct fw_rss_glb_config_cmd c; memset(&c, 0, sizeof(c)); c.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_WRITE); c.retval_len16 = cpu_to_be32(FW_LEN16(c)); if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) { c.u.manual.mode_pkd = cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode)); } else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) { c.u.basicvirtual.mode_keymode = cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode)); c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags); } else return -EINVAL; return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL); } /** * t4_config_vi_rss - configure per VI RSS settings * @adapter: the adapter * @mbox: mbox to use for the FW command * @viid: the VI id * @flags: RSS flags * @defq: id of the default RSS queue for the VI. * @skeyidx: RSS secret key table index for non-global mode * @skey: RSS vf_scramble key for VI. * * Configures VI-specific RSS properties. */ int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid, unsigned int flags, unsigned int defq, unsigned int skeyidx, unsigned int skey) { struct fw_rss_vi_config_cmd c; memset(&c, 0, sizeof(c)); c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_WRITE | V_FW_RSS_VI_CONFIG_CMD_VIID(viid)); c.retval_len16 = cpu_to_be32(FW_LEN16(c)); c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags | V_FW_RSS_VI_CONFIG_CMD_DEFAULTQ(defq)); c.u.basicvirtual.secretkeyidx_pkd = cpu_to_be32( V_FW_RSS_VI_CONFIG_CMD_SECRETKEYIDX(skeyidx)); c.u.basicvirtual.secretkeyxor = cpu_to_be32(skey); return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL); } /* Read an RSS table row */ static int rd_rss_row(struct adapter *adap, int row, u32 *val) { t4_write_reg(adap, A_TP_RSS_LKP_TABLE, 0xfff00000 | row); return t4_wait_op_done_val(adap, A_TP_RSS_LKP_TABLE, F_LKPTBLROWVLD, 1, 5, 0, val); } /** * t4_read_rss - read the contents of the RSS mapping table * @adapter: the adapter * @map: holds the contents of the RSS mapping table * * Reads the contents of the RSS hash->queue mapping table. */ int t4_read_rss(struct adapter *adapter, u16 *map) { u32 val; int i, ret; int rss_nentries = adapter->chip_params->rss_nentries; for (i = 0; i < rss_nentries / 2; ++i) { ret = rd_rss_row(adapter, i, &val); if (ret) return ret; *map++ = G_LKPTBLQUEUE0(val); *map++ = G_LKPTBLQUEUE1(val); } return 0; } /** * t4_tp_fw_ldst_rw - Access TP indirect register through LDST * @adap: the adapter * @cmd: TP fw ldst address space type * @vals: where the indirect register values are stored/written * @nregs: how many indirect registers to read/write * @start_idx: index of first indirect register to read/write * @rw: Read (1) or Write (0) * @sleep_ok: if true we may sleep while awaiting command completion * * Access TP indirect registers through LDST **/ static int t4_tp_fw_ldst_rw(struct adapter *adap, int cmd, u32 *vals, unsigned int nregs, unsigned int start_index, unsigned int rw, bool sleep_ok) { int ret = 0; unsigned int i; struct fw_ldst_cmd c; for (i = 0; i < nregs; i++) { memset(&c, 0, sizeof(c)); c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) | F_FW_CMD_REQUEST | (rw ? F_FW_CMD_READ : F_FW_CMD_WRITE) | V_FW_LDST_CMD_ADDRSPACE(cmd)); c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); c.u.addrval.addr = cpu_to_be32(start_index + i); c.u.addrval.val = rw ? 0 : cpu_to_be32(vals[i]); ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok); if (ret) return ret; if (rw) vals[i] = be32_to_cpu(c.u.addrval.val); } return 0; } /** * t4_tp_indirect_rw - Read/Write TP indirect register through LDST or backdoor * @adap: the adapter * @reg_addr: Address Register * @reg_data: Data register * @buff: where the indirect register values are stored/written * @nregs: how many indirect registers to read/write * @start_index: index of first indirect register to read/write * @rw: READ(1) or WRITE(0) * @sleep_ok: if true we may sleep while awaiting command completion * * Read/Write TP indirect registers through LDST if possible. * Else, use backdoor access **/ static void t4_tp_indirect_rw(struct adapter *adap, u32 reg_addr, u32 reg_data, u32 *buff, u32 nregs, u32 start_index, int rw, bool sleep_ok) { int rc = -EINVAL; int cmd; switch (reg_addr) { case A_TP_PIO_ADDR: cmd = FW_LDST_ADDRSPC_TP_PIO; break; case A_TP_TM_PIO_ADDR: cmd = FW_LDST_ADDRSPC_TP_TM_PIO; break; case A_TP_MIB_INDEX: cmd = FW_LDST_ADDRSPC_TP_MIB; break; default: goto indirect_access; } if (t4_use_ldst(adap)) rc = t4_tp_fw_ldst_rw(adap, cmd, buff, nregs, start_index, rw, sleep_ok); indirect_access: if (rc) { if (rw) t4_read_indirect(adap, reg_addr, reg_data, buff, nregs, start_index); else t4_write_indirect(adap, reg_addr, reg_data, buff, nregs, start_index); } } /** * t4_tp_pio_read - Read TP PIO registers * @adap: the adapter * @buff: where the indirect register values are written * @nregs: how many indirect registers to read * @start_index: index of first indirect register to read * @sleep_ok: if true we may sleep while awaiting command completion * * Read TP PIO Registers **/ void t4_tp_pio_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index, bool sleep_ok) { t4_tp_indirect_rw(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, buff, nregs, start_index, 1, sleep_ok); } /** * t4_tp_pio_write - Write TP PIO registers * @adap: the adapter * @buff: where the indirect register values are stored * @nregs: how many indirect registers to write * @start_index: index of first indirect register to write * @sleep_ok: if true we may sleep while awaiting command completion * * Write TP PIO Registers **/ void t4_tp_pio_write(struct adapter *adap, const u32 *buff, u32 nregs, u32 start_index, bool sleep_ok) { t4_tp_indirect_rw(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, __DECONST(u32 *, buff), nregs, start_index, 0, sleep_ok); } /** * t4_tp_tm_pio_read - Read TP TM PIO registers * @adap: the adapter * @buff: where the indirect register values are written * @nregs: how many indirect registers to read * @start_index: index of first indirect register to read * @sleep_ok: if true we may sleep while awaiting command completion * * Read TP TM PIO Registers **/ void t4_tp_tm_pio_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index, bool sleep_ok) { t4_tp_indirect_rw(adap, A_TP_TM_PIO_ADDR, A_TP_TM_PIO_DATA, buff, nregs, start_index, 1, sleep_ok); } /** * t4_tp_mib_read - Read TP MIB registers * @adap: the adapter * @buff: where the indirect register values are written * @nregs: how many indirect registers to read * @start_index: index of first indirect register to read * @sleep_ok: if true we may sleep while awaiting command completion * * Read TP MIB Registers **/ void t4_tp_mib_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index, bool sleep_ok) { t4_tp_indirect_rw(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, buff, nregs, start_index, 1, sleep_ok); } /** * t4_read_rss_key - read the global RSS key * @adap: the adapter * @key: 10-entry array holding the 320-bit RSS key * @sleep_ok: if true we may sleep while awaiting command completion * * Reads the global 320-bit RSS key. */ void t4_read_rss_key(struct adapter *adap, u32 *key, bool sleep_ok) { t4_tp_pio_read(adap, key, 10, A_TP_RSS_SECRET_KEY0, sleep_ok); } /** * t4_write_rss_key - program one of the RSS keys * @adap: the adapter * @key: 10-entry array holding the 320-bit RSS key * @idx: which RSS key to write * @sleep_ok: if true we may sleep while awaiting command completion * * Writes one of the RSS keys with the given 320-bit value. If @idx is * 0..15 the corresponding entry in the RSS key table is written, * otherwise the global RSS key is written. */ void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx, bool sleep_ok) { u8 rss_key_addr_cnt = 16; u32 vrt = t4_read_reg(adap, A_TP_RSS_CONFIG_VRT); /* * T6 and later: for KeyMode 3 (per-vf and per-vf scramble), * allows access to key addresses 16-63 by using KeyWrAddrX * as index[5:4](upper 2) into key table */ if ((chip_id(adap) > CHELSIO_T5) && (vrt & F_KEYEXTEND) && (G_KEYMODE(vrt) == 3)) rss_key_addr_cnt = 32; t4_tp_pio_write(adap, key, 10, A_TP_RSS_SECRET_KEY0, sleep_ok); if (idx >= 0 && idx < rss_key_addr_cnt) { if (rss_key_addr_cnt > 16) t4_write_reg(adap, A_TP_RSS_CONFIG_VRT, vrt | V_KEYWRADDRX(idx >> 4) | V_T6_VFWRADDR(idx) | F_KEYWREN); else t4_write_reg(adap, A_TP_RSS_CONFIG_VRT, vrt| V_KEYWRADDR(idx) | F_KEYWREN); } } /** * t4_read_rss_pf_config - read PF RSS Configuration Table * @adapter: the adapter * @index: the entry in the PF RSS table to read * @valp: where to store the returned value * @sleep_ok: if true we may sleep while awaiting command completion * * Reads the PF RSS Configuration Table at the specified index and returns * the value found there. */ void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index, u32 *valp, bool sleep_ok) { t4_tp_pio_read(adapter, valp, 1, A_TP_RSS_PF0_CONFIG + index, sleep_ok); } /** * t4_write_rss_pf_config - write PF RSS Configuration Table * @adapter: the adapter * @index: the entry in the VF RSS table to read * @val: the value to store * @sleep_ok: if true we may sleep while awaiting command completion * * Writes the PF RSS Configuration Table at the specified index with the * specified value. */ void t4_write_rss_pf_config(struct adapter *adapter, unsigned int index, u32 val, bool sleep_ok) { t4_tp_pio_write(adapter, &val, 1, A_TP_RSS_PF0_CONFIG + index, sleep_ok); } /** * t4_read_rss_vf_config - read VF RSS Configuration Table * @adapter: the adapter * @index: the entry in the VF RSS table to read * @vfl: where to store the returned VFL * @vfh: where to store the returned VFH * @sleep_ok: if true we may sleep while awaiting command completion * * Reads the VF RSS Configuration Table at the specified index and returns * the (VFL, VFH) values found there. */ void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index, u32 *vfl, u32 *vfh, bool sleep_ok) { u32 vrt, mask, data; if (chip_id(adapter) <= CHELSIO_T5) { mask = V_VFWRADDR(M_VFWRADDR); data = V_VFWRADDR(index); } else { mask = V_T6_VFWRADDR(M_T6_VFWRADDR); data = V_T6_VFWRADDR(index); } /* * Request that the index'th VF Table values be read into VFL/VFH. */ vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT); vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask); vrt |= data | F_VFRDEN; t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt); /* * Grab the VFL/VFH values ... */ t4_tp_pio_read(adapter, vfl, 1, A_TP_RSS_VFL_CONFIG, sleep_ok); t4_tp_pio_read(adapter, vfh, 1, A_TP_RSS_VFH_CONFIG, sleep_ok); } /** * t4_write_rss_vf_config - write VF RSS Configuration Table * * @adapter: the adapter * @index: the entry in the VF RSS table to write * @vfl: the VFL to store * @vfh: the VFH to store * * Writes the VF RSS Configuration Table at the specified index with the * specified (VFL, VFH) values. */ void t4_write_rss_vf_config(struct adapter *adapter, unsigned int index, u32 vfl, u32 vfh, bool sleep_ok) { u32 vrt, mask, data; if (chip_id(adapter) <= CHELSIO_T5) { mask = V_VFWRADDR(M_VFWRADDR); data = V_VFWRADDR(index); } else { mask = V_T6_VFWRADDR(M_T6_VFWRADDR); data = V_T6_VFWRADDR(index); } /* * Load up VFL/VFH with the values to be written ... */ t4_tp_pio_write(adapter, &vfl, 1, A_TP_RSS_VFL_CONFIG, sleep_ok); t4_tp_pio_write(adapter, &vfh, 1, A_TP_RSS_VFH_CONFIG, sleep_ok); /* * Write the VFL/VFH into the VF Table at index'th location. */ vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT); vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask); vrt |= data | F_VFRDEN; t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt); } /** * t4_read_rss_pf_map - read PF RSS Map * @adapter: the adapter * @sleep_ok: if true we may sleep while awaiting command completion * * Reads the PF RSS Map register and returns its value. */ u32 t4_read_rss_pf_map(struct adapter *adapter, bool sleep_ok) { u32 pfmap; t4_tp_pio_read(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, sleep_ok); return pfmap; } /** * t4_write_rss_pf_map - write PF RSS Map * @adapter: the adapter * @pfmap: PF RSS Map value * * Writes the specified value to the PF RSS Map register. */ void t4_write_rss_pf_map(struct adapter *adapter, u32 pfmap, bool sleep_ok) { t4_tp_pio_write(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, sleep_ok); } /** * t4_read_rss_pf_mask - read PF RSS Mask * @adapter: the adapter * @sleep_ok: if true we may sleep while awaiting command completion * * Reads the PF RSS Mask register and returns its value. */ u32 t4_read_rss_pf_mask(struct adapter *adapter, bool sleep_ok) { u32 pfmask; t4_tp_pio_read(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, sleep_ok); return pfmask; } /** * t4_write_rss_pf_mask - write PF RSS Mask * @adapter: the adapter * @pfmask: PF RSS Mask value * * Writes the specified value to the PF RSS Mask register. */ void t4_write_rss_pf_mask(struct adapter *adapter, u32 pfmask, bool sleep_ok) { t4_tp_pio_write(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, sleep_ok); } /** * t4_tp_get_tcp_stats - read TP's TCP MIB counters * @adap: the adapter * @v4: holds the TCP/IP counter values * @v6: holds the TCP/IPv6 counter values * @sleep_ok: if true we may sleep while awaiting command completion * * Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters. * Either @v4 or @v6 may be %NULL to skip the corresponding stats. */ void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4, struct tp_tcp_stats *v6, bool sleep_ok) { u32 val[A_TP_MIB_TCP_RXT_SEG_LO - A_TP_MIB_TCP_OUT_RST + 1]; #define STAT_IDX(x) ((A_TP_MIB_TCP_##x) - A_TP_MIB_TCP_OUT_RST) #define STAT(x) val[STAT_IDX(x)] #define STAT64(x) (((u64)STAT(x##_HI) << 32) | STAT(x##_LO)) if (v4) { t4_tp_mib_read(adap, val, ARRAY_SIZE(val), A_TP_MIB_TCP_OUT_RST, sleep_ok); v4->tcp_out_rsts = STAT(OUT_RST); v4->tcp_in_segs = STAT64(IN_SEG); v4->tcp_out_segs = STAT64(OUT_SEG); v4->tcp_retrans_segs = STAT64(RXT_SEG); } if (v6) { t4_tp_mib_read(adap, val, ARRAY_SIZE(val), A_TP_MIB_TCP_V6OUT_RST, sleep_ok); v6->tcp_out_rsts = STAT(OUT_RST); v6->tcp_in_segs = STAT64(IN_SEG); v6->tcp_out_segs = STAT64(OUT_SEG); v6->tcp_retrans_segs = STAT64(RXT_SEG); } #undef STAT64 #undef STAT #undef STAT_IDX } /** * t4_tp_get_err_stats - read TP's error MIB counters * @adap: the adapter * @st: holds the counter values * @sleep_ok: if true we may sleep while awaiting command completion * * Returns the values of TP's error counters. */ void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st, bool sleep_ok) { int nchan = adap->chip_params->nchan; t4_tp_mib_read(adap, st->mac_in_errs, nchan, A_TP_MIB_MAC_IN_ERR_0, sleep_ok); t4_tp_mib_read(adap, st->hdr_in_errs, nchan, A_TP_MIB_HDR_IN_ERR_0, sleep_ok); t4_tp_mib_read(adap, st->tcp_in_errs, nchan, A_TP_MIB_TCP_IN_ERR_0, sleep_ok); t4_tp_mib_read(adap, st->tnl_cong_drops, nchan, A_TP_MIB_TNL_CNG_DROP_0, sleep_ok); t4_tp_mib_read(adap, st->ofld_chan_drops, nchan, A_TP_MIB_OFD_CHN_DROP_0, sleep_ok); t4_tp_mib_read(adap, st->tnl_tx_drops, nchan, A_TP_MIB_TNL_DROP_0, sleep_ok); t4_tp_mib_read(adap, st->ofld_vlan_drops, nchan, A_TP_MIB_OFD_VLN_DROP_0, sleep_ok); t4_tp_mib_read(adap, st->tcp6_in_errs, nchan, A_TP_MIB_TCP_V6IN_ERR_0, sleep_ok); t4_tp_mib_read(adap, &st->ofld_no_neigh, 2, A_TP_MIB_OFD_ARP_DROP, sleep_ok); } /** * t4_tp_get_err_stats - read TP's error MIB counters * @adap: the adapter * @st: holds the counter values * @sleep_ok: if true we may sleep while awaiting command completion * * Returns the values of TP's error counters. */ void t4_tp_get_tnl_stats(struct adapter *adap, struct tp_tnl_stats *st, bool sleep_ok) { int nchan = adap->chip_params->nchan; t4_tp_mib_read(adap, st->out_pkt, nchan, A_TP_MIB_TNL_OUT_PKT_0, sleep_ok); t4_tp_mib_read(adap, st->in_pkt, nchan, A_TP_MIB_TNL_IN_PKT_0, sleep_ok); } /** * t4_tp_get_proxy_stats - read TP's proxy MIB counters * @adap: the adapter * @st: holds the counter values * * Returns the values of TP's proxy counters. */ void t4_tp_get_proxy_stats(struct adapter *adap, struct tp_proxy_stats *st, bool sleep_ok) { int nchan = adap->chip_params->nchan; t4_tp_mib_read(adap, st->proxy, nchan, A_TP_MIB_TNL_LPBK_0, sleep_ok); } /** * t4_tp_get_cpl_stats - read TP's CPL MIB counters * @adap: the adapter * @st: holds the counter values * @sleep_ok: if true we may sleep while awaiting command completion * * Returns the values of TP's CPL counters. */ void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st, bool sleep_ok) { int nchan = adap->chip_params->nchan; t4_tp_mib_read(adap, st->req, nchan, A_TP_MIB_CPL_IN_REQ_0, sleep_ok); t4_tp_mib_read(adap, st->rsp, nchan, A_TP_MIB_CPL_OUT_RSP_0, sleep_ok); } /** * t4_tp_get_rdma_stats - read TP's RDMA MIB counters * @adap: the adapter * @st: holds the counter values * * Returns the values of TP's RDMA counters. */ void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st, bool sleep_ok) { t4_tp_mib_read(adap, &st->rqe_dfr_pkt, 2, A_TP_MIB_RQE_DFR_PKT, sleep_ok); } /** * t4_get_fcoe_stats - read TP's FCoE MIB counters for a port * @adap: the adapter * @idx: the port index * @st: holds the counter values * @sleep_ok: if true we may sleep while awaiting command completion * * Returns the values of TP's FCoE counters for the selected port. */ void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx, struct tp_fcoe_stats *st, bool sleep_ok) { u32 val[2]; t4_tp_mib_read(adap, &st->frames_ddp, 1, A_TP_MIB_FCOE_DDP_0 + idx, sleep_ok); t4_tp_mib_read(adap, &st->frames_drop, 1, A_TP_MIB_FCOE_DROP_0 + idx, sleep_ok); t4_tp_mib_read(adap, val, 2, A_TP_MIB_FCOE_BYTE_0_HI + 2 * idx, sleep_ok); st->octets_ddp = ((u64)val[0] << 32) | val[1]; } /** * t4_get_usm_stats - read TP's non-TCP DDP MIB counters * @adap: the adapter * @st: holds the counter values * @sleep_ok: if true we may sleep while awaiting command completion * * Returns the values of TP's counters for non-TCP directly-placed packets. */ void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st, bool sleep_ok) { u32 val[4]; t4_tp_mib_read(adap, val, 4, A_TP_MIB_USM_PKTS, sleep_ok); st->frames = val[0]; st->drops = val[1]; st->octets = ((u64)val[2] << 32) | val[3]; } /** * t4_tp_get_tid_stats - read TP's tid MIB counters. * @adap: the adapter * @st: holds the counter values * @sleep_ok: if true we may sleep while awaiting command completion * * Returns the values of TP's counters for tids. */ void t4_tp_get_tid_stats(struct adapter *adap, struct tp_tid_stats *st, bool sleep_ok) { t4_tp_mib_read(adap, &st->del, 4, A_TP_MIB_TID_DEL, sleep_ok); } /** * t4_read_mtu_tbl - returns the values in the HW path MTU table * @adap: the adapter * @mtus: where to store the MTU values * @mtu_log: where to store the MTU base-2 log (may be %NULL) * * Reads the HW path MTU table. */ void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log) { u32 v; int i; for (i = 0; i < NMTUS; ++i) { t4_write_reg(adap, A_TP_MTU_TABLE, V_MTUINDEX(0xff) | V_MTUVALUE(i)); v = t4_read_reg(adap, A_TP_MTU_TABLE); mtus[i] = G_MTUVALUE(v); if (mtu_log) mtu_log[i] = G_MTUWIDTH(v); } } /** * t4_read_cong_tbl - reads the congestion control table * @adap: the adapter * @incr: where to store the alpha values * * Reads the additive increments programmed into the HW congestion * control table. */ void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN]) { unsigned int mtu, w; for (mtu = 0; mtu < NMTUS; ++mtu) for (w = 0; w < NCCTRL_WIN; ++w) { t4_write_reg(adap, A_TP_CCTRL_TABLE, V_ROWINDEX(0xffff) | (mtu << 5) | w); incr[mtu][w] = (u16)t4_read_reg(adap, A_TP_CCTRL_TABLE) & 0x1fff; } } /** * t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register * @adap: the adapter * @addr: the indirect TP register address * @mask: specifies the field within the register to modify * @val: new value for the field * * Sets a field of an indirect TP register to the given value. */ void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr, unsigned int mask, unsigned int val) { t4_write_reg(adap, A_TP_PIO_ADDR, addr); val |= t4_read_reg(adap, A_TP_PIO_DATA) & ~mask; t4_write_reg(adap, A_TP_PIO_DATA, val); } /** * init_cong_ctrl - initialize congestion control parameters * @a: the alpha values for congestion control * @b: the beta values for congestion control * * Initialize the congestion control parameters. */ static void init_cong_ctrl(unsigned short *a, unsigned short *b) { a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1; a[9] = 2; a[10] = 3; a[11] = 4; a[12] = 5; a[13] = 6; a[14] = 7; a[15] = 8; a[16] = 9; a[17] = 10; a[18] = 14; a[19] = 17; a[20] = 21; a[21] = 25; a[22] = 30; a[23] = 35; a[24] = 45; a[25] = 60; a[26] = 80; a[27] = 100; a[28] = 200; a[29] = 300; a[30] = 400; a[31] = 500; b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0; b[9] = b[10] = 1; b[11] = b[12] = 2; b[13] = b[14] = b[15] = b[16] = 3; b[17] = b[18] = b[19] = b[20] = b[21] = 4; b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5; b[28] = b[29] = 6; b[30] = b[31] = 7; } /* The minimum additive increment value for the congestion control table */ #define CC_MIN_INCR 2U /** * t4_load_mtus - write the MTU and congestion control HW tables * @adap: the adapter * @mtus: the values for the MTU table * @alpha: the values for the congestion control alpha parameter * @beta: the values for the congestion control beta parameter * * Write the HW MTU table with the supplied MTUs and the high-speed * congestion control table with the supplied alpha, beta, and MTUs. * We write the two tables together because the additive increments * depend on the MTUs. */ void t4_load_mtus(struct adapter *adap, const unsigned short *mtus, const unsigned short *alpha, const unsigned short *beta) { static const unsigned int avg_pkts[NCCTRL_WIN] = { 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640, 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480, 28672, 40960, 57344, 81920, 114688, 163840, 229376 }; unsigned int i, w; for (i = 0; i < NMTUS; ++i) { unsigned int mtu = mtus[i]; unsigned int log2 = fls(mtu); if (!(mtu & ((1 << log2) >> 2))) /* round */ log2--; t4_write_reg(adap, A_TP_MTU_TABLE, V_MTUINDEX(i) | V_MTUWIDTH(log2) | V_MTUVALUE(mtu)); for (w = 0; w < NCCTRL_WIN; ++w) { unsigned int inc; inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w], CC_MIN_INCR); t4_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) | (w << 16) | (beta[w] << 13) | inc); } } } /** * t4_set_pace_tbl - set the pace table * @adap: the adapter * @pace_vals: the pace values in microseconds * @start: index of the first entry in the HW pace table to set * @n: how many entries to set * * Sets (a subset of the) HW pace table. */ int t4_set_pace_tbl(struct adapter *adap, const unsigned int *pace_vals, unsigned int start, unsigned int n) { unsigned int vals[NTX_SCHED], i; unsigned int tick_ns = dack_ticks_to_usec(adap, 1000); if (n > NTX_SCHED) return -ERANGE; /* convert values from us to dack ticks, rounding to closest value */ for (i = 0; i < n; i++, pace_vals++) { vals[i] = (1000 * *pace_vals + tick_ns / 2) / tick_ns; if (vals[i] > 0x7ff) return -ERANGE; if (*pace_vals && vals[i] == 0) return -ERANGE; } for (i = 0; i < n; i++, start++) t4_write_reg(adap, A_TP_PACE_TABLE, (start << 16) | vals[i]); return 0; } /** * t4_set_sched_bps - set the bit rate for a HW traffic scheduler * @adap: the adapter * @kbps: target rate in Kbps * @sched: the scheduler index * * Configure a Tx HW scheduler for the target rate. */ int t4_set_sched_bps(struct adapter *adap, int sched, unsigned int kbps) { unsigned int v, tps, cpt, bpt, delta, mindelta = ~0; unsigned int clk = adap->params.vpd.cclk * 1000; unsigned int selected_cpt = 0, selected_bpt = 0; if (kbps > 0) { kbps *= 125; /* -> bytes */ for (cpt = 1; cpt <= 255; cpt++) { tps = clk / cpt; bpt = (kbps + tps / 2) / tps; if (bpt > 0 && bpt <= 255) { v = bpt * tps; delta = v >= kbps ? v - kbps : kbps - v; if (delta < mindelta) { mindelta = delta; selected_cpt = cpt; selected_bpt = bpt; } } else if (selected_cpt) break; } if (!selected_cpt) return -EINVAL; } t4_write_reg(adap, A_TP_TM_PIO_ADDR, A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2); v = t4_read_reg(adap, A_TP_TM_PIO_DATA); if (sched & 1) v = (v & 0xffff) | (selected_cpt << 16) | (selected_bpt << 24); else v = (v & 0xffff0000) | selected_cpt | (selected_bpt << 8); t4_write_reg(adap, A_TP_TM_PIO_DATA, v); return 0; } /** * t4_set_sched_ipg - set the IPG for a Tx HW packet rate scheduler * @adap: the adapter * @sched: the scheduler index * @ipg: the interpacket delay in tenths of nanoseconds * * Set the interpacket delay for a HW packet rate scheduler. */ int t4_set_sched_ipg(struct adapter *adap, int sched, unsigned int ipg) { unsigned int v, addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2; /* convert ipg to nearest number of core clocks */ ipg *= core_ticks_per_usec(adap); ipg = (ipg + 5000) / 10000; if (ipg > M_TXTIMERSEPQ0) return -EINVAL; t4_write_reg(adap, A_TP_TM_PIO_ADDR, addr); v = t4_read_reg(adap, A_TP_TM_PIO_DATA); if (sched & 1) v = (v & V_TXTIMERSEPQ0(M_TXTIMERSEPQ0)) | V_TXTIMERSEPQ1(ipg); else v = (v & V_TXTIMERSEPQ1(M_TXTIMERSEPQ1)) | V_TXTIMERSEPQ0(ipg); t4_write_reg(adap, A_TP_TM_PIO_DATA, v); t4_read_reg(adap, A_TP_TM_PIO_DATA); return 0; } /* * Calculates a rate in bytes/s given the number of 256-byte units per 4K core * clocks. The formula is * * bytes/s = bytes256 * 256 * ClkFreq / 4096 * * which is equivalent to * * bytes/s = 62.5 * bytes256 * ClkFreq_ms */ static u64 chan_rate(struct adapter *adap, unsigned int bytes256) { u64 v = (u64)bytes256 * adap->params.vpd.cclk; return v * 62 + v / 2; } /** * t4_get_chan_txrate - get the current per channel Tx rates * @adap: the adapter * @nic_rate: rates for NIC traffic * @ofld_rate: rates for offloaded traffic * * Return the current Tx rates in bytes/s for NIC and offloaded traffic * for each channel. */ void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate) { u32 v; v = t4_read_reg(adap, A_TP_TX_TRATE); nic_rate[0] = chan_rate(adap, G_TNLRATE0(v)); nic_rate[1] = chan_rate(adap, G_TNLRATE1(v)); if (adap->chip_params->nchan > 2) { nic_rate[2] = chan_rate(adap, G_TNLRATE2(v)); nic_rate[3] = chan_rate(adap, G_TNLRATE3(v)); } v = t4_read_reg(adap, A_TP_TX_ORATE); ofld_rate[0] = chan_rate(adap, G_OFDRATE0(v)); ofld_rate[1] = chan_rate(adap, G_OFDRATE1(v)); if (adap->chip_params->nchan > 2) { ofld_rate[2] = chan_rate(adap, G_OFDRATE2(v)); ofld_rate[3] = chan_rate(adap, G_OFDRATE3(v)); } } /** * t4_set_trace_filter - configure one of the tracing filters * @adap: the adapter * @tp: the desired trace filter parameters * @idx: which filter to configure * @enable: whether to enable or disable the filter * * Configures one of the tracing filters available in HW. If @tp is %NULL * it indicates that the filter is already written in the register and it * just needs to be enabled or disabled. */ int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp, int idx, int enable) { int i, ofst = idx * 4; u32 data_reg, mask_reg, cfg; u32 multitrc = F_TRCMULTIFILTER; u32 en = is_t4(adap) ? F_TFEN : F_T5_TFEN; if (idx < 0 || idx >= NTRACE) return -EINVAL; if (tp == NULL || !enable) { t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en, enable ? en : 0); return 0; } /* * TODO - After T4 data book is updated, specify the exact * section below. * * See T4 data book - MPS section for a complete description * of the below if..else handling of A_MPS_TRC_CFG register * value. */ cfg = t4_read_reg(adap, A_MPS_TRC_CFG); if (cfg & F_TRCMULTIFILTER) { /* * If multiple tracers are enabled, then maximum * capture size is 2.5KB (FIFO size of a single channel) * minus 2 flits for CPL_TRACE_PKT header. */ if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8))) return -EINVAL; } else { /* * If multiple tracers are disabled, to avoid deadlocks * maximum packet capture size of 9600 bytes is recommended. * Also in this mode, only trace0 can be enabled and running. */ multitrc = 0; if (tp->snap_len > 9600 || idx) return -EINVAL; } if (tp->port > (is_t4(adap) ? 11 : 19) || tp->invert > 1 || tp->skip_len > M_TFLENGTH || tp->skip_ofst > M_TFOFFSET || tp->min_len > M_TFMINPKTSIZE) return -EINVAL; /* stop the tracer we'll be changing */ t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en, 0); idx *= (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH); data_reg = A_MPS_TRC_FILTER0_MATCH + idx; mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + idx; for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) { t4_write_reg(adap, data_reg, tp->data[i]); t4_write_reg(adap, mask_reg, ~tp->mask[i]); } t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst, V_TFCAPTUREMAX(tp->snap_len) | V_TFMINPKTSIZE(tp->min_len)); t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, V_TFOFFSET(tp->skip_ofst) | V_TFLENGTH(tp->skip_len) | en | (is_t4(adap) ? V_TFPORT(tp->port) | V_TFINVERTMATCH(tp->invert) : V_T5_TFPORT(tp->port) | V_T5_TFINVERTMATCH(tp->invert))); return 0; } /** * t4_get_trace_filter - query one of the tracing filters * @adap: the adapter * @tp: the current trace filter parameters * @idx: which trace filter to query * @enabled: non-zero if the filter is enabled * * Returns the current settings of one of the HW tracing filters. */ void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx, int *enabled) { u32 ctla, ctlb; int i, ofst = idx * 4; u32 data_reg, mask_reg; ctla = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst); ctlb = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst); if (is_t4(adap)) { *enabled = !!(ctla & F_TFEN); tp->port = G_TFPORT(ctla); tp->invert = !!(ctla & F_TFINVERTMATCH); } else { *enabled = !!(ctla & F_T5_TFEN); tp->port = G_T5_TFPORT(ctla); tp->invert = !!(ctla & F_T5_TFINVERTMATCH); } tp->snap_len = G_TFCAPTUREMAX(ctlb); tp->min_len = G_TFMINPKTSIZE(ctlb); tp->skip_ofst = G_TFOFFSET(ctla); tp->skip_len = G_TFLENGTH(ctla); ofst = (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH) * idx; data_reg = A_MPS_TRC_FILTER0_MATCH + ofst; mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + ofst; for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) { tp->mask[i] = ~t4_read_reg(adap, mask_reg); tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i]; } } /** * t4_pmtx_get_stats - returns the HW stats from PMTX * @adap: the adapter * @cnt: where to store the count statistics * @cycles: where to store the cycle statistics * * Returns performance statistics from PMTX. */ void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[]) { int i; u32 data[2]; for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) { t4_write_reg(adap, A_PM_TX_STAT_CONFIG, i + 1); cnt[i] = t4_read_reg(adap, A_PM_TX_STAT_COUNT); if (is_t4(adap)) cycles[i] = t4_read_reg64(adap, A_PM_TX_STAT_LSB); else { t4_read_indirect(adap, A_PM_TX_DBG_CTRL, A_PM_TX_DBG_DATA, data, 2, A_PM_TX_DBG_STAT_MSB); cycles[i] = (((u64)data[0] << 32) | data[1]); } } } /** * t4_pmrx_get_stats - returns the HW stats from PMRX * @adap: the adapter * @cnt: where to store the count statistics * @cycles: where to store the cycle statistics * * Returns performance statistics from PMRX. */ void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[]) { int i; u32 data[2]; for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) { t4_write_reg(adap, A_PM_RX_STAT_CONFIG, i + 1); cnt[i] = t4_read_reg(adap, A_PM_RX_STAT_COUNT); if (is_t4(adap)) { cycles[i] = t4_read_reg64(adap, A_PM_RX_STAT_LSB); } else { t4_read_indirect(adap, A_PM_RX_DBG_CTRL, A_PM_RX_DBG_DATA, data, 2, A_PM_RX_DBG_STAT_MSB); cycles[i] = (((u64)data[0] << 32) | data[1]); } } } /** * t4_get_mps_bg_map - return the buffer groups associated with a port * @adap: the adapter * @idx: the port index * * Returns a bitmap indicating which MPS buffer groups are associated * with the given port. Bit i is set if buffer group i is used by the * port. */ static unsigned int t4_get_mps_bg_map(struct adapter *adap, int idx) { u32 n; if (adap->params.mps_bg_map) return ((adap->params.mps_bg_map >> (idx << 3)) & 0xff); n = G_NUMPORTS(t4_read_reg(adap, A_MPS_CMN_CTL)); if (n == 0) return idx == 0 ? 0xf : 0; if (n == 1 && chip_id(adap) <= CHELSIO_T5) return idx < 2 ? (3 << (2 * idx)) : 0; return 1 << idx; } /* * TP RX e-channels associated with the port. */ static unsigned int t4_get_rx_e_chan_map(struct adapter *adap, int idx) { u32 n = G_NUMPORTS(t4_read_reg(adap, A_MPS_CMN_CTL)); const u32 all_chan = (1 << adap->chip_params->nchan) - 1; if (n == 0) return idx == 0 ? all_chan : 0; if (n == 1 && chip_id(adap) <= CHELSIO_T5) return idx < 2 ? (3 << (2 * idx)) : 0; return 1 << idx; } /** * t4_get_port_type_description - return Port Type string description * @port_type: firmware Port Type enumeration */ const char *t4_get_port_type_description(enum fw_port_type port_type) { static const char *const port_type_description[] = { "Fiber_XFI", "Fiber_XAUI", "BT_SGMII", "BT_XFI", "BT_XAUI", "KX4", "CX4", "KX", "KR", "SFP", "BP_AP", "BP4_AP", "QSFP_10G", "QSA", "QSFP", "BP40_BA", "KR4_100G", "CR4_QSFP", "CR_QSFP", "CR2_QSFP", "SFP28", "KR_SFP28", }; if (port_type < ARRAY_SIZE(port_type_description)) return port_type_description[port_type]; return "UNKNOWN"; } /** * t4_get_port_stats_offset - collect port stats relative to a previous * snapshot * @adap: The adapter * @idx: The port * @stats: Current stats to fill * @offset: Previous stats snapshot */ void t4_get_port_stats_offset(struct adapter *adap, int idx, struct port_stats *stats, struct port_stats *offset) { u64 *s, *o; int i; t4_get_port_stats(adap, idx, stats); for (i = 0, s = (u64 *)stats, o = (u64 *)offset ; i < (sizeof(struct port_stats)/sizeof(u64)) ; i++, s++, o++) *s -= *o; } /** * t4_get_port_stats - collect port statistics * @adap: the adapter * @idx: the port index * @p: the stats structure to fill * * Collect statistics related to the given port from HW. */ void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p) { struct port_info *pi = adap->port[idx]; u32 bgmap = pi->mps_bg_map; u32 stat_ctl = t4_read_reg(adap, A_MPS_STAT_CTL); #define GET_STAT(name) \ t4_read_reg64(adap, \ (is_t4(adap) ? PORT_REG(idx, A_MPS_PORT_STAT_##name##_L) : \ T5_PORT_REG(idx, A_MPS_PORT_STAT_##name##_L))) #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L) p->tx_pause = GET_STAT(TX_PORT_PAUSE); p->tx_octets = GET_STAT(TX_PORT_BYTES); p->tx_frames = GET_STAT(TX_PORT_FRAMES); p->tx_bcast_frames = GET_STAT(TX_PORT_BCAST); p->tx_mcast_frames = GET_STAT(TX_PORT_MCAST); p->tx_ucast_frames = GET_STAT(TX_PORT_UCAST); p->tx_error_frames = GET_STAT(TX_PORT_ERROR); p->tx_frames_64 = GET_STAT(TX_PORT_64B); p->tx_frames_65_127 = GET_STAT(TX_PORT_65B_127B); p->tx_frames_128_255 = GET_STAT(TX_PORT_128B_255B); p->tx_frames_256_511 = GET_STAT(TX_PORT_256B_511B); p->tx_frames_512_1023 = GET_STAT(TX_PORT_512B_1023B); p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B); p->tx_frames_1519_max = GET_STAT(TX_PORT_1519B_MAX); p->tx_drop = GET_STAT(TX_PORT_DROP); p->tx_ppp0 = GET_STAT(TX_PORT_PPP0); p->tx_ppp1 = GET_STAT(TX_PORT_PPP1); p->tx_ppp2 = GET_STAT(TX_PORT_PPP2); p->tx_ppp3 = GET_STAT(TX_PORT_PPP3); p->tx_ppp4 = GET_STAT(TX_PORT_PPP4); p->tx_ppp5 = GET_STAT(TX_PORT_PPP5); p->tx_ppp6 = GET_STAT(TX_PORT_PPP6); p->tx_ppp7 = GET_STAT(TX_PORT_PPP7); if (chip_id(adap) >= CHELSIO_T5) { if (stat_ctl & F_COUNTPAUSESTATTX) { p->tx_frames -= p->tx_pause; p->tx_octets -= p->tx_pause * 64; } if (stat_ctl & F_COUNTPAUSEMCTX) p->tx_mcast_frames -= p->tx_pause; } p->rx_pause = GET_STAT(RX_PORT_PAUSE); p->rx_octets = GET_STAT(RX_PORT_BYTES); p->rx_frames = GET_STAT(RX_PORT_FRAMES); p->rx_bcast_frames = GET_STAT(RX_PORT_BCAST); p->rx_mcast_frames = GET_STAT(RX_PORT_MCAST); p->rx_ucast_frames = GET_STAT(RX_PORT_UCAST); p->rx_too_long = GET_STAT(RX_PORT_MTU_ERROR); p->rx_jabber = GET_STAT(RX_PORT_MTU_CRC_ERROR); p->rx_len_err = GET_STAT(RX_PORT_LEN_ERROR); p->rx_symbol_err = GET_STAT(RX_PORT_SYM_ERROR); p->rx_runt = GET_STAT(RX_PORT_LESS_64B); p->rx_frames_64 = GET_STAT(RX_PORT_64B); p->rx_frames_65_127 = GET_STAT(RX_PORT_65B_127B); p->rx_frames_128_255 = GET_STAT(RX_PORT_128B_255B); p->rx_frames_256_511 = GET_STAT(RX_PORT_256B_511B); p->rx_frames_512_1023 = GET_STAT(RX_PORT_512B_1023B); p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B); p->rx_frames_1519_max = GET_STAT(RX_PORT_1519B_MAX); p->rx_ppp0 = GET_STAT(RX_PORT_PPP0); p->rx_ppp1 = GET_STAT(RX_PORT_PPP1); p->rx_ppp2 = GET_STAT(RX_PORT_PPP2); p->rx_ppp3 = GET_STAT(RX_PORT_PPP3); p->rx_ppp4 = GET_STAT(RX_PORT_PPP4); p->rx_ppp5 = GET_STAT(RX_PORT_PPP5); p->rx_ppp6 = GET_STAT(RX_PORT_PPP6); p->rx_ppp7 = GET_STAT(RX_PORT_PPP7); if (pi->fcs_reg != -1) p->rx_fcs_err = t4_read_reg64(adap, pi->fcs_reg) - pi->fcs_base; if (chip_id(adap) >= CHELSIO_T5) { if (stat_ctl & F_COUNTPAUSESTATRX) { p->rx_frames -= p->rx_pause; p->rx_octets -= p->rx_pause * 64; } if (stat_ctl & F_COUNTPAUSEMCRX) p->rx_mcast_frames -= p->rx_pause; } p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0; p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0; p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0; p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0; p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0; p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0; p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0; p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0; #undef GET_STAT #undef GET_STAT_COM } /** * t4_get_lb_stats - collect loopback port statistics * @adap: the adapter * @idx: the loopback port index * @p: the stats structure to fill * * Return HW statistics for the given loopback port. */ void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p) { #define GET_STAT(name) \ t4_read_reg64(adap, \ (is_t4(adap) ? \ PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L) : \ T5_PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L))) #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L) p->octets = GET_STAT(BYTES); p->frames = GET_STAT(FRAMES); p->bcast_frames = GET_STAT(BCAST); p->mcast_frames = GET_STAT(MCAST); p->ucast_frames = GET_STAT(UCAST); p->error_frames = GET_STAT(ERROR); p->frames_64 = GET_STAT(64B); p->frames_65_127 = GET_STAT(65B_127B); p->frames_128_255 = GET_STAT(128B_255B); p->frames_256_511 = GET_STAT(256B_511B); p->frames_512_1023 = GET_STAT(512B_1023B); p->frames_1024_1518 = GET_STAT(1024B_1518B); p->frames_1519_max = GET_STAT(1519B_MAX); p->drop = GET_STAT(DROP_FRAMES); if (idx < adap->params.nports) { u32 bg = adap2pinfo(adap, idx)->mps_bg_map; p->ovflow0 = (bg & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0; p->ovflow1 = (bg & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0; p->ovflow2 = (bg & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0; p->ovflow3 = (bg & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0; p->trunc0 = (bg & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0; p->trunc1 = (bg & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0; p->trunc2 = (bg & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0; p->trunc3 = (bg & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0; } #undef GET_STAT #undef GET_STAT_COM } /** * t4_wol_magic_enable - enable/disable magic packet WoL * @adap: the adapter * @port: the physical port index * @addr: MAC address expected in magic packets, %NULL to disable * * Enables/disables magic packet wake-on-LAN for the selected port. */ void t4_wol_magic_enable(struct adapter *adap, unsigned int port, const u8 *addr) { u32 mag_id_reg_l, mag_id_reg_h, port_cfg_reg; if (is_t4(adap)) { mag_id_reg_l = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_LO); mag_id_reg_h = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_HI); port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2); } else { mag_id_reg_l = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_LO); mag_id_reg_h = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_HI); port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2); } if (addr) { t4_write_reg(adap, mag_id_reg_l, (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) | addr[5]); t4_write_reg(adap, mag_id_reg_h, (addr[0] << 8) | addr[1]); } t4_set_reg_field(adap, port_cfg_reg, F_MAGICEN, V_MAGICEN(addr != NULL)); } /** * t4_wol_pat_enable - enable/disable pattern-based WoL * @adap: the adapter * @port: the physical port index * @map: bitmap of which HW pattern filters to set * @mask0: byte mask for bytes 0-63 of a packet * @mask1: byte mask for bytes 64-127 of a packet * @crc: Ethernet CRC for selected bytes * @enable: enable/disable switch * * Sets the pattern filters indicated in @map to mask out the bytes * specified in @mask0/@mask1 in received packets and compare the CRC of * the resulting packet against @crc. If @enable is %true pattern-based * WoL is enabled, otherwise disabled. */ int t4_wol_pat_enable(struct adapter *adap, unsigned int port, unsigned int map, u64 mask0, u64 mask1, unsigned int crc, bool enable) { int i; u32 port_cfg_reg; if (is_t4(adap)) port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2); else port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2); if (!enable) { t4_set_reg_field(adap, port_cfg_reg, F_PATEN, 0); return 0; } if (map > 0xff) return -EINVAL; #define EPIO_REG(name) \ (is_t4(adap) ? PORT_REG(port, A_XGMAC_PORT_EPIO_##name) : \ T5_PORT_REG(port, A_MAC_PORT_EPIO_##name)) t4_write_reg(adap, EPIO_REG(DATA1), mask0 >> 32); t4_write_reg(adap, EPIO_REG(DATA2), mask1); t4_write_reg(adap, EPIO_REG(DATA3), mask1 >> 32); for (i = 0; i < NWOL_PAT; i++, map >>= 1) { if (!(map & 1)) continue; /* write byte masks */ t4_write_reg(adap, EPIO_REG(DATA0), mask0); t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i) | F_EPIOWR); t4_read_reg(adap, EPIO_REG(OP)); /* flush */ if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY) return -ETIMEDOUT; /* write CRC */ t4_write_reg(adap, EPIO_REG(DATA0), crc); t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i + 32) | F_EPIOWR); t4_read_reg(adap, EPIO_REG(OP)); /* flush */ if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY) return -ETIMEDOUT; } #undef EPIO_REG t4_set_reg_field(adap, port_cfg_reg, 0, F_PATEN); return 0; } /* t4_mk_filtdelwr - create a delete filter WR * @ftid: the filter ID * @wr: the filter work request to populate * @qid: ingress queue to receive the delete notification * * Creates a filter work request to delete the supplied filter. If @qid is * negative the delete notification is suppressed. */ void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid) { memset(wr, 0, sizeof(*wr)); wr->op_pkd = cpu_to_be32(V_FW_WR_OP(FW_FILTER_WR)); wr->len16_pkd = cpu_to_be32(V_FW_WR_LEN16(sizeof(*wr) / 16)); wr->tid_to_iq = cpu_to_be32(V_FW_FILTER_WR_TID(ftid) | V_FW_FILTER_WR_NOREPLY(qid < 0)); wr->del_filter_to_l2tix = cpu_to_be32(F_FW_FILTER_WR_DEL_FILTER); if (qid >= 0) wr->rx_chan_rx_rpl_iq = cpu_to_be16(V_FW_FILTER_WR_RX_RPL_IQ(qid)); } #define INIT_CMD(var, cmd, rd_wr) do { \ (var).op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_##cmd##_CMD) | \ F_FW_CMD_REQUEST | \ F_FW_CMD_##rd_wr); \ (var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \ } while (0) int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox, u32 addr, u32 val) { u32 ldst_addrspace; struct fw_ldst_cmd c; memset(&c, 0, sizeof(c)); ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FIRMWARE); c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_WRITE | ldst_addrspace); c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); c.u.addrval.addr = cpu_to_be32(addr); c.u.addrval.val = cpu_to_be32(val); return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); } /** * t4_mdio_rd - read a PHY register through MDIO * @adap: the adapter * @mbox: mailbox to use for the FW command * @phy_addr: the PHY address * @mmd: the PHY MMD to access (0 for clause 22 PHYs) * @reg: the register to read * @valp: where to store the value * * Issues a FW command through the given mailbox to read a PHY register. */ int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr, unsigned int mmd, unsigned int reg, unsigned int *valp) { int ret; u32 ldst_addrspace; struct fw_ldst_cmd c; memset(&c, 0, sizeof(c)); ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO); c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_READ | ldst_addrspace); c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) | V_FW_LDST_CMD_MMD(mmd)); c.u.mdio.raddr = cpu_to_be16(reg); ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); if (ret == 0) *valp = be16_to_cpu(c.u.mdio.rval); return ret; } /** * t4_mdio_wr - write a PHY register through MDIO * @adap: the adapter * @mbox: mailbox to use for the FW command * @phy_addr: the PHY address * @mmd: the PHY MMD to access (0 for clause 22 PHYs) * @reg: the register to write * @valp: value to write * * Issues a FW command through the given mailbox to write a PHY register. */ int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr, unsigned int mmd, unsigned int reg, unsigned int val) { u32 ldst_addrspace; struct fw_ldst_cmd c; memset(&c, 0, sizeof(c)); ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO); c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_WRITE | ldst_addrspace); c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) | V_FW_LDST_CMD_MMD(mmd)); c.u.mdio.raddr = cpu_to_be16(reg); c.u.mdio.rval = cpu_to_be16(val); return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); } /** * * t4_sge_decode_idma_state - decode the idma state * @adap: the adapter * @state: the state idma is stuck in */ void t4_sge_decode_idma_state(struct adapter *adapter, int state) { static const char * const t4_decode[] = { "IDMA_IDLE", "IDMA_PUSH_MORE_CPL_FIFO", "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO", "Not used", "IDMA_PHYSADDR_SEND_PCIEHDR", "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST", "IDMA_PHYSADDR_SEND_PAYLOAD", "IDMA_SEND_FIFO_TO_IMSG", "IDMA_FL_REQ_DATA_FL_PREP", "IDMA_FL_REQ_DATA_FL", "IDMA_FL_DROP", "IDMA_FL_H_REQ_HEADER_FL", "IDMA_FL_H_SEND_PCIEHDR", "IDMA_FL_H_PUSH_CPL_FIFO", "IDMA_FL_H_SEND_CPL", "IDMA_FL_H_SEND_IP_HDR_FIRST", "IDMA_FL_H_SEND_IP_HDR", "IDMA_FL_H_REQ_NEXT_HEADER_FL", "IDMA_FL_H_SEND_NEXT_PCIEHDR", "IDMA_FL_H_SEND_IP_HDR_PADDING", "IDMA_FL_D_SEND_PCIEHDR", "IDMA_FL_D_SEND_CPL_AND_IP_HDR", "IDMA_FL_D_REQ_NEXT_DATA_FL", "IDMA_FL_SEND_PCIEHDR", "IDMA_FL_PUSH_CPL_FIFO", "IDMA_FL_SEND_CPL", "IDMA_FL_SEND_PAYLOAD_FIRST", "IDMA_FL_SEND_PAYLOAD", "IDMA_FL_REQ_NEXT_DATA_FL", "IDMA_FL_SEND_NEXT_PCIEHDR", "IDMA_FL_SEND_PADDING", "IDMA_FL_SEND_COMPLETION_TO_IMSG", "IDMA_FL_SEND_FIFO_TO_IMSG", "IDMA_FL_REQ_DATAFL_DONE", "IDMA_FL_REQ_HEADERFL_DONE", }; static const char * const t5_decode[] = { "IDMA_IDLE", "IDMA_ALMOST_IDLE", "IDMA_PUSH_MORE_CPL_FIFO", "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO", "IDMA_SGEFLRFLUSH_SEND_PCIEHDR", "IDMA_PHYSADDR_SEND_PCIEHDR", "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST", "IDMA_PHYSADDR_SEND_PAYLOAD", "IDMA_SEND_FIFO_TO_IMSG", "IDMA_FL_REQ_DATA_FL", "IDMA_FL_DROP", "IDMA_FL_DROP_SEND_INC", "IDMA_FL_H_REQ_HEADER_FL", "IDMA_FL_H_SEND_PCIEHDR", "IDMA_FL_H_PUSH_CPL_FIFO", "IDMA_FL_H_SEND_CPL", "IDMA_FL_H_SEND_IP_HDR_FIRST", "IDMA_FL_H_SEND_IP_HDR", "IDMA_FL_H_REQ_NEXT_HEADER_FL", "IDMA_FL_H_SEND_NEXT_PCIEHDR", "IDMA_FL_H_SEND_IP_HDR_PADDING", "IDMA_FL_D_SEND_PCIEHDR", "IDMA_FL_D_SEND_CPL_AND_IP_HDR", "IDMA_FL_D_REQ_NEXT_DATA_FL", "IDMA_FL_SEND_PCIEHDR", "IDMA_FL_PUSH_CPL_FIFO", "IDMA_FL_SEND_CPL", "IDMA_FL_SEND_PAYLOAD_FIRST", "IDMA_FL_SEND_PAYLOAD", "IDMA_FL_REQ_NEXT_DATA_FL", "IDMA_FL_SEND_NEXT_PCIEHDR", "IDMA_FL_SEND_PADDING", "IDMA_FL_SEND_COMPLETION_TO_IMSG", }; static const char * const t6_decode[] = { "IDMA_IDLE", "IDMA_PUSH_MORE_CPL_FIFO", "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO", "IDMA_SGEFLRFLUSH_SEND_PCIEHDR", "IDMA_PHYSADDR_SEND_PCIEHDR", "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST", "IDMA_PHYSADDR_SEND_PAYLOAD", "IDMA_FL_REQ_DATA_FL", "IDMA_FL_DROP", "IDMA_FL_DROP_SEND_INC", "IDMA_FL_H_REQ_HEADER_FL", "IDMA_FL_H_SEND_PCIEHDR", "IDMA_FL_H_PUSH_CPL_FIFO", "IDMA_FL_H_SEND_CPL", "IDMA_FL_H_SEND_IP_HDR_FIRST", "IDMA_FL_H_SEND_IP_HDR", "IDMA_FL_H_REQ_NEXT_HEADER_FL", "IDMA_FL_H_SEND_NEXT_PCIEHDR", "IDMA_FL_H_SEND_IP_HDR_PADDING", "IDMA_FL_D_SEND_PCIEHDR", "IDMA_FL_D_SEND_CPL_AND_IP_HDR", "IDMA_FL_D_REQ_NEXT_DATA_FL", "IDMA_FL_SEND_PCIEHDR", "IDMA_FL_PUSH_CPL_FIFO", "IDMA_FL_SEND_CPL", "IDMA_FL_SEND_PAYLOAD_FIRST", "IDMA_FL_SEND_PAYLOAD", "IDMA_FL_REQ_NEXT_DATA_FL", "IDMA_FL_SEND_NEXT_PCIEHDR", "IDMA_FL_SEND_PADDING", "IDMA_FL_SEND_COMPLETION_TO_IMSG", }; static const u32 sge_regs[] = { A_SGE_DEBUG_DATA_LOW_INDEX_2, A_SGE_DEBUG_DATA_LOW_INDEX_3, A_SGE_DEBUG_DATA_HIGH_INDEX_10, }; const char * const *sge_idma_decode; int sge_idma_decode_nstates; int i; unsigned int chip_version = chip_id(adapter); /* Select the right set of decode strings to dump depending on the * adapter chip type. */ switch (chip_version) { case CHELSIO_T4: sge_idma_decode = (const char * const *)t4_decode; sge_idma_decode_nstates = ARRAY_SIZE(t4_decode); break; case CHELSIO_T5: sge_idma_decode = (const char * const *)t5_decode; sge_idma_decode_nstates = ARRAY_SIZE(t5_decode); break; case CHELSIO_T6: sge_idma_decode = (const char * const *)t6_decode; sge_idma_decode_nstates = ARRAY_SIZE(t6_decode); break; default: CH_ERR(adapter, "Unsupported chip version %d\n", chip_version); return; } if (state < sge_idma_decode_nstates) CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]); else CH_WARN(adapter, "idma state %d unknown\n", state); for (i = 0; i < ARRAY_SIZE(sge_regs); i++) CH_WARN(adapter, "SGE register %#x value %#x\n", sge_regs[i], t4_read_reg(adapter, sge_regs[i])); } /** * t4_sge_ctxt_flush - flush the SGE context cache * @adap: the adapter * @mbox: mailbox to use for the FW command * * Issues a FW command through the given mailbox to flush the * SGE context cache. */ int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox, int ctxt_type) { int ret; u32 ldst_addrspace; struct fw_ldst_cmd c; memset(&c, 0, sizeof(c)); ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(ctxt_type == CTXT_EGRESS ? FW_LDST_ADDRSPC_SGE_EGRC : FW_LDST_ADDRSPC_SGE_INGC); c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_READ | ldst_addrspace); c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); c.u.idctxt.msg_ctxtflush = cpu_to_be32(F_FW_LDST_CMD_CTXTFLUSH); ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); return ret; } /** * t4_fw_hello - establish communication with FW * @adap: the adapter * @mbox: mailbox to use for the FW command * @evt_mbox: mailbox to receive async FW events * @master: specifies the caller's willingness to be the device master * @state: returns the current device state (if non-NULL) * * Issues a command to establish communication with FW. Returns either * an error (negative integer) or the mailbox of the Master PF. */ int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox, enum dev_master master, enum dev_state *state) { int ret; struct fw_hello_cmd c; u32 v; unsigned int master_mbox; int retries = FW_CMD_HELLO_RETRIES; retry: memset(&c, 0, sizeof(c)); INIT_CMD(c, HELLO, WRITE); c.err_to_clearinit = cpu_to_be32( V_FW_HELLO_CMD_MASTERDIS(master == MASTER_CANT) | V_FW_HELLO_CMD_MASTERFORCE(master == MASTER_MUST) | V_FW_HELLO_CMD_MBMASTER(master == MASTER_MUST ? mbox : M_FW_HELLO_CMD_MBMASTER) | V_FW_HELLO_CMD_MBASYNCNOT(evt_mbox) | V_FW_HELLO_CMD_STAGE(FW_HELLO_CMD_STAGE_OS) | F_FW_HELLO_CMD_CLEARINIT); /* * Issue the HELLO command to the firmware. If it's not successful * but indicates that we got a "busy" or "timeout" condition, retry * the HELLO until we exhaust our retry limit. If we do exceed our * retry limit, check to see if the firmware left us any error * information and report that if so ... */ ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); if (ret != FW_SUCCESS) { if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0) goto retry; if (t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_ERR) t4_report_fw_error(adap); return ret; } v = be32_to_cpu(c.err_to_clearinit); master_mbox = G_FW_HELLO_CMD_MBMASTER(v); if (state) { if (v & F_FW_HELLO_CMD_ERR) *state = DEV_STATE_ERR; else if (v & F_FW_HELLO_CMD_INIT) *state = DEV_STATE_INIT; else *state = DEV_STATE_UNINIT; } /* * If we're not the Master PF then we need to wait around for the * Master PF Driver to finish setting up the adapter. * * Note that we also do this wait if we're a non-Master-capable PF and * there is no current Master PF; a Master PF may show up momentarily * and we wouldn't want to fail pointlessly. (This can happen when an * OS loads lots of different drivers rapidly at the same time). In * this case, the Master PF returned by the firmware will be * M_PCIE_FW_MASTER so the test below will work ... */ if ((v & (F_FW_HELLO_CMD_ERR|F_FW_HELLO_CMD_INIT)) == 0 && master_mbox != mbox) { int waiting = FW_CMD_HELLO_TIMEOUT; /* * Wait for the firmware to either indicate an error or * initialized state. If we see either of these we bail out * and report the issue to the caller. If we exhaust the * "hello timeout" and we haven't exhausted our retries, try * again. Otherwise bail with a timeout error. */ for (;;) { u32 pcie_fw; msleep(50); waiting -= 50; /* * If neither Error nor Initialialized are indicated * by the firmware keep waiting till we exhaust our * timeout ... and then retry if we haven't exhausted * our retries ... */ pcie_fw = t4_read_reg(adap, A_PCIE_FW); if (!(pcie_fw & (F_PCIE_FW_ERR|F_PCIE_FW_INIT))) { if (waiting <= 0) { if (retries-- > 0) goto retry; return -ETIMEDOUT; } continue; } /* * We either have an Error or Initialized condition * report errors preferentially. */ if (state) { if (pcie_fw & F_PCIE_FW_ERR) *state = DEV_STATE_ERR; else if (pcie_fw & F_PCIE_FW_INIT) *state = DEV_STATE_INIT; } /* * If we arrived before a Master PF was selected and * there's not a valid Master PF, grab its identity * for our caller. */ if (master_mbox == M_PCIE_FW_MASTER && (pcie_fw & F_PCIE_FW_MASTER_VLD)) master_mbox = G_PCIE_FW_MASTER(pcie_fw); break; } } return master_mbox; } /** * t4_fw_bye - end communication with FW * @adap: the adapter * @mbox: mailbox to use for the FW command * * Issues a command to terminate communication with FW. */ int t4_fw_bye(struct adapter *adap, unsigned int mbox) { struct fw_bye_cmd c; memset(&c, 0, sizeof(c)); INIT_CMD(c, BYE, WRITE); return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); } /** * t4_fw_reset - issue a reset to FW * @adap: the adapter * @mbox: mailbox to use for the FW command * @reset: specifies the type of reset to perform * * Issues a reset command of the specified type to FW. */ int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset) { struct fw_reset_cmd c; memset(&c, 0, sizeof(c)); INIT_CMD(c, RESET, WRITE); c.val = cpu_to_be32(reset); return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); } /** * t4_fw_halt - issue a reset/halt to FW and put uP into RESET * @adap: the adapter * @mbox: mailbox to use for the FW RESET command (if desired) * @force: force uP into RESET even if FW RESET command fails * * Issues a RESET command to firmware (if desired) with a HALT indication * and then puts the microprocessor into RESET state. The RESET command * will only be issued if a legitimate mailbox is provided (mbox <= * M_PCIE_FW_MASTER). * * This is generally used in order for the host to safely manipulate the * adapter without fear of conflicting with whatever the firmware might * be doing. The only way out of this state is to RESTART the firmware * ... */ int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force) { int ret = 0; /* * If a legitimate mailbox is provided, issue a RESET command * with a HALT indication. */ if (adap->flags & FW_OK && mbox <= M_PCIE_FW_MASTER) { struct fw_reset_cmd c; memset(&c, 0, sizeof(c)); INIT_CMD(c, RESET, WRITE); c.val = cpu_to_be32(F_PIORST | F_PIORSTMODE); c.halt_pkd = cpu_to_be32(F_FW_RESET_CMD_HALT); ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); } /* * Normally we won't complete the operation if the firmware RESET * command fails but if our caller insists we'll go ahead and put the * uP into RESET. This can be useful if the firmware is hung or even * missing ... We'll have to take the risk of putting the uP into * RESET without the cooperation of firmware in that case. * * We also force the firmware's HALT flag to be on in case we bypassed * the firmware RESET command above or we're dealing with old firmware * which doesn't have the HALT capability. This will serve as a flag * for the incoming firmware to know that it's coming out of a HALT * rather than a RESET ... if it's new enough to understand that ... */ if (ret == 0 || force) { t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, F_UPCRST); t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT, F_PCIE_FW_HALT); } /* * And we always return the result of the firmware RESET command * even when we force the uP into RESET ... */ return ret; } /** * t4_fw_restart - restart the firmware by taking the uP out of RESET * @adap: the adapter * * Restart firmware previously halted by t4_fw_halt(). On successful * return the previous PF Master remains as the new PF Master and there * is no need to issue a new HELLO command, etc. */ int t4_fw_restart(struct adapter *adap, unsigned int mbox) { int ms; t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0); for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) { if (!(t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_HALT)) return FW_SUCCESS; msleep(100); ms += 100; } return -ETIMEDOUT; } /** * t4_fw_upgrade - perform all of the steps necessary to upgrade FW * @adap: the adapter * @mbox: mailbox to use for the FW RESET command (if desired) * @fw_data: the firmware image to write * @size: image size * @force: force upgrade even if firmware doesn't cooperate * * Perform all of the steps necessary for upgrading an adapter's * firmware image. Normally this requires the cooperation of the * existing firmware in order to halt all existing activities * but if an invalid mailbox token is passed in we skip that step * (though we'll still put the adapter microprocessor into RESET in * that case). * * On successful return the new firmware will have been loaded and * the adapter will have been fully RESET losing all previous setup * state. On unsuccessful return the adapter may be completely hosed ... * positive errno indicates that the adapter is ~probably~ intact, a * negative errno indicates that things are looking bad ... */ int t4_fw_upgrade(struct adapter *adap, unsigned int mbox, const u8 *fw_data, unsigned int size, int force) { const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data; unsigned int bootstrap = be32_to_cpu(fw_hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP; int ret; if (!t4_fw_matches_chip(adap, fw_hdr)) return -EINVAL; if (!bootstrap) { ret = t4_fw_halt(adap, mbox, force); if (ret < 0 && !force) return ret; } ret = t4_load_fw(adap, fw_data, size); if (ret < 0 || bootstrap) return ret; return t4_fw_restart(adap, mbox); } /** * t4_fw_initialize - ask FW to initialize the device * @adap: the adapter * @mbox: mailbox to use for the FW command * * Issues a command to FW to partially initialize the device. This * performs initialization that generally doesn't depend on user input. */ int t4_fw_initialize(struct adapter *adap, unsigned int mbox) { struct fw_initialize_cmd c; memset(&c, 0, sizeof(c)); INIT_CMD(c, INITIALIZE, WRITE); return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); } /** * t4_query_params_rw - query FW or device parameters * @adap: the adapter * @mbox: mailbox to use for the FW command * @pf: the PF * @vf: the VF * @nparams: the number of parameters * @params: the parameter names * @val: the parameter values * @rw: Write and read flag * * Reads the value of FW or device parameters. Up to 7 parameters can be * queried at once. */ int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf, unsigned int vf, unsigned int nparams, const u32 *params, u32 *val, int rw) { int i, ret; struct fw_params_cmd c; __be32 *p = &c.param[0].mnem; if (nparams > 7) return -EINVAL; memset(&c, 0, sizeof(c)); c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_READ | V_FW_PARAMS_CMD_PFN(pf) | V_FW_PARAMS_CMD_VFN(vf)); c.retval_len16 = cpu_to_be32(FW_LEN16(c)); for (i = 0; i < nparams; i++) { *p++ = cpu_to_be32(*params++); if (rw) *p = cpu_to_be32(*(val + i)); p++; } ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); if (ret == 0) for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2) *val++ = be32_to_cpu(*p); return ret; } int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf, unsigned int vf, unsigned int nparams, const u32 *params, u32 *val) { return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0); } /** * t4_set_params_timeout - sets FW or device parameters * @adap: the adapter * @mbox: mailbox to use for the FW command * @pf: the PF * @vf: the VF * @nparams: the number of parameters * @params: the parameter names * @val: the parameter values * @timeout: the timeout time * * Sets the value of FW or device parameters. Up to 7 parameters can be * specified at once. */ int t4_set_params_timeout(struct adapter *adap, unsigned int mbox, unsigned int pf, unsigned int vf, unsigned int nparams, const u32 *params, const u32 *val, int timeout) { struct fw_params_cmd c; __be32 *p = &c.param[0].mnem; if (nparams > 7) return -EINVAL; memset(&c, 0, sizeof(c)); c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_WRITE | V_FW_PARAMS_CMD_PFN(pf) | V_FW_PARAMS_CMD_VFN(vf)); c.retval_len16 = cpu_to_be32(FW_LEN16(c)); while (nparams--) { *p++ = cpu_to_be32(*params++); *p++ = cpu_to_be32(*val++); } return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout); } /** * t4_set_params - sets FW or device parameters * @adap: the adapter * @mbox: mailbox to use for the FW command * @pf: the PF * @vf: the VF * @nparams: the number of parameters * @params: the parameter names * @val: the parameter values * * Sets the value of FW or device parameters. Up to 7 parameters can be * specified at once. */ int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf, unsigned int vf, unsigned int nparams, const u32 *params, const u32 *val) { return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val, FW_CMD_MAX_TIMEOUT); } /** * t4_cfg_pfvf - configure PF/VF resource limits * @adap: the adapter * @mbox: mailbox to use for the FW command * @pf: the PF being configured * @vf: the VF being configured * @txq: the max number of egress queues * @txq_eth_ctrl: the max number of egress Ethernet or control queues * @rxqi: the max number of interrupt-capable ingress queues * @rxq: the max number of interruptless ingress queues * @tc: the PCI traffic class * @vi: the max number of virtual interfaces * @cmask: the channel access rights mask for the PF/VF * @pmask: the port access rights mask for the PF/VF * @nexact: the maximum number of exact MPS filters * @rcaps: read capabilities * @wxcaps: write/execute capabilities * * Configures resource limits and capabilities for a physical or virtual * function. */ int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf, unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl, unsigned int rxqi, unsigned int rxq, unsigned int tc, unsigned int vi, unsigned int cmask, unsigned int pmask, unsigned int nexact, unsigned int rcaps, unsigned int wxcaps) { struct fw_pfvf_cmd c; memset(&c, 0, sizeof(c)); c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PFVF_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_WRITE | V_FW_PFVF_CMD_PFN(pf) | V_FW_PFVF_CMD_VFN(vf)); c.retval_len16 = cpu_to_be32(FW_LEN16(c)); c.niqflint_niq = cpu_to_be32(V_FW_PFVF_CMD_NIQFLINT(rxqi) | V_FW_PFVF_CMD_NIQ(rxq)); c.type_to_neq = cpu_to_be32(V_FW_PFVF_CMD_CMASK(cmask) | V_FW_PFVF_CMD_PMASK(pmask) | V_FW_PFVF_CMD_NEQ(txq)); c.tc_to_nexactf = cpu_to_be32(V_FW_PFVF_CMD_TC(tc) | V_FW_PFVF_CMD_NVI(vi) | V_FW_PFVF_CMD_NEXACTF(nexact)); c.r_caps_to_nethctrl = cpu_to_be32(V_FW_PFVF_CMD_R_CAPS(rcaps) | V_FW_PFVF_CMD_WX_CAPS(wxcaps) | V_FW_PFVF_CMD_NETHCTRL(txq_eth_ctrl)); return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); } /** * t4_alloc_vi_func - allocate a virtual interface * @adap: the adapter * @mbox: mailbox to use for the FW command * @port: physical port associated with the VI * @pf: the PF owning the VI * @vf: the VF owning the VI * @nmac: number of MAC addresses needed (1 to 5) * @mac: the MAC addresses of the VI * @rss_size: size of RSS table slice associated with this VI * @portfunc: which Port Application Function MAC Address is desired * @idstype: Intrusion Detection Type * * Allocates a virtual interface for the given physical port. If @mac is * not %NULL it contains the MAC addresses of the VI as assigned by FW. * If @rss_size is %NULL the VI is not assigned any RSS slice by FW. * @mac should be large enough to hold @nmac Ethernet addresses, they are * stored consecutively so the space needed is @nmac * 6 bytes. * Returns a negative error number or the non-negative VI id. */ int t4_alloc_vi_func(struct adapter *adap, unsigned int mbox, unsigned int port, unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac, u16 *rss_size, uint8_t *vfvld, uint16_t *vin, unsigned int portfunc, unsigned int idstype) { int ret; struct fw_vi_cmd c; memset(&c, 0, sizeof(c)); c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_VI_CMD_PFN(pf) | V_FW_VI_CMD_VFN(vf)); c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_ALLOC | FW_LEN16(c)); c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_TYPE(idstype) | V_FW_VI_CMD_FUNC(portfunc)); c.portid_pkd = V_FW_VI_CMD_PORTID(port); c.nmac = nmac - 1; if(!rss_size) c.norss_rsssize = F_FW_VI_CMD_NORSS; ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); if (ret) return ret; ret = G_FW_VI_CMD_VIID(be16_to_cpu(c.type_to_viid)); if (mac) { memcpy(mac, c.mac, sizeof(c.mac)); switch (nmac) { case 5: memcpy(mac + 24, c.nmac3, sizeof(c.nmac3)); case 4: memcpy(mac + 18, c.nmac2, sizeof(c.nmac2)); case 3: memcpy(mac + 12, c.nmac1, sizeof(c.nmac1)); case 2: memcpy(mac + 6, c.nmac0, sizeof(c.nmac0)); } } if (rss_size) *rss_size = G_FW_VI_CMD_RSSSIZE(be16_to_cpu(c.norss_rsssize)); if (vfvld) { *vfvld = adap->params.viid_smt_extn_support ? G_FW_VI_CMD_VFVLD(be32_to_cpu(c.alloc_to_len16)) : G_FW_VIID_VIVLD(ret); } if (vin) { *vin = adap->params.viid_smt_extn_support ? G_FW_VI_CMD_VIN(be32_to_cpu(c.alloc_to_len16)) : G_FW_VIID_VIN(ret); } return ret; } /** * t4_alloc_vi - allocate an [Ethernet Function] virtual interface * @adap: the adapter * @mbox: mailbox to use for the FW command * @port: physical port associated with the VI * @pf: the PF owning the VI * @vf: the VF owning the VI * @nmac: number of MAC addresses needed (1 to 5) * @mac: the MAC addresses of the VI * @rss_size: size of RSS table slice associated with this VI * * backwards compatible and convieniance routine to allocate a Virtual * Interface with a Ethernet Port Application Function and Intrustion * Detection System disabled. */ int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port, unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac, u16 *rss_size, uint8_t *vfvld, uint16_t *vin) { return t4_alloc_vi_func(adap, mbox, port, pf, vf, nmac, mac, rss_size, vfvld, vin, FW_VI_FUNC_ETH, 0); } /** * t4_free_vi - free a virtual interface * @adap: the adapter * @mbox: mailbox to use for the FW command * @pf: the PF owning the VI * @vf: the VF owning the VI * @viid: virtual interface identifiler * * Free a previously allocated virtual interface. */ int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf, unsigned int vf, unsigned int viid) { struct fw_vi_cmd c; memset(&c, 0, sizeof(c)); c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_EXEC | V_FW_VI_CMD_PFN(pf) | V_FW_VI_CMD_VFN(vf)); c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_FREE | FW_LEN16(c)); c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_VIID(viid)); return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); } /** * t4_set_rxmode - set Rx properties of a virtual interface * @adap: the adapter * @mbox: mailbox to use for the FW command * @viid: the VI id * @mtu: the new MTU or -1 * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change * @vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change * @sleep_ok: if true we may sleep while awaiting command completion * * Sets Rx properties of a virtual interface. */ int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid, int mtu, int promisc, int all_multi, int bcast, int vlanex, bool sleep_ok) { struct fw_vi_rxmode_cmd c; /* convert to FW values */ if (mtu < 0) mtu = M_FW_VI_RXMODE_CMD_MTU; if (promisc < 0) promisc = M_FW_VI_RXMODE_CMD_PROMISCEN; if (all_multi < 0) all_multi = M_FW_VI_RXMODE_CMD_ALLMULTIEN; if (bcast < 0) bcast = M_FW_VI_RXMODE_CMD_BROADCASTEN; if (vlanex < 0) vlanex = M_FW_VI_RXMODE_CMD_VLANEXEN; memset(&c, 0, sizeof(c)); c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_RXMODE_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_WRITE | V_FW_VI_RXMODE_CMD_VIID(viid)); c.retval_len16 = cpu_to_be32(FW_LEN16(c)); c.mtu_to_vlanexen = cpu_to_be32(V_FW_VI_RXMODE_CMD_MTU(mtu) | V_FW_VI_RXMODE_CMD_PROMISCEN(promisc) | V_FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi) | V_FW_VI_RXMODE_CMD_BROADCASTEN(bcast) | V_FW_VI_RXMODE_CMD_VLANEXEN(vlanex)); return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok); } /** * t4_alloc_encap_mac_filt - Adds a mac entry in mps tcam with VNI support * @adap: the adapter * @viid: the VI id * @mac: the MAC address * @mask: the mask * @vni: the VNI id for the tunnel protocol * @vni_mask: mask for the VNI id * @dip_hit: to enable DIP match for the MPS entry * @lookup_type: MAC address for inner (1) or outer (0) header * @sleep_ok: call is allowed to sleep * * Allocates an MPS entry with specified MAC address and VNI value. * * Returns a negative error number or the allocated index for this mac. */ int t4_alloc_encap_mac_filt(struct adapter *adap, unsigned int viid, const u8 *addr, const u8 *mask, unsigned int vni, unsigned int vni_mask, u8 dip_hit, u8 lookup_type, bool sleep_ok) { struct fw_vi_mac_cmd c; struct fw_vi_mac_vni *p = c.u.exact_vni; int ret = 0; u32 val; memset(&c, 0, sizeof(c)); c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_WRITE | V_FW_VI_MAC_CMD_VIID(viid)); val = V_FW_CMD_LEN16(1) | V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_EXACTMAC_VNI); c.freemacs_to_len16 = cpu_to_be32(val); p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID | V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC)); memcpy(p->macaddr, addr, sizeof(p->macaddr)); memcpy(p->macaddr_mask, mask, sizeof(p->macaddr_mask)); p->lookup_type_to_vni = cpu_to_be32(V_FW_VI_MAC_CMD_VNI(vni) | V_FW_VI_MAC_CMD_DIP_HIT(dip_hit) | V_FW_VI_MAC_CMD_LOOKUP_TYPE(lookup_type)); p->vni_mask_pkd = cpu_to_be32(V_FW_VI_MAC_CMD_VNI_MASK(vni_mask)); ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok); if (ret == 0) ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx)); return ret; } /** * t4_alloc_raw_mac_filt - Adds a mac entry in mps tcam * @adap: the adapter * @viid: the VI id * @mac: the MAC address * @mask: the mask * @idx: index at which to add this entry * @port_id: the port index * @lookup_type: MAC address for inner (1) or outer (0) header * @sleep_ok: call is allowed to sleep * * Adds the mac entry at the specified index using raw mac interface. * * Returns a negative error number or the allocated index for this mac. */ int t4_alloc_raw_mac_filt(struct adapter *adap, unsigned int viid, const u8 *addr, const u8 *mask, unsigned int idx, u8 lookup_type, u8 port_id, bool sleep_ok) { int ret = 0; struct fw_vi_mac_cmd c; struct fw_vi_mac_raw *p = &c.u.raw; u32 val; memset(&c, 0, sizeof(c)); c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_WRITE | V_FW_VI_MAC_CMD_VIID(viid)); val = V_FW_CMD_LEN16(1) | V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_RAW); c.freemacs_to_len16 = cpu_to_be32(val); /* Specify that this is an inner mac address */ p->raw_idx_pkd = cpu_to_be32(V_FW_VI_MAC_CMD_RAW_IDX(idx)); /* Lookup Type. Outer header: 0, Inner header: 1 */ p->data0_pkd = cpu_to_be32(V_DATALKPTYPE(lookup_type) | V_DATAPORTNUM(port_id)); /* Lookup mask and port mask */ p->data0m_pkd = cpu_to_be64(V_DATALKPTYPE(M_DATALKPTYPE) | V_DATAPORTNUM(M_DATAPORTNUM)); /* Copy the address and the mask */ memcpy((u8 *)&p->data1[0] + 2, addr, ETHER_ADDR_LEN); memcpy((u8 *)&p->data1m[0] + 2, mask, ETHER_ADDR_LEN); ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok); if (ret == 0) { ret = G_FW_VI_MAC_CMD_RAW_IDX(be32_to_cpu(p->raw_idx_pkd)); if (ret != idx) ret = -ENOMEM; } return ret; } /** * t4_alloc_mac_filt - allocates exact-match filters for MAC addresses * @adap: the adapter * @mbox: mailbox to use for the FW command * @viid: the VI id * @free: if true any existing filters for this VI id are first removed * @naddr: the number of MAC addresses to allocate filters for (up to 7) * @addr: the MAC address(es) * @idx: where to store the index of each allocated filter * @hash: pointer to hash address filter bitmap * @sleep_ok: call is allowed to sleep * * Allocates an exact-match filter for each of the supplied addresses and * sets it to the corresponding address. If @idx is not %NULL it should * have at least @naddr entries, each of which will be set to the index of * the filter allocated for the corresponding MAC address. If a filter * could not be allocated for an address its index is set to 0xffff. * If @hash is not %NULL addresses that fail to allocate an exact filter * are hashed and update the hash filter bitmap pointed at by @hash. * * Returns a negative error number or the number of filters allocated. */ int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox, unsigned int viid, bool free, unsigned int naddr, const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok) { int offset, ret = 0; struct fw_vi_mac_cmd c; unsigned int nfilters = 0; unsigned int max_naddr = adap->chip_params->mps_tcam_size; unsigned int rem = naddr; if (naddr > max_naddr) return -EINVAL; for (offset = 0; offset < naddr ; /**/) { unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) ? rem : ARRAY_SIZE(c.u.exact)); size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd, u.exact[fw_naddr]), 16); struct fw_vi_mac_exact *p; int i; memset(&c, 0, sizeof(c)); c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_WRITE | V_FW_CMD_EXEC(free) | V_FW_VI_MAC_CMD_VIID(viid)); c.freemacs_to_len16 = cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(free) | V_FW_CMD_LEN16(len16)); for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) { p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID | V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC)); memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr)); } /* * It's okay if we run out of space in our MAC address arena. * Some of the addresses we submit may get stored so we need * to run through the reply to see what the results were ... */ ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok); if (ret && ret != -FW_ENOMEM) break; for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) { u16 index = G_FW_VI_MAC_CMD_IDX( be16_to_cpu(p->valid_to_idx)); if (idx) idx[offset+i] = (index >= max_naddr ? 0xffff : index); if (index < max_naddr) nfilters++; else if (hash) *hash |= (1ULL << hash_mac_addr(addr[offset+i])); } free = false; offset += fw_naddr; rem -= fw_naddr; } if (ret == 0 || ret == -FW_ENOMEM) ret = nfilters; return ret; } /** * t4_free_encap_mac_filt - frees MPS entry at given index * @adap: the adapter * @viid: the VI id * @idx: index of MPS entry to be freed * @sleep_ok: call is allowed to sleep * * Frees the MPS entry at supplied index * * Returns a negative error number or zero on success */ int t4_free_encap_mac_filt(struct adapter *adap, unsigned int viid, int idx, bool sleep_ok) { struct fw_vi_mac_exact *p; struct fw_vi_mac_cmd c; u8 addr[] = {0,0,0,0,0,0}; int ret = 0; u32 exact; memset(&c, 0, sizeof(c)); c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_WRITE | V_FW_CMD_EXEC(0) | V_FW_VI_MAC_CMD_VIID(viid)); exact = V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_EXACTMAC); c.freemacs_to_len16 = cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(0) | exact | V_FW_CMD_LEN16(1)); p = c.u.exact; p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID | V_FW_VI_MAC_CMD_IDX(idx)); memcpy(p->macaddr, addr, sizeof(p->macaddr)); ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok); return ret; } /** * t4_free_raw_mac_filt - Frees a raw mac entry in mps tcam * @adap: the adapter * @viid: the VI id * @addr: the MAC address * @mask: the mask * @idx: index of the entry in mps tcam * @lookup_type: MAC address for inner (1) or outer (0) header * @port_id: the port index * @sleep_ok: call is allowed to sleep * * Removes the mac entry at the specified index using raw mac interface. * * Returns a negative error number on failure. */ int t4_free_raw_mac_filt(struct adapter *adap, unsigned int viid, const u8 *addr, const u8 *mask, unsigned int idx, u8 lookup_type, u8 port_id, bool sleep_ok) { struct fw_vi_mac_cmd c; struct fw_vi_mac_raw *p = &c.u.raw; u32 raw; memset(&c, 0, sizeof(c)); c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_WRITE | V_FW_CMD_EXEC(0) | V_FW_VI_MAC_CMD_VIID(viid)); raw = V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_RAW); c.freemacs_to_len16 = cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(0) | raw | V_FW_CMD_LEN16(1)); p->raw_idx_pkd = cpu_to_be32(V_FW_VI_MAC_CMD_RAW_IDX(idx) | FW_VI_MAC_ID_BASED_FREE); /* Lookup Type. Outer header: 0, Inner header: 1 */ p->data0_pkd = cpu_to_be32(V_DATALKPTYPE(lookup_type) | V_DATAPORTNUM(port_id)); /* Lookup mask and port mask */ p->data0m_pkd = cpu_to_be64(V_DATALKPTYPE(M_DATALKPTYPE) | V_DATAPORTNUM(M_DATAPORTNUM)); /* Copy the address and the mask */ memcpy((u8 *)&p->data1[0] + 2, addr, ETHER_ADDR_LEN); memcpy((u8 *)&p->data1m[0] + 2, mask, ETHER_ADDR_LEN); return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok); } /** * t4_free_mac_filt - frees exact-match filters of given MAC addresses * @adap: the adapter * @mbox: mailbox to use for the FW command * @viid: the VI id * @naddr: the number of MAC addresses to allocate filters for (up to 7) * @addr: the MAC address(es) * @sleep_ok: call is allowed to sleep * * Frees the exact-match filter for each of the supplied addresses * * Returns a negative error number or the number of filters freed. */ int t4_free_mac_filt(struct adapter *adap, unsigned int mbox, unsigned int viid, unsigned int naddr, const u8 **addr, bool sleep_ok) { int offset, ret = 0; struct fw_vi_mac_cmd c; unsigned int nfilters = 0; unsigned int max_naddr = adap->chip_params->mps_tcam_size; unsigned int rem = naddr; if (naddr > max_naddr) return -EINVAL; for (offset = 0; offset < (int)naddr ; /**/) { unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) ? rem : ARRAY_SIZE(c.u.exact)); size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd, u.exact[fw_naddr]), 16); struct fw_vi_mac_exact *p; int i; memset(&c, 0, sizeof(c)); c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_WRITE | V_FW_CMD_EXEC(0) | V_FW_VI_MAC_CMD_VIID(viid)); c.freemacs_to_len16 = cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(0) | V_FW_CMD_LEN16(len16)); for (i = 0, p = c.u.exact; i < (int)fw_naddr; i++, p++) { p->valid_to_idx = cpu_to_be16( F_FW_VI_MAC_CMD_VALID | V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_MAC_BASED_FREE)); memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr)); } ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok); if (ret) break; for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) { u16 index = G_FW_VI_MAC_CMD_IDX( be16_to_cpu(p->valid_to_idx)); if (index < max_naddr) nfilters++; } offset += fw_naddr; rem -= fw_naddr; } if (ret == 0) ret = nfilters; return ret; } /** * t4_change_mac - modifies the exact-match filter for a MAC address * @adap: the adapter * @mbox: mailbox to use for the FW command * @viid: the VI id * @idx: index of existing filter for old value of MAC address, or -1 * @addr: the new MAC address value * @persist: whether a new MAC allocation should be persistent * @smt_idx: add MAC to SMT and return its index, or NULL * * Modifies an exact-match filter and sets it to the new MAC address if * @idx >= 0, or adds the MAC address to a new filter if @idx < 0. In the * latter case the address is added persistently if @persist is %true. * * Note that in general it is not possible to modify the value of a given * filter so the generic way to modify an address filter is to free the one * being used by the old address value and allocate a new filter for the * new address value. * * Returns a negative error number or the index of the filter with the new * MAC value. Note that this index may differ from @idx. */ int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid, int idx, const u8 *addr, bool persist, uint16_t *smt_idx) { int ret, mode; struct fw_vi_mac_cmd c; struct fw_vi_mac_exact *p = c.u.exact; unsigned int max_mac_addr = adap->chip_params->mps_tcam_size; if (idx < 0) /* new allocation */ idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC; mode = smt_idx ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY; memset(&c, 0, sizeof(c)); c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_WRITE | V_FW_VI_MAC_CMD_VIID(viid)); c.freemacs_to_len16 = cpu_to_be32(V_FW_CMD_LEN16(1)); p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID | V_FW_VI_MAC_CMD_SMAC_RESULT(mode) | V_FW_VI_MAC_CMD_IDX(idx)); memcpy(p->macaddr, addr, sizeof(p->macaddr)); ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); if (ret == 0) { ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx)); if (ret >= max_mac_addr) ret = -ENOMEM; if (smt_idx) { if (adap->params.viid_smt_extn_support) *smt_idx = G_FW_VI_MAC_CMD_SMTID(be32_to_cpu(c.op_to_viid)); else { if (chip_id(adap) <= CHELSIO_T5) *smt_idx = (viid & M_FW_VIID_VIN) << 1; else *smt_idx = viid & M_FW_VIID_VIN; } } } return ret; } /** * t4_set_addr_hash - program the MAC inexact-match hash filter * @adap: the adapter * @mbox: mailbox to use for the FW command * @viid: the VI id * @ucast: whether the hash filter should also match unicast addresses * @vec: the value to be written to the hash filter * @sleep_ok: call is allowed to sleep * * Sets the 64-bit inexact-match hash filter for a virtual interface. */ int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid, bool ucast, u64 vec, bool sleep_ok) { struct fw_vi_mac_cmd c; u32 val; memset(&c, 0, sizeof(c)); c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_WRITE | V_FW_VI_ENABLE_CMD_VIID(viid)); val = V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_HASHVEC) | V_FW_VI_MAC_CMD_HASHUNIEN(ucast) | V_FW_CMD_LEN16(1); c.freemacs_to_len16 = cpu_to_be32(val); c.u.hash.hashvec = cpu_to_be64(vec); return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok); } /** * t4_enable_vi_params - enable/disable a virtual interface * @adap: the adapter * @mbox: mailbox to use for the FW command * @viid: the VI id * @rx_en: 1=enable Rx, 0=disable Rx * @tx_en: 1=enable Tx, 0=disable Tx * @dcb_en: 1=enable delivery of Data Center Bridging messages. * * Enables/disables a virtual interface. Note that setting DCB Enable * only makes sense when enabling a Virtual Interface ... */ int t4_enable_vi_params(struct adapter *adap, unsigned int mbox, unsigned int viid, bool rx_en, bool tx_en, bool dcb_en) { struct fw_vi_enable_cmd c; memset(&c, 0, sizeof(c)); c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_EXEC | V_FW_VI_ENABLE_CMD_VIID(viid)); c.ien_to_len16 = cpu_to_be32(V_FW_VI_ENABLE_CMD_IEN(rx_en) | V_FW_VI_ENABLE_CMD_EEN(tx_en) | V_FW_VI_ENABLE_CMD_DCB_INFO(dcb_en) | FW_LEN16(c)); return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL); } /** * t4_enable_vi - enable/disable a virtual interface * @adap: the adapter * @mbox: mailbox to use for the FW command * @viid: the VI id * @rx_en: 1=enable Rx, 0=disable Rx * @tx_en: 1=enable Tx, 0=disable Tx * * Enables/disables a virtual interface. Note that setting DCB Enable * only makes sense when enabling a Virtual Interface ... */ int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid, bool rx_en, bool tx_en) { return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0); } /** * t4_identify_port - identify a VI's port by blinking its LED * @adap: the adapter * @mbox: mailbox to use for the FW command * @viid: the VI id * @nblinks: how many times to blink LED at 2.5 Hz * * Identifies a VI's port by blinking its LED. */ int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid, unsigned int nblinks) { struct fw_vi_enable_cmd c; memset(&c, 0, sizeof(c)); c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_EXEC | V_FW_VI_ENABLE_CMD_VIID(viid)); c.ien_to_len16 = cpu_to_be32(F_FW_VI_ENABLE_CMD_LED | FW_LEN16(c)); c.blinkdur = cpu_to_be16(nblinks); return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); } /** * t4_iq_stop - stop an ingress queue and its FLs * @adap: the adapter * @mbox: mailbox to use for the FW command * @pf: the PF owning the queues * @vf: the VF owning the queues * @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.) * @iqid: ingress queue id * @fl0id: FL0 queue id or 0xffff if no attached FL0 * @fl1id: FL1 queue id or 0xffff if no attached FL1 * * Stops an ingress queue and its associated FLs, if any. This causes * any current or future data/messages destined for these queues to be * tossed. */ int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf, unsigned int vf, unsigned int iqtype, unsigned int iqid, unsigned int fl0id, unsigned int fl1id) { struct fw_iq_cmd c; memset(&c, 0, sizeof(c)); c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) | V_FW_IQ_CMD_VFN(vf)); c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_IQSTOP | FW_LEN16(c)); c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype)); c.iqid = cpu_to_be16(iqid); c.fl0id = cpu_to_be16(fl0id); c.fl1id = cpu_to_be16(fl1id); return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); } /** * t4_iq_free - free an ingress queue and its FLs * @adap: the adapter * @mbox: mailbox to use for the FW command * @pf: the PF owning the queues * @vf: the VF owning the queues * @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.) * @iqid: ingress queue id * @fl0id: FL0 queue id or 0xffff if no attached FL0 * @fl1id: FL1 queue id or 0xffff if no attached FL1 * * Frees an ingress queue and its associated FLs, if any. */ int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, unsigned int vf, unsigned int iqtype, unsigned int iqid, unsigned int fl0id, unsigned int fl1id) { struct fw_iq_cmd c; memset(&c, 0, sizeof(c)); c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) | V_FW_IQ_CMD_VFN(vf)); c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_FREE | FW_LEN16(c)); c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype)); c.iqid = cpu_to_be16(iqid); c.fl0id = cpu_to_be16(fl0id); c.fl1id = cpu_to_be16(fl1id); return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); } /** * t4_eth_eq_stop - stop an Ethernet egress queue * @adap: the adapter * @mbox: mailbox to use for the FW command * @pf: the PF owning the queues * @vf: the VF owning the queues * @eqid: egress queue id * * Stops an Ethernet egress queue. The queue can be reinitialized or * freed but is not otherwise functional after this call. */ int t4_eth_eq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf, unsigned int vf, unsigned int eqid) { struct fw_eq_eth_cmd c; memset(&c, 0, sizeof(c)); c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_ETH_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_EXEC | V_FW_EQ_ETH_CMD_PFN(pf) | V_FW_EQ_ETH_CMD_VFN(vf)); c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_ETH_CMD_EQSTOP | FW_LEN16(c)); c.eqid_pkd = cpu_to_be32(V_FW_EQ_ETH_CMD_EQID(eqid)); return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); } /** * t4_eth_eq_free - free an Ethernet egress queue * @adap: the adapter * @mbox: mailbox to use for the FW command * @pf: the PF owning the queue * @vf: the VF owning the queue * @eqid: egress queue id * * Frees an Ethernet egress queue. */ int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, unsigned int vf, unsigned int eqid) { struct fw_eq_eth_cmd c; memset(&c, 0, sizeof(c)); c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_ETH_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_EXEC | V_FW_EQ_ETH_CMD_PFN(pf) | V_FW_EQ_ETH_CMD_VFN(vf)); c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_ETH_CMD_FREE | FW_LEN16(c)); c.eqid_pkd = cpu_to_be32(V_FW_EQ_ETH_CMD_EQID(eqid)); return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); } /** * t4_ctrl_eq_free - free a control egress queue * @adap: the adapter * @mbox: mailbox to use for the FW command * @pf: the PF owning the queue * @vf: the VF owning the queue * @eqid: egress queue id * * Frees a control egress queue. */ int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, unsigned int vf, unsigned int eqid) { struct fw_eq_ctrl_cmd c; memset(&c, 0, sizeof(c)); c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_EXEC | V_FW_EQ_CTRL_CMD_PFN(pf) | V_FW_EQ_CTRL_CMD_VFN(vf)); c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_CTRL_CMD_FREE | FW_LEN16(c)); c.cmpliqid_eqid = cpu_to_be32(V_FW_EQ_CTRL_CMD_EQID(eqid)); return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); } /** * t4_ofld_eq_free - free an offload egress queue * @adap: the adapter * @mbox: mailbox to use for the FW command * @pf: the PF owning the queue * @vf: the VF owning the queue * @eqid: egress queue id * * Frees a control egress queue. */ int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, unsigned int vf, unsigned int eqid) { struct fw_eq_ofld_cmd c; memset(&c, 0, sizeof(c)); c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_OFLD_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_EXEC | V_FW_EQ_OFLD_CMD_PFN(pf) | V_FW_EQ_OFLD_CMD_VFN(vf)); c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_OFLD_CMD_FREE | FW_LEN16(c)); c.eqid_pkd = cpu_to_be32(V_FW_EQ_OFLD_CMD_EQID(eqid)); return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); } /** * t4_link_down_rc_str - return a string for a Link Down Reason Code * @link_down_rc: Link Down Reason Code * * Returns a string representation of the Link Down Reason Code. */ const char *t4_link_down_rc_str(unsigned char link_down_rc) { static const char *reason[] = { "Link Down", "Remote Fault", "Auto-negotiation Failure", "Reserved3", "Insufficient Airflow", "Unable To Determine Reason", "No RX Signal Detected", "Reserved7", }; if (link_down_rc >= ARRAY_SIZE(reason)) return "Bad Reason Code"; return reason[link_down_rc]; } /* * Return the highest speed set in the port capabilities, in Mb/s. */ unsigned int fwcap_to_speed(uint32_t caps) { #define TEST_SPEED_RETURN(__caps_speed, __speed) \ do { \ if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \ return __speed; \ } while (0) TEST_SPEED_RETURN(400G, 400000); TEST_SPEED_RETURN(200G, 200000); TEST_SPEED_RETURN(100G, 100000); TEST_SPEED_RETURN(50G, 50000); TEST_SPEED_RETURN(40G, 40000); TEST_SPEED_RETURN(25G, 25000); TEST_SPEED_RETURN(10G, 10000); TEST_SPEED_RETURN(1G, 1000); TEST_SPEED_RETURN(100M, 100); #undef TEST_SPEED_RETURN return 0; } /* * Return the port capabilities bit for the given speed, which is in Mb/s. */ uint32_t speed_to_fwcap(unsigned int speed) { #define TEST_SPEED_RETURN(__caps_speed, __speed) \ do { \ if (speed == __speed) \ return FW_PORT_CAP32_SPEED_##__caps_speed; \ } while (0) TEST_SPEED_RETURN(400G, 400000); TEST_SPEED_RETURN(200G, 200000); TEST_SPEED_RETURN(100G, 100000); TEST_SPEED_RETURN(50G, 50000); TEST_SPEED_RETURN(40G, 40000); TEST_SPEED_RETURN(25G, 25000); TEST_SPEED_RETURN(10G, 10000); TEST_SPEED_RETURN(1G, 1000); TEST_SPEED_RETURN(100M, 100); #undef TEST_SPEED_RETURN return 0; } /* * Return the port capabilities bit for the highest speed in the capabilities. */ uint32_t fwcap_top_speed(uint32_t caps) { #define TEST_SPEED_RETURN(__caps_speed) \ do { \ if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \ return FW_PORT_CAP32_SPEED_##__caps_speed; \ } while (0) TEST_SPEED_RETURN(400G); TEST_SPEED_RETURN(200G); TEST_SPEED_RETURN(100G); TEST_SPEED_RETURN(50G); TEST_SPEED_RETURN(40G); TEST_SPEED_RETURN(25G); TEST_SPEED_RETURN(10G); TEST_SPEED_RETURN(1G); TEST_SPEED_RETURN(100M); #undef TEST_SPEED_RETURN return 0; } /** * lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities * @lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value * * Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new * 32-bit Port Capabilities value. */ static uint32_t lstatus_to_fwcap(u32 lstatus) { uint32_t linkattr = 0; /* * Unfortunately the format of the Link Status in the old * 16-bit Port Information message isn't the same as the * 16-bit Port Capabilities bitfield used everywhere else ... */ if (lstatus & F_FW_PORT_CMD_RXPAUSE) linkattr |= FW_PORT_CAP32_FC_RX; if (lstatus & F_FW_PORT_CMD_TXPAUSE) linkattr |= FW_PORT_CAP32_FC_TX; if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100M)) linkattr |= FW_PORT_CAP32_SPEED_100M; if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_1G)) linkattr |= FW_PORT_CAP32_SPEED_1G; if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_10G)) linkattr |= FW_PORT_CAP32_SPEED_10G; if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_25G)) linkattr |= FW_PORT_CAP32_SPEED_25G; if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_40G)) linkattr |= FW_PORT_CAP32_SPEED_40G; if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100G)) linkattr |= FW_PORT_CAP32_SPEED_100G; return linkattr; } /* * Updates all fields owned by the common code in port_info and link_config * based on information provided by the firmware. Does not touch any * requested_* field. */ static void handle_port_info(struct port_info *pi, const struct fw_port_cmd *p, enum fw_port_action action, bool *mod_changed, bool *link_changed) { struct link_config old_lc, *lc = &pi->link_cfg; unsigned char fc; u32 stat, linkattr; int old_ptype, old_mtype; old_ptype = pi->port_type; old_mtype = pi->mod_type; old_lc = *lc; if (action == FW_PORT_ACTION_GET_PORT_INFO) { stat = be32_to_cpu(p->u.info.lstatus_to_modtype); pi->port_type = G_FW_PORT_CMD_PTYPE(stat); pi->mod_type = G_FW_PORT_CMD_MODTYPE(stat); pi->mdio_addr = stat & F_FW_PORT_CMD_MDIOCAP ? G_FW_PORT_CMD_MDIOADDR(stat) : -1; lc->pcaps = fwcaps16_to_caps32(be16_to_cpu(p->u.info.pcap)); lc->acaps = fwcaps16_to_caps32(be16_to_cpu(p->u.info.acap)); lc->lpacaps = fwcaps16_to_caps32(be16_to_cpu(p->u.info.lpacap)); lc->link_ok = (stat & F_FW_PORT_CMD_LSTATUS) != 0; lc->link_down_rc = G_FW_PORT_CMD_LINKDNRC(stat); linkattr = lstatus_to_fwcap(stat); } else if (action == FW_PORT_ACTION_GET_PORT_INFO32) { stat = be32_to_cpu(p->u.info32.lstatus32_to_cbllen32); pi->port_type = G_FW_PORT_CMD_PORTTYPE32(stat); pi->mod_type = G_FW_PORT_CMD_MODTYPE32(stat); pi->mdio_addr = stat & F_FW_PORT_CMD_MDIOCAP32 ? G_FW_PORT_CMD_MDIOADDR32(stat) : -1; lc->pcaps = be32_to_cpu(p->u.info32.pcaps32); lc->acaps = be32_to_cpu(p->u.info32.acaps32); lc->lpacaps = be32_to_cpu(p->u.info32.lpacaps32); lc->link_ok = (stat & F_FW_PORT_CMD_LSTATUS32) != 0; lc->link_down_rc = G_FW_PORT_CMD_LINKDNRC32(stat); linkattr = be32_to_cpu(p->u.info32.linkattr32); } else { CH_ERR(pi->adapter, "bad port_info action 0x%x\n", action); return; } lc->speed = fwcap_to_speed(linkattr); lc->fec = fwcap_to_fec(linkattr, true); fc = 0; if (linkattr & FW_PORT_CAP32_FC_RX) fc |= PAUSE_RX; if (linkattr & FW_PORT_CAP32_FC_TX) fc |= PAUSE_TX; lc->fc = fc; if (mod_changed != NULL) *mod_changed = false; if (link_changed != NULL) *link_changed = false; if (old_ptype != pi->port_type || old_mtype != pi->mod_type || old_lc.pcaps != lc->pcaps) { if (pi->mod_type != FW_PORT_MOD_TYPE_NONE) lc->fec_hint = fwcap_to_fec(lc->acaps, true); if (mod_changed != NULL) *mod_changed = true; } if (old_lc.link_ok != lc->link_ok || old_lc.speed != lc->speed || old_lc.fec != lc->fec || old_lc.fc != lc->fc) { if (link_changed != NULL) *link_changed = true; } } /** * t4_update_port_info - retrieve and update port information if changed * @pi: the port_info * * We issue a Get Port Information Command to the Firmware and, if * successful, we check to see if anything is different from what we * last recorded and update things accordingly. */ int t4_update_port_info(struct port_info *pi) { struct adapter *sc = pi->adapter; struct fw_port_cmd cmd; enum fw_port_action action; int ret; memset(&cmd, 0, sizeof(cmd)); cmd.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_READ | V_FW_PORT_CMD_PORTID(pi->tx_chan)); action = sc->params.port_caps32 ? FW_PORT_ACTION_GET_PORT_INFO32 : FW_PORT_ACTION_GET_PORT_INFO; cmd.action_to_len16 = cpu_to_be32(V_FW_PORT_CMD_ACTION(action) | FW_LEN16(cmd)); ret = t4_wr_mbox_ns(sc, sc->mbox, &cmd, sizeof(cmd), &cmd); if (ret) return ret; handle_port_info(pi, &cmd, action, NULL, NULL); return 0; } /** * t4_handle_fw_rpl - process a FW reply message * @adap: the adapter * @rpl: start of the FW message * * Processes a FW message, such as link state change messages. */ int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl) { u8 opcode = *(const u8 *)rpl; const struct fw_port_cmd *p = (const void *)rpl; enum fw_port_action action = G_FW_PORT_CMD_ACTION(be32_to_cpu(p->action_to_len16)); bool mod_changed, link_changed; if (opcode == FW_PORT_CMD && (action == FW_PORT_ACTION_GET_PORT_INFO || action == FW_PORT_ACTION_GET_PORT_INFO32)) { /* link/module state change message */ int i; int chan = G_FW_PORT_CMD_PORTID(be32_to_cpu(p->op_to_portid)); struct port_info *pi = NULL; struct link_config *lc; for_each_port(adap, i) { pi = adap2pinfo(adap, i); if (pi->tx_chan == chan) break; } lc = &pi->link_cfg; PORT_LOCK(pi); handle_port_info(pi, p, action, &mod_changed, &link_changed); PORT_UNLOCK(pi); if (mod_changed) t4_os_portmod_changed(pi); if (link_changed) { PORT_LOCK(pi); t4_os_link_changed(pi); PORT_UNLOCK(pi); } } else { CH_WARN_RATELIMIT(adap, "Unknown firmware reply %d\n", opcode); return -EINVAL; } return 0; } /** * get_pci_mode - determine a card's PCI mode * @adapter: the adapter * @p: where to store the PCI settings * * Determines a card's PCI mode and associated parameters, such as speed * and width. */ static void get_pci_mode(struct adapter *adapter, struct pci_params *p) { u16 val; u32 pcie_cap; pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP); if (pcie_cap) { t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_LNKSTA, &val); p->speed = val & PCI_EXP_LNKSTA_CLS; p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4; } } struct flash_desc { u32 vendor_and_model_id; u32 size_mb; }; int t4_get_flash_params(struct adapter *adapter) { /* * Table for non-standard supported Flash parts. Note, all Flash * parts must have 64KB sectors. */ static struct flash_desc supported_flash[] = { { 0x00150201, 4 << 20 }, /* Spansion 4MB S25FL032P */ }; int ret; u32 flashid = 0; unsigned int part, manufacturer; unsigned int density, size = 0; /* * Issue a Read ID Command to the Flash part. We decode supported * Flash parts and their sizes from this. There's a newer Query * Command which can retrieve detailed geometry information but many * Flash parts don't support it. */ ret = sf1_write(adapter, 1, 1, 0, SF_RD_ID); if (!ret) ret = sf1_read(adapter, 3, 0, 1, &flashid); t4_write_reg(adapter, A_SF_OP, 0); /* unlock SF */ if (ret < 0) return ret; /* * Check to see if it's one of our non-standard supported Flash parts. */ for (part = 0; part < ARRAY_SIZE(supported_flash); part++) if (supported_flash[part].vendor_and_model_id == flashid) { adapter->params.sf_size = supported_flash[part].size_mb; adapter->params.sf_nsec = adapter->params.sf_size / SF_SEC_SIZE; goto found; } /* * Decode Flash part size. The code below looks repetative with * common encodings, but that's not guaranteed in the JEDEC * specification for the Read JADEC ID command. The only thing that * we're guaranteed by the JADEC specification is where the * Manufacturer ID is in the returned result. After that each * Manufacturer ~could~ encode things completely differently. * Note, all Flash parts must have 64KB sectors. */ manufacturer = flashid & 0xff; switch (manufacturer) { case 0x20: /* Micron/Numonix */ /* * This Density -> Size decoding table is taken from Micron * Data Sheets. */ density = (flashid >> 16) & 0xff; switch (density) { case 0x14: size = 1 << 20; break; /* 1MB */ case 0x15: size = 1 << 21; break; /* 2MB */ case 0x16: size = 1 << 22; break; /* 4MB */ case 0x17: size = 1 << 23; break; /* 8MB */ case 0x18: size = 1 << 24; break; /* 16MB */ case 0x19: size = 1 << 25; break; /* 32MB */ case 0x20: size = 1 << 26; break; /* 64MB */ case 0x21: size = 1 << 27; break; /* 128MB */ case 0x22: size = 1 << 28; break; /* 256MB */ } break; case 0x9d: /* ISSI -- Integrated Silicon Solution, Inc. */ /* * This Density -> Size decoding table is taken from ISSI * Data Sheets. */ density = (flashid >> 16) & 0xff; switch (density) { case 0x16: size = 1 << 25; break; /* 32MB */ case 0x17: size = 1 << 26; break; /* 64MB */ } break; case 0xc2: /* Macronix */ /* * This Density -> Size decoding table is taken from Macronix * Data Sheets. */ density = (flashid >> 16) & 0xff; switch (density) { case 0x17: size = 1 << 23; break; /* 8MB */ case 0x18: size = 1 << 24; break; /* 16MB */ } break; case 0xef: /* Winbond */ /* * This Density -> Size decoding table is taken from Winbond * Data Sheets. */ density = (flashid >> 16) & 0xff; switch (density) { case 0x17: size = 1 << 23; break; /* 8MB */ case 0x18: size = 1 << 24; break; /* 16MB */ } break; } /* If we didn't recognize the FLASH part, that's no real issue: the * Hardware/Software contract says that Hardware will _*ALWAYS*_ * use a FLASH part which is at least 4MB in size and has 64KB * sectors. The unrecognized FLASH part is likely to be much larger * than 4MB, but that's all we really need. */ if (size == 0) { CH_WARN(adapter, "Unknown Flash Part, ID = %#x, assuming 4MB\n", flashid); size = 1 << 22; } /* * Store decoded Flash size and fall through into vetting code. */ adapter->params.sf_size = size; adapter->params.sf_nsec = size / SF_SEC_SIZE; found: /* * We should ~probably~ reject adapters with FLASHes which are too * small but we have some legacy FPGAs with small FLASHes that we'd * still like to use. So instead we emit a scary message ... */ if (adapter->params.sf_size < FLASH_MIN_SIZE) CH_WARN(adapter, "WARNING: Flash Part ID %#x, size %#x < %#x\n", flashid, adapter->params.sf_size, FLASH_MIN_SIZE); return 0; } static void set_pcie_completion_timeout(struct adapter *adapter, u8 range) { u16 val; u32 pcie_cap; pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP); if (pcie_cap) { t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, &val); val &= 0xfff0; val |= range ; t4_os_pci_write_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, val); } } const struct chip_params *t4_get_chip_params(int chipid) { static const struct chip_params chip_params[] = { { /* T4 */ .nchan = NCHAN, .pm_stats_cnt = PM_NSTATS, .cng_ch_bits_log = 2, .nsched_cls = 15, .cim_num_obq = CIM_NUM_OBQ, .mps_rplc_size = 128, .vfcount = 128, .sge_fl_db = F_DBPRIO, .mps_tcam_size = NUM_MPS_CLS_SRAM_L_INSTANCES, .rss_nentries = RSS_NENTRIES, }, { /* T5 */ .nchan = NCHAN, .pm_stats_cnt = PM_NSTATS, .cng_ch_bits_log = 2, .nsched_cls = 16, .cim_num_obq = CIM_NUM_OBQ_T5, .mps_rplc_size = 128, .vfcount = 128, .sge_fl_db = F_DBPRIO | F_DBTYPE, .mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES, .rss_nentries = RSS_NENTRIES, }, { /* T6 */ .nchan = T6_NCHAN, .pm_stats_cnt = T6_PM_NSTATS, .cng_ch_bits_log = 3, .nsched_cls = 16, .cim_num_obq = CIM_NUM_OBQ_T5, .mps_rplc_size = 256, .vfcount = 256, .sge_fl_db = 0, .mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES, .rss_nentries = T6_RSS_NENTRIES, }, }; chipid -= CHELSIO_T4; if (chipid < 0 || chipid >= ARRAY_SIZE(chip_params)) return NULL; return &chip_params[chipid]; } /** * t4_prep_adapter - prepare SW and HW for operation * @adapter: the adapter * @buf: temporary space of at least VPD_LEN size provided by the caller. * * Initialize adapter SW state for the various HW modules, set initial * values for some adapter tunables, take PHYs out of reset, and * initialize the MDIO interface. */ int t4_prep_adapter(struct adapter *adapter, u32 *buf) { int ret; uint16_t device_id; uint32_t pl_rev; get_pci_mode(adapter, &adapter->params.pci); pl_rev = t4_read_reg(adapter, A_PL_REV); adapter->params.chipid = G_CHIPID(pl_rev); adapter->params.rev = G_REV(pl_rev); if (adapter->params.chipid == 0) { /* T4 did not have chipid in PL_REV (T5 onwards do) */ adapter->params.chipid = CHELSIO_T4; /* T4A1 chip is not supported */ if (adapter->params.rev == 1) { CH_ALERT(adapter, "T4 rev 1 chip is not supported.\n"); return -EINVAL; } } adapter->chip_params = t4_get_chip_params(chip_id(adapter)); if (adapter->chip_params == NULL) return -EINVAL; adapter->params.pci.vpd_cap_addr = t4_os_find_pci_capability(adapter, PCI_CAP_ID_VPD); ret = t4_get_flash_params(adapter); if (ret < 0) return ret; /* Cards with real ASICs have the chipid in the PCIe device id */ t4_os_pci_read_cfg2(adapter, PCI_DEVICE_ID, &device_id); if (device_id >> 12 == chip_id(adapter)) adapter->params.cim_la_size = CIMLA_SIZE; else { /* FPGA */ adapter->params.fpga = 1; adapter->params.cim_la_size = 2 * CIMLA_SIZE; } ret = get_vpd_params(adapter, &adapter->params.vpd, device_id, buf); if (ret < 0) return ret; init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd); /* * Default port and clock for debugging in case we can't reach FW. */ adapter->params.nports = 1; adapter->params.portvec = 1; adapter->params.vpd.cclk = 50000; /* Set pci completion timeout value to 4 seconds. */ set_pcie_completion_timeout(adapter, 0xd); return 0; } /** * t4_shutdown_adapter - shut down adapter, host & wire * @adapter: the adapter * * Perform an emergency shutdown of the adapter and stop it from * continuing any further communication on the ports or DMA to the * host. This is typically used when the adapter and/or firmware * have crashed and we want to prevent any further accidental * communication with the rest of the world. This will also force * the port Link Status to go down -- if register writes work -- * which should help our peers figure out that we're down. */ int t4_shutdown_adapter(struct adapter *adapter) { int port; t4_intr_disable(adapter); t4_write_reg(adapter, A_DBG_GPIO_EN, 0); for_each_port(adapter, port) { u32 a_port_cfg = is_t4(adapter) ? PORT_REG(port, A_XGMAC_PORT_CFG) : T5_PORT_REG(port, A_MAC_PORT_CFG); t4_write_reg(adapter, a_port_cfg, t4_read_reg(adapter, a_port_cfg) & ~V_SIGNAL_DET(1)); } t4_set_reg_field(adapter, A_SGE_CONTROL, F_GLOBALENABLE, 0); return 0; } /** * t4_bar2_sge_qregs - return BAR2 SGE Queue register information * @adapter: the adapter * @qid: the Queue ID * @qtype: the Ingress or Egress type for @qid * @user: true if this request is for a user mode queue * @pbar2_qoffset: BAR2 Queue Offset * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues * * Returns the BAR2 SGE Queue Registers information associated with the * indicated Absolute Queue ID. These are passed back in return value * pointers. @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue * and T4_BAR2_QTYPE_INGRESS for Ingress Queues. * * This may return an error which indicates that BAR2 SGE Queue * registers aren't available. If an error is not returned, then the * following values are returned: * * *@pbar2_qoffset: the BAR2 Offset of the @qid Registers * *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid * * If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which * require the "Inferred Queue ID" ability may be used. E.g. the * Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0, * then these "Inferred Queue ID" register may not be used. */ int t4_bar2_sge_qregs(struct adapter *adapter, unsigned int qid, enum t4_bar2_qtype qtype, int user, u64 *pbar2_qoffset, unsigned int *pbar2_qid) { unsigned int page_shift, page_size, qpp_shift, qpp_mask; u64 bar2_page_offset, bar2_qoffset; unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred; /* T4 doesn't support BAR2 SGE Queue registers for kernel * mode queues. */ if (!user && is_t4(adapter)) return -EINVAL; /* Get our SGE Page Size parameters. */ page_shift = adapter->params.sge.page_shift; page_size = 1 << page_shift; /* Get the right Queues per Page parameters for our Queue. */ qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS ? adapter->params.sge.eq_s_qpp : adapter->params.sge.iq_s_qpp); qpp_mask = (1 << qpp_shift) - 1; /* Calculate the basics of the BAR2 SGE Queue register area: * o The BAR2 page the Queue registers will be in. * o The BAR2 Queue ID. * o The BAR2 Queue ID Offset into the BAR2 page. */ bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift); bar2_qid = qid & qpp_mask; bar2_qid_offset = bar2_qid * SGE_UDB_SIZE; /* If the BAR2 Queue ID Offset is less than the Page Size, then the * hardware will infer the Absolute Queue ID simply from the writes to * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a * BAR2 Queue ID of 0 for those writes). Otherwise, we'll simply * write to the first BAR2 SGE Queue Area within the BAR2 Page with * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID * from the BAR2 Page and BAR2 Queue ID. * * One important censequence of this is that some BAR2 SGE registers * have a "Queue ID" field and we can write the BAR2 SGE Queue ID * there. But other registers synthesize the SGE Queue ID purely * from the writes to the registers -- the Write Combined Doorbell * Buffer is a good example. These BAR2 SGE Registers are only * available for those BAR2 SGE Register areas where the SGE Absolute * Queue ID can be inferred from simple writes. */ bar2_qoffset = bar2_page_offset; bar2_qinferred = (bar2_qid_offset < page_size); if (bar2_qinferred) { bar2_qoffset += bar2_qid_offset; bar2_qid = 0; } *pbar2_qoffset = bar2_qoffset; *pbar2_qid = bar2_qid; return 0; } /** * t4_init_devlog_params - initialize adapter->params.devlog * @adap: the adapter * @fw_attach: whether we can talk to the firmware * * Initialize various fields of the adapter's Firmware Device Log * Parameters structure. */ int t4_init_devlog_params(struct adapter *adap, int fw_attach) { struct devlog_params *dparams = &adap->params.devlog; u32 pf_dparams; unsigned int devlog_meminfo; struct fw_devlog_cmd devlog_cmd; int ret; /* If we're dealing with newer firmware, the Device Log Paramerters * are stored in a designated register which allows us to access the * Device Log even if we can't talk to the firmware. */ pf_dparams = t4_read_reg(adap, PCIE_FW_REG(A_PCIE_FW_PF, PCIE_FW_PF_DEVLOG)); if (pf_dparams) { unsigned int nentries, nentries128; dparams->memtype = G_PCIE_FW_PF_DEVLOG_MEMTYPE(pf_dparams); dparams->start = G_PCIE_FW_PF_DEVLOG_ADDR16(pf_dparams) << 4; nentries128 = G_PCIE_FW_PF_DEVLOG_NENTRIES128(pf_dparams); nentries = (nentries128 + 1) * 128; dparams->size = nentries * sizeof(struct fw_devlog_e); return 0; } /* * For any failing returns ... */ memset(dparams, 0, sizeof *dparams); /* * If we can't talk to the firmware, there's really nothing we can do * at this point. */ if (!fw_attach) return -ENXIO; /* Otherwise, ask the firmware for it's Device Log Parameters. */ memset(&devlog_cmd, 0, sizeof devlog_cmd); devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_READ); devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd)); ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd), &devlog_cmd); if (ret) return ret; devlog_meminfo = be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog); dparams->memtype = G_FW_DEVLOG_CMD_MEMTYPE_DEVLOG(devlog_meminfo); dparams->start = G_FW_DEVLOG_CMD_MEMADDR16_DEVLOG(devlog_meminfo) << 4; dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog); return 0; } /** * t4_init_sge_params - initialize adap->params.sge * @adapter: the adapter * * Initialize various fields of the adapter's SGE Parameters structure. */ int t4_init_sge_params(struct adapter *adapter) { u32 r; struct sge_params *sp = &adapter->params.sge; unsigned i, tscale = 1; r = t4_read_reg(adapter, A_SGE_INGRESS_RX_THRESHOLD); sp->counter_val[0] = G_THRESHOLD_0(r); sp->counter_val[1] = G_THRESHOLD_1(r); sp->counter_val[2] = G_THRESHOLD_2(r); sp->counter_val[3] = G_THRESHOLD_3(r); if (chip_id(adapter) >= CHELSIO_T6) { r = t4_read_reg(adapter, A_SGE_ITP_CONTROL); tscale = G_TSCALE(r); if (tscale == 0) tscale = 1; else tscale += 2; } r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_0_AND_1); sp->timer_val[0] = core_ticks_to_us(adapter, G_TIMERVALUE0(r)) * tscale; sp->timer_val[1] = core_ticks_to_us(adapter, G_TIMERVALUE1(r)) * tscale; r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_2_AND_3); sp->timer_val[2] = core_ticks_to_us(adapter, G_TIMERVALUE2(r)) * tscale; sp->timer_val[3] = core_ticks_to_us(adapter, G_TIMERVALUE3(r)) * tscale; r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_4_AND_5); sp->timer_val[4] = core_ticks_to_us(adapter, G_TIMERVALUE4(r)) * tscale; sp->timer_val[5] = core_ticks_to_us(adapter, G_TIMERVALUE5(r)) * tscale; r = t4_read_reg(adapter, A_SGE_CONM_CTRL); sp->fl_starve_threshold = G_EGRTHRESHOLD(r) * 2 + 1; if (is_t4(adapter)) sp->fl_starve_threshold2 = sp->fl_starve_threshold; else if (is_t5(adapter)) sp->fl_starve_threshold2 = G_EGRTHRESHOLDPACKING(r) * 2 + 1; else sp->fl_starve_threshold2 = G_T6_EGRTHRESHOLDPACKING(r) * 2 + 1; /* egress queues: log2 of # of doorbells per BAR2 page */ r = t4_read_reg(adapter, A_SGE_EGRESS_QUEUES_PER_PAGE_PF); r >>= S_QUEUESPERPAGEPF0 + (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf; sp->eq_s_qpp = r & M_QUEUESPERPAGEPF0; /* ingress queues: log2 of # of doorbells per BAR2 page */ r = t4_read_reg(adapter, A_SGE_INGRESS_QUEUES_PER_PAGE_PF); r >>= S_QUEUESPERPAGEPF0 + (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf; sp->iq_s_qpp = r & M_QUEUESPERPAGEPF0; r = t4_read_reg(adapter, A_SGE_HOST_PAGE_SIZE); r >>= S_HOSTPAGESIZEPF0 + (S_HOSTPAGESIZEPF1 - S_HOSTPAGESIZEPF0) * adapter->pf; sp->page_shift = (r & M_HOSTPAGESIZEPF0) + 10; r = t4_read_reg(adapter, A_SGE_CONTROL); sp->sge_control = r; sp->spg_len = r & F_EGRSTATUSPAGESIZE ? 128 : 64; sp->fl_pktshift = G_PKTSHIFT(r); if (chip_id(adapter) <= CHELSIO_T5) { sp->pad_boundary = 1 << (G_INGPADBOUNDARY(r) + X_INGPADBOUNDARY_SHIFT); } else { sp->pad_boundary = 1 << (G_INGPADBOUNDARY(r) + X_T6_INGPADBOUNDARY_SHIFT); } if (is_t4(adapter)) sp->pack_boundary = sp->pad_boundary; else { r = t4_read_reg(adapter, A_SGE_CONTROL2); if (G_INGPACKBOUNDARY(r) == 0) sp->pack_boundary = 16; else sp->pack_boundary = 1 << (G_INGPACKBOUNDARY(r) + 5); } for (i = 0; i < SGE_FLBUF_SIZES; i++) sp->sge_fl_buffer_size[i] = t4_read_reg(adapter, A_SGE_FL_BUFFER_SIZE0 + (4 * i)); return 0; } /* * Read and cache the adapter's compressed filter mode and ingress config. */ static void read_filter_mode_and_ingress_config(struct adapter *adap, bool sleep_ok) { uint32_t v; struct tp_params *tpp = &adap->params.tp; t4_tp_pio_read(adap, &tpp->vlan_pri_map, 1, A_TP_VLAN_PRI_MAP, sleep_ok); t4_tp_pio_read(adap, &tpp->ingress_config, 1, A_TP_INGRESS_CONFIG, sleep_ok); /* * Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field * shift positions of several elements of the Compressed Filter Tuple * for this adapter which we need frequently ... */ tpp->fcoe_shift = t4_filter_field_shift(adap, F_FCOE); tpp->port_shift = t4_filter_field_shift(adap, F_PORT); tpp->vnic_shift = t4_filter_field_shift(adap, F_VNIC_ID); tpp->vlan_shift = t4_filter_field_shift(adap, F_VLAN); tpp->tos_shift = t4_filter_field_shift(adap, F_TOS); tpp->protocol_shift = t4_filter_field_shift(adap, F_PROTOCOL); tpp->ethertype_shift = t4_filter_field_shift(adap, F_ETHERTYPE); tpp->macmatch_shift = t4_filter_field_shift(adap, F_MACMATCH); tpp->matchtype_shift = t4_filter_field_shift(adap, F_MPSHITTYPE); tpp->frag_shift = t4_filter_field_shift(adap, F_FRAGMENTATION); if (chip_id(adap) > CHELSIO_T4) { v = t4_read_reg(adap, LE_HASH_MASK_GEN_IPV4T5(3)); adap->params.tp.hash_filter_mask = v; v = t4_read_reg(adap, LE_HASH_MASK_GEN_IPV4T5(4)); adap->params.tp.hash_filter_mask |= (u64)v << 32; } } /** * t4_init_tp_params - initialize adap->params.tp * @adap: the adapter * * Initialize various fields of the adapter's TP Parameters structure. */ int t4_init_tp_params(struct adapter *adap, bool sleep_ok) { int chan; u32 tx_len, rx_len, r, v; struct tp_params *tpp = &adap->params.tp; v = t4_read_reg(adap, A_TP_TIMER_RESOLUTION); tpp->tre = G_TIMERRESOLUTION(v); tpp->dack_re = G_DELAYEDACKRESOLUTION(v); /* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */ for (chan = 0; chan < MAX_NCHAN; chan++) tpp->tx_modq[chan] = chan; read_filter_mode_and_ingress_config(adap, sleep_ok); if (chip_id(adap) > CHELSIO_T5) { v = t4_read_reg(adap, A_TP_OUT_CONFIG); tpp->rx_pkt_encap = v & F_CRXPKTENC; } else tpp->rx_pkt_encap = false; rx_len = t4_read_reg(adap, A_TP_PMM_RX_PAGE_SIZE); tx_len = t4_read_reg(adap, A_TP_PMM_TX_PAGE_SIZE); r = t4_read_reg(adap, A_TP_PARA_REG2); rx_len = min(rx_len, G_MAXRXDATA(r)); tx_len = min(tx_len, G_MAXRXDATA(r)); r = t4_read_reg(adap, A_TP_PARA_REG7); v = min(G_PMMAXXFERLEN0(r), G_PMMAXXFERLEN1(r)); rx_len = min(rx_len, v); tx_len = min(tx_len, v); tpp->max_tx_pdu = tx_len; tpp->max_rx_pdu = rx_len; return 0; } /** * t4_filter_field_shift - calculate filter field shift * @adap: the adapter * @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits) * * Return the shift position of a filter field within the Compressed * Filter Tuple. The filter field is specified via its selection bit * within TP_VLAN_PRI_MAL (filter mode). E.g. F_VLAN. */ int t4_filter_field_shift(const struct adapter *adap, int filter_sel) { unsigned int filter_mode = adap->params.tp.vlan_pri_map; unsigned int sel; int field_shift; if ((filter_mode & filter_sel) == 0) return -1; for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) { switch (filter_mode & sel) { case F_FCOE: field_shift += W_FT_FCOE; break; case F_PORT: field_shift += W_FT_PORT; break; case F_VNIC_ID: field_shift += W_FT_VNIC_ID; break; case F_VLAN: field_shift += W_FT_VLAN; break; case F_TOS: field_shift += W_FT_TOS; break; case F_PROTOCOL: field_shift += W_FT_PROTOCOL; break; case F_ETHERTYPE: field_shift += W_FT_ETHERTYPE; break; case F_MACMATCH: field_shift += W_FT_MACMATCH; break; case F_MPSHITTYPE: field_shift += W_FT_MPSHITTYPE; break; case F_FRAGMENTATION: field_shift += W_FT_FRAGMENTATION; break; } } return field_shift; } int t4_port_init(struct adapter *adap, int mbox, int pf, int vf, int port_id) { u8 addr[6]; int ret, i, j; struct port_info *p = adap2pinfo(adap, port_id); u32 param, val; struct vi_info *vi = &p->vi[0]; for (i = 0, j = -1; i <= p->port_id; i++) { do { j++; } while ((adap->params.portvec & (1 << j)) == 0); } p->tx_chan = j; p->mps_bg_map = t4_get_mps_bg_map(adap, j); p->rx_e_chan_map = t4_get_rx_e_chan_map(adap, j); p->lport = j; if (!(adap->flags & IS_VF) || adap->params.vfres.r_caps & FW_CMD_CAP_PORT) { t4_update_port_info(p); } ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &vi->rss_size, &vi->vfvld, &vi->vin); if (ret < 0) return ret; vi->viid = ret; t4_os_set_hw_addr(p, addr); param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) | V_FW_PARAMS_PARAM_YZ(vi->viid); ret = t4_query_params(adap, mbox, pf, vf, 1, ¶m, &val); if (ret) vi->rss_base = 0xffff; else { /* MPASS((val >> 16) == rss_size); */ vi->rss_base = val & 0xffff; } return 0; } /** * t4_read_cimq_cfg - read CIM queue configuration * @adap: the adapter * @base: holds the queue base addresses in bytes * @size: holds the queue sizes in bytes * @thres: holds the queue full thresholds in bytes * * Returns the current configuration of the CIM queues, starting with * the IBQs, then the OBQs. */ void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres) { unsigned int i, v; int cim_num_obq = adap->chip_params->cim_num_obq; for (i = 0; i < CIM_NUM_IBQ; i++) { t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_IBQSELECT | V_QUENUMSELECT(i)); v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL); /* value is in 256-byte units */ *base++ = G_CIMQBASE(v) * 256; *size++ = G_CIMQSIZE(v) * 256; *thres++ = G_QUEFULLTHRSH(v) * 8; /* 8-byte unit */ } for (i = 0; i < cim_num_obq; i++) { t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT | V_QUENUMSELECT(i)); v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL); /* value is in 256-byte units */ *base++ = G_CIMQBASE(v) * 256; *size++ = G_CIMQSIZE(v) * 256; } } /** * t4_read_cim_ibq - read the contents of a CIM inbound queue * @adap: the adapter * @qid: the queue index * @data: where to store the queue contents * @n: capacity of @data in 32-bit words * * Reads the contents of the selected CIM queue starting at address 0 up * to the capacity of @data. @n must be a multiple of 4. Returns < 0 on * error and the number of 32-bit words actually read on success. */ int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n) { int i, err, attempts; unsigned int addr; const unsigned int nwords = CIM_IBQ_SIZE * 4; if (qid > 5 || (n & 3)) return -EINVAL; addr = qid * nwords; if (n > nwords) n = nwords; /* It might take 3-10ms before the IBQ debug read access is allowed. * Wait for 1 Sec with a delay of 1 usec. */ attempts = 1000000; for (i = 0; i < n; i++, addr++) { t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, V_IBQDBGADDR(addr) | F_IBQDBGEN); err = t4_wait_op_done(adap, A_CIM_IBQ_DBG_CFG, F_IBQDBGBUSY, 0, attempts, 1); if (err) return err; *data++ = t4_read_reg(adap, A_CIM_IBQ_DBG_DATA); } t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, 0); return i; } /** * t4_read_cim_obq - read the contents of a CIM outbound queue * @adap: the adapter * @qid: the queue index * @data: where to store the queue contents * @n: capacity of @data in 32-bit words * * Reads the contents of the selected CIM queue starting at address 0 up * to the capacity of @data. @n must be a multiple of 4. Returns < 0 on * error and the number of 32-bit words actually read on success. */ int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n) { int i, err; unsigned int addr, v, nwords; int cim_num_obq = adap->chip_params->cim_num_obq; if ((qid > (cim_num_obq - 1)) || (n & 3)) return -EINVAL; t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT | V_QUENUMSELECT(qid)); v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL); addr = G_CIMQBASE(v) * 64; /* muliple of 256 -> muliple of 4 */ nwords = G_CIMQSIZE(v) * 64; /* same */ if (n > nwords) n = nwords; for (i = 0; i < n; i++, addr++) { t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, V_OBQDBGADDR(addr) | F_OBQDBGEN); err = t4_wait_op_done(adap, A_CIM_OBQ_DBG_CFG, F_OBQDBGBUSY, 0, 2, 1); if (err) return err; *data++ = t4_read_reg(adap, A_CIM_OBQ_DBG_DATA); } t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, 0); return i; } enum { CIM_QCTL_BASE = 0, CIM_CTL_BASE = 0x2000, CIM_PBT_ADDR_BASE = 0x2800, CIM_PBT_LRF_BASE = 0x3000, CIM_PBT_DATA_BASE = 0x3800 }; /** * t4_cim_read - read a block from CIM internal address space * @adap: the adapter * @addr: the start address within the CIM address space * @n: number of words to read * @valp: where to store the result * * Reads a block of 4-byte words from the CIM intenal address space. */ int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n, unsigned int *valp) { int ret = 0; if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY) return -EBUSY; for ( ; !ret && n--; addr += 4) { t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr); ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY, 0, 5, 2); if (!ret) *valp++ = t4_read_reg(adap, A_CIM_HOST_ACC_DATA); } return ret; } /** * t4_cim_write - write a block into CIM internal address space * @adap: the adapter * @addr: the start address within the CIM address space * @n: number of words to write * @valp: set of values to write * * Writes a block of 4-byte words into the CIM intenal address space. */ int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n, const unsigned int *valp) { int ret = 0; if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY) return -EBUSY; for ( ; !ret && n--; addr += 4) { t4_write_reg(adap, A_CIM_HOST_ACC_DATA, *valp++); t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr | F_HOSTWRITE); ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY, 0, 5, 2); } return ret; } static int t4_cim_write1(struct adapter *adap, unsigned int addr, unsigned int val) { return t4_cim_write(adap, addr, 1, &val); } /** * t4_cim_ctl_read - read a block from CIM control region * @adap: the adapter * @addr: the start address within the CIM control region * @n: number of words to read * @valp: where to store the result * * Reads a block of 4-byte words from the CIM control region. */ int t4_cim_ctl_read(struct adapter *adap, unsigned int addr, unsigned int n, unsigned int *valp) { return t4_cim_read(adap, addr + CIM_CTL_BASE, n, valp); } /** * t4_cim_read_la - read CIM LA capture buffer * @adap: the adapter * @la_buf: where to store the LA data * @wrptr: the HW write pointer within the capture buffer * * Reads the contents of the CIM LA buffer with the most recent entry at * the end of the returned data and with the entry at @wrptr first. * We try to leave the LA in the running state we find it in. */ int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr) { int i, ret; unsigned int cfg, val, idx; ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &cfg); if (ret) return ret; if (cfg & F_UPDBGLAEN) { /* LA is running, freeze it */ ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG, 0); if (ret) return ret; } ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val); if (ret) goto restart; idx = G_UPDBGLAWRPTR(val); if (wrptr) *wrptr = idx; for (i = 0; i < adap->params.cim_la_size; i++) { ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG, V_UPDBGLARDPTR(idx) | F_UPDBGLARDEN); if (ret) break; ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val); if (ret) break; if (val & F_UPDBGLARDEN) { ret = -ETIMEDOUT; break; } ret = t4_cim_read(adap, A_UP_UP_DBG_LA_DATA, 1, &la_buf[i]); if (ret) break; /* Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to * identify the 32-bit portion of the full 312-bit data */ if (is_t6(adap) && (idx & 0xf) >= 9) idx = (idx & 0xff0) + 0x10; else idx++; /* address can't exceed 0xfff */ idx &= M_UPDBGLARDPTR; } restart: if (cfg & F_UPDBGLAEN) { int r = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG, cfg & ~F_UPDBGLARDEN); if (!ret) ret = r; } return ret; } /** * t4_tp_read_la - read TP LA capture buffer * @adap: the adapter * @la_buf: where to store the LA data * @wrptr: the HW write pointer within the capture buffer * * Reads the contents of the TP LA buffer with the most recent entry at * the end of the returned data and with the entry at @wrptr first. * We leave the LA in the running state we find it in. */ void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr) { bool last_incomplete; unsigned int i, cfg, val, idx; cfg = t4_read_reg(adap, A_TP_DBG_LA_CONFIG) & 0xffff; if (cfg & F_DBGLAENABLE) /* freeze LA */ t4_write_reg(adap, A_TP_DBG_LA_CONFIG, adap->params.tp.la_mask | (cfg ^ F_DBGLAENABLE)); val = t4_read_reg(adap, A_TP_DBG_LA_CONFIG); idx = G_DBGLAWPTR(val); last_incomplete = G_DBGLAMODE(val) >= 2 && (val & F_DBGLAWHLF) == 0; if (last_incomplete) idx = (idx + 1) & M_DBGLARPTR; if (wrptr) *wrptr = idx; val &= 0xffff; val &= ~V_DBGLARPTR(M_DBGLARPTR); val |= adap->params.tp.la_mask; for (i = 0; i < TPLA_SIZE; i++) { t4_write_reg(adap, A_TP_DBG_LA_CONFIG, V_DBGLARPTR(idx) | val); la_buf[i] = t4_read_reg64(adap, A_TP_DBG_LA_DATAL); idx = (idx + 1) & M_DBGLARPTR; } /* Wipe out last entry if it isn't valid */ if (last_incomplete) la_buf[TPLA_SIZE - 1] = ~0ULL; if (cfg & F_DBGLAENABLE) /* restore running state */ t4_write_reg(adap, A_TP_DBG_LA_CONFIG, cfg | adap->params.tp.la_mask); } /* * SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in * seconds). If we find one of the SGE Ingress DMA State Machines in the same * state for more than the Warning Threshold then we'll issue a warning about * a potential hang. We'll repeat the warning as the SGE Ingress DMA Channel * appears to be hung every Warning Repeat second till the situation clears. * If the situation clears, we'll note that as well. */ #define SGE_IDMA_WARN_THRESH 1 #define SGE_IDMA_WARN_REPEAT 300 /** * t4_idma_monitor_init - initialize SGE Ingress DMA Monitor * @adapter: the adapter * @idma: the adapter IDMA Monitor state * * Initialize the state of an SGE Ingress DMA Monitor. */ void t4_idma_monitor_init(struct adapter *adapter, struct sge_idma_monitor_state *idma) { /* Initialize the state variables for detecting an SGE Ingress DMA * hang. The SGE has internal counters which count up on each clock * tick whenever the SGE finds its Ingress DMA State Engines in the * same state they were on the previous clock tick. The clock used is * the Core Clock so we have a limit on the maximum "time" they can * record; typically a very small number of seconds. For instance, * with a 600MHz Core Clock, we can only count up to a bit more than * 7s. So we'll synthesize a larger counter in order to not run the * risk of having the "timers" overflow and give us the flexibility to * maintain a Hung SGE State Machine of our own which operates across * a longer time frame. */ idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */ idma->idma_stalled[0] = idma->idma_stalled[1] = 0; } /** * t4_idma_monitor - monitor SGE Ingress DMA state * @adapter: the adapter * @idma: the adapter IDMA Monitor state * @hz: number of ticks/second * @ticks: number of ticks since the last IDMA Monitor call */ void t4_idma_monitor(struct adapter *adapter, struct sge_idma_monitor_state *idma, int hz, int ticks) { int i, idma_same_state_cnt[2]; /* Read the SGE Debug Ingress DMA Same State Count registers. These * are counters inside the SGE which count up on each clock when the * SGE finds its Ingress DMA State Engines in the same states they * were in the previous clock. The counters will peg out at * 0xffffffff without wrapping around so once they pass the 1s * threshold they'll stay above that till the IDMA state changes. */ t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 13); idma_same_state_cnt[0] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_HIGH); idma_same_state_cnt[1] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW); for (i = 0; i < 2; i++) { u32 debug0, debug11; /* If the Ingress DMA Same State Counter ("timer") is less * than 1s, then we can reset our synthesized Stall Timer and * continue. If we have previously emitted warnings about a * potential stalled Ingress Queue, issue a note indicating * that the Ingress Queue has resumed forward progress. */ if (idma_same_state_cnt[i] < idma->idma_1s_thresh) { if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH*hz) CH_WARN(adapter, "SGE idma%d, queue %u, " "resumed after %d seconds\n", i, idma->idma_qid[i], idma->idma_stalled[i]/hz); idma->idma_stalled[i] = 0; continue; } /* Synthesize an SGE Ingress DMA Same State Timer in the Hz * domain. The first time we get here it'll be because we * passed the 1s Threshold; each additional time it'll be * because the RX Timer Callback is being fired on its regular * schedule. * * If the stall is below our Potential Hung Ingress Queue * Warning Threshold, continue. */ if (idma->idma_stalled[i] == 0) { idma->idma_stalled[i] = hz; idma->idma_warn[i] = 0; } else { idma->idma_stalled[i] += ticks; idma->idma_warn[i] -= ticks; } if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH*hz) continue; /* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds. */ if (idma->idma_warn[i] > 0) continue; idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT*hz; /* Read and save the SGE IDMA State and Queue ID information. * We do this every time in case it changes across time ... * can't be too careful ... */ t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 0); debug0 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW); idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f; t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 11); debug11 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW); idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff; CH_WARN(adapter, "SGE idma%u, queue %u, potentially stuck in " " state %u for %d seconds (debug0=%#x, debug11=%#x)\n", i, idma->idma_qid[i], idma->idma_state[i], idma->idma_stalled[i]/hz, debug0, debug11); t4_sge_decode_idma_state(adapter, idma->idma_state[i]); } } /** * t4_set_vf_mac - Set MAC address for the specified VF * @adapter: The adapter * @pf: the PF used to instantiate the VFs * @vf: one of the VFs instantiated by the specified PF * @naddr: the number of MAC addresses * @addr: the MAC address(es) to be set to the specified VF */ int t4_set_vf_mac(struct adapter *adapter, unsigned int pf, unsigned int vf, unsigned int naddr, u8 *addr) { struct fw_acl_mac_cmd cmd; memset(&cmd, 0, sizeof(cmd)); cmd.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_ACL_MAC_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_WRITE | V_FW_ACL_MAC_CMD_PFN(pf) | V_FW_ACL_MAC_CMD_VFN(vf)); /* Note: Do not enable the ACL */ cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd)); cmd.nmac = naddr; switch (pf) { case 3: memcpy(cmd.macaddr3, addr, sizeof(cmd.macaddr3)); break; case 2: memcpy(cmd.macaddr2, addr, sizeof(cmd.macaddr2)); break; case 1: memcpy(cmd.macaddr1, addr, sizeof(cmd.macaddr1)); break; case 0: memcpy(cmd.macaddr0, addr, sizeof(cmd.macaddr0)); break; } return t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &cmd); } /** * t4_read_pace_tbl - read the pace table * @adap: the adapter * @pace_vals: holds the returned values * * Returns the values of TP's pace table in microseconds. */ void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED]) { unsigned int i, v; for (i = 0; i < NTX_SCHED; i++) { t4_write_reg(adap, A_TP_PACE_TABLE, 0xffff0000 + i); v = t4_read_reg(adap, A_TP_PACE_TABLE); pace_vals[i] = dack_ticks_to_usec(adap, v); } } /** * t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler * @adap: the adapter * @sched: the scheduler index * @kbps: the byte rate in Kbps * @ipg: the interpacket delay in tenths of nanoseconds * * Return the current configuration of a HW Tx scheduler. */ void t4_get_tx_sched(struct adapter *adap, unsigned int sched, unsigned int *kbps, unsigned int *ipg, bool sleep_ok) { unsigned int v, addr, bpt, cpt; if (kbps) { addr = A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2; t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok); if (sched & 1) v >>= 16; bpt = (v >> 8) & 0xff; cpt = v & 0xff; if (!cpt) *kbps = 0; /* scheduler disabled */ else { v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */ *kbps = (v * bpt) / 125; } } if (ipg) { addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2; t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok); if (sched & 1) v >>= 16; v &= 0xffff; *ipg = (10000 * v) / core_ticks_per_usec(adap); } } /** * t4_load_cfg - download config file * @adap: the adapter * @cfg_data: the cfg text file to write * @size: text file size * * Write the supplied config text file to the card's serial flash. */ int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size) { int ret, i, n, cfg_addr; unsigned int addr; unsigned int flash_cfg_start_sec; unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec; cfg_addr = t4_flash_cfg_addr(adap); if (cfg_addr < 0) return cfg_addr; addr = cfg_addr; flash_cfg_start_sec = addr / SF_SEC_SIZE; if (size > FLASH_CFG_MAX_SIZE) { CH_ERR(adap, "cfg file too large, max is %u bytes\n", FLASH_CFG_MAX_SIZE); return -EFBIG; } i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE, /* # of sectors spanned */ sf_sec_size); ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec, flash_cfg_start_sec + i - 1); /* * If size == 0 then we're simply erasing the FLASH sectors associated * with the on-adapter Firmware Configuration File. */ if (ret || size == 0) goto out; /* this will write to the flash up to SF_PAGE_SIZE at a time */ for (i = 0; i< size; i+= SF_PAGE_SIZE) { if ( (size - i) < SF_PAGE_SIZE) n = size - i; else n = SF_PAGE_SIZE; ret = t4_write_flash(adap, addr, n, cfg_data, 1); if (ret) goto out; addr += SF_PAGE_SIZE; cfg_data += SF_PAGE_SIZE; } out: if (ret) CH_ERR(adap, "config file %s failed %d\n", (size == 0 ? "clear" : "download"), ret); return ret; } /** * t5_fw_init_extern_mem - initialize the external memory * @adap: the adapter * * Initializes the external memory on T5. */ int t5_fw_init_extern_mem(struct adapter *adap) { u32 params[1], val[1]; int ret; if (!is_t5(adap)) return 0; val[0] = 0xff; /* Initialize all MCs */ params[0] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_MCINIT)); ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, params, val, FW_CMD_MAX_TIMEOUT); return ret; } /* BIOS boot headers */ typedef struct pci_expansion_rom_header { u8 signature[2]; /* ROM Signature. Should be 0xaa55 */ u8 reserved[22]; /* Reserved per processor Architecture data */ u8 pcir_offset[2]; /* Offset to PCI Data Structure */ } pci_exp_rom_header_t; /* PCI_EXPANSION_ROM_HEADER */ /* Legacy PCI Expansion ROM Header */ typedef struct legacy_pci_expansion_rom_header { u8 signature[2]; /* ROM Signature. Should be 0xaa55 */ u8 size512; /* Current Image Size in units of 512 bytes */ u8 initentry_point[4]; u8 cksum; /* Checksum computed on the entire Image */ u8 reserved[16]; /* Reserved */ u8 pcir_offset[2]; /* Offset to PCI Data Struture */ } legacy_pci_exp_rom_header_t; /* LEGACY_PCI_EXPANSION_ROM_HEADER */ /* EFI PCI Expansion ROM Header */ typedef struct efi_pci_expansion_rom_header { u8 signature[2]; // ROM signature. The value 0xaa55 u8 initialization_size[2]; /* Units 512. Includes this header */ u8 efi_signature[4]; /* Signature from EFI image header. 0x0EF1 */ u8 efi_subsystem[2]; /* Subsystem value for EFI image header */ u8 efi_machine_type[2]; /* Machine type from EFI image header */ u8 compression_type[2]; /* Compression type. */ /* * Compression type definition * 0x0: uncompressed * 0x1: Compressed * 0x2-0xFFFF: Reserved */ u8 reserved[8]; /* Reserved */ u8 efi_image_header_offset[2]; /* Offset to EFI Image */ u8 pcir_offset[2]; /* Offset to PCI Data Structure */ } efi_pci_exp_rom_header_t; /* EFI PCI Expansion ROM Header */ /* PCI Data Structure Format */ typedef struct pcir_data_structure { /* PCI Data Structure */ u8 signature[4]; /* Signature. The string "PCIR" */ u8 vendor_id[2]; /* Vendor Identification */ u8 device_id[2]; /* Device Identification */ u8 vital_product[2]; /* Pointer to Vital Product Data */ u8 length[2]; /* PCIR Data Structure Length */ u8 revision; /* PCIR Data Structure Revision */ u8 class_code[3]; /* Class Code */ u8 image_length[2]; /* Image Length. Multiple of 512B */ u8 code_revision[2]; /* Revision Level of Code/Data */ u8 code_type; /* Code Type. */ /* * PCI Expansion ROM Code Types * 0x00: Intel IA-32, PC-AT compatible. Legacy * 0x01: Open Firmware standard for PCI. FCODE * 0x02: Hewlett-Packard PA RISC. HP reserved * 0x03: EFI Image. EFI * 0x04-0xFF: Reserved. */ u8 indicator; /* Indicator. Identifies the last image in the ROM */ u8 reserved[2]; /* Reserved */ } pcir_data_t; /* PCI__DATA_STRUCTURE */ /* BOOT constants */ enum { BOOT_FLASH_BOOT_ADDR = 0x0,/* start address of boot image in flash */ BOOT_SIGNATURE = 0xaa55, /* signature of BIOS boot ROM */ BOOT_SIZE_INC = 512, /* image size measured in 512B chunks */ BOOT_MIN_SIZE = sizeof(pci_exp_rom_header_t), /* basic header */ BOOT_MAX_SIZE = 1024*BOOT_SIZE_INC, /* 1 byte * length increment */ VENDOR_ID = 0x1425, /* Vendor ID */ PCIR_SIGNATURE = 0x52494350 /* PCIR signature */ }; /* * modify_device_id - Modifies the device ID of the Boot BIOS image * @adatper: the device ID to write. * @boot_data: the boot image to modify. * * Write the supplied device ID to the boot BIOS image. */ static void modify_device_id(int device_id, u8 *boot_data) { legacy_pci_exp_rom_header_t *header; pcir_data_t *pcir_header; u32 cur_header = 0; /* * Loop through all chained images and change the device ID's */ while (1) { header = (legacy_pci_exp_rom_header_t *) &boot_data[cur_header]; pcir_header = (pcir_data_t *) &boot_data[cur_header + le16_to_cpu(*(u16*)header->pcir_offset)]; /* * Only modify the Device ID if code type is Legacy or HP. * 0x00: Okay to modify * 0x01: FCODE. Do not be modify * 0x03: Okay to modify * 0x04-0xFF: Do not modify */ if (pcir_header->code_type == 0x00) { u8 csum = 0; int i; /* * Modify Device ID to match current adatper */ *(u16*) pcir_header->device_id = device_id; /* * Set checksum temporarily to 0. * We will recalculate it later. */ header->cksum = 0x0; /* * Calculate and update checksum */ for (i = 0; i < (header->size512 * 512); i++) csum += (u8)boot_data[cur_header + i]; /* * Invert summed value to create the checksum * Writing new checksum value directly to the boot data */ boot_data[cur_header + 7] = -csum; } else if (pcir_header->code_type == 0x03) { /* * Modify Device ID to match current adatper */ *(u16*) pcir_header->device_id = device_id; } /* * Check indicator element to identify if this is the last * image in the ROM. */ if (pcir_header->indicator & 0x80) break; /* * Move header pointer up to the next image in the ROM. */ cur_header += header->size512 * 512; } } /* * t4_load_boot - download boot flash * @adapter: the adapter * @boot_data: the boot image to write * @boot_addr: offset in flash to write boot_data * @size: image size * * Write the supplied boot image to the card's serial flash. * The boot image has the following sections: a 28-byte header and the * boot image. */ int t4_load_boot(struct adapter *adap, u8 *boot_data, unsigned int boot_addr, unsigned int size) { pci_exp_rom_header_t *header; int pcir_offset ; pcir_data_t *pcir_header; int ret, addr; uint16_t device_id; unsigned int i; unsigned int boot_sector = (boot_addr * 1024 ); unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec; /* * Make sure the boot image does not encroach on the firmware region */ if ((boot_sector + size) >> 16 > FLASH_FW_START_SEC) { CH_ERR(adap, "boot image encroaching on firmware region\n"); return -EFBIG; } /* * The boot sector is comprised of the Expansion-ROM boot, iSCSI boot, * and Boot configuration data sections. These 3 boot sections span * sectors 0 to 7 in flash and live right before the FW image location. */ i = DIV_ROUND_UP(size ? size : FLASH_FW_START, sf_sec_size); ret = t4_flash_erase_sectors(adap, boot_sector >> 16, (boot_sector >> 16) + i - 1); /* * If size == 0 then we're simply erasing the FLASH sectors associated * with the on-adapter option ROM file */ if (ret || (size == 0)) goto out; /* Get boot header */ header = (pci_exp_rom_header_t *)boot_data; pcir_offset = le16_to_cpu(*(u16 *)header->pcir_offset); /* PCIR Data Structure */ pcir_header = (pcir_data_t *) &boot_data[pcir_offset]; /* * Perform some primitive sanity testing to avoid accidentally * writing garbage over the boot sectors. We ought to check for * more but it's not worth it for now ... */ if (size < BOOT_MIN_SIZE || size > BOOT_MAX_SIZE) { CH_ERR(adap, "boot image too small/large\n"); return -EFBIG; } #ifndef CHELSIO_T4_DIAGS /* * Check BOOT ROM header signature */ if (le16_to_cpu(*(u16*)header->signature) != BOOT_SIGNATURE ) { CH_ERR(adap, "Boot image missing signature\n"); return -EINVAL; } /* * Check PCI header signature */ if (le32_to_cpu(*(u32*)pcir_header->signature) != PCIR_SIGNATURE) { CH_ERR(adap, "PCI header missing signature\n"); return -EINVAL; } /* * Check Vendor ID matches Chelsio ID */ if (le16_to_cpu(*(u16*)pcir_header->vendor_id) != VENDOR_ID) { CH_ERR(adap, "Vendor ID missing signature\n"); return -EINVAL; } #endif /* * Retrieve adapter's device ID */ t4_os_pci_read_cfg2(adap, PCI_DEVICE_ID, &device_id); /* Want to deal with PF 0 so I strip off PF 4 indicator */ device_id = device_id & 0xf0ff; /* * Check PCIE Device ID */ if (le16_to_cpu(*(u16*)pcir_header->device_id) != device_id) { /* * Change the device ID in the Boot BIOS image to match * the Device ID of the current adapter. */ modify_device_id(device_id, boot_data); } /* * Skip over the first SF_PAGE_SIZE worth of data and write it after * we finish copying the rest of the boot image. This will ensure * that the BIOS boot header will only be written if the boot image * was written in full. */ addr = boot_sector; for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) { addr += SF_PAGE_SIZE; boot_data += SF_PAGE_SIZE; ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, boot_data, 0); if (ret) goto out; } ret = t4_write_flash(adap, boot_sector, SF_PAGE_SIZE, (const u8 *)header, 0); out: if (ret) CH_ERR(adap, "boot image download failed, error %d\n", ret); return ret; } /* * t4_flash_bootcfg_addr - return the address of the flash optionrom configuration * @adapter: the adapter * * Return the address within the flash where the OptionROM Configuration * is stored, or an error if the device FLASH is too small to contain * a OptionROM Configuration. */ static int t4_flash_bootcfg_addr(struct adapter *adapter) { /* * If the device FLASH isn't large enough to hold a Firmware * Configuration File, return an error. */ if (adapter->params.sf_size < FLASH_BOOTCFG_START + FLASH_BOOTCFG_MAX_SIZE) return -ENOSPC; return FLASH_BOOTCFG_START; } int t4_load_bootcfg(struct adapter *adap,const u8 *cfg_data, unsigned int size) { int ret, i, n, cfg_addr; unsigned int addr; unsigned int flash_cfg_start_sec; unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec; cfg_addr = t4_flash_bootcfg_addr(adap); if (cfg_addr < 0) return cfg_addr; addr = cfg_addr; flash_cfg_start_sec = addr / SF_SEC_SIZE; if (size > FLASH_BOOTCFG_MAX_SIZE) { CH_ERR(adap, "bootcfg file too large, max is %u bytes\n", FLASH_BOOTCFG_MAX_SIZE); return -EFBIG; } i = DIV_ROUND_UP(FLASH_BOOTCFG_MAX_SIZE,/* # of sectors spanned */ sf_sec_size); ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec, flash_cfg_start_sec + i - 1); /* * If size == 0 then we're simply erasing the FLASH sectors associated * with the on-adapter OptionROM Configuration File. */ if (ret || size == 0) goto out; /* this will write to the flash up to SF_PAGE_SIZE at a time */ for (i = 0; i< size; i+= SF_PAGE_SIZE) { if ( (size - i) < SF_PAGE_SIZE) n = size - i; else n = SF_PAGE_SIZE; ret = t4_write_flash(adap, addr, n, cfg_data, 0); if (ret) goto out; addr += SF_PAGE_SIZE; cfg_data += SF_PAGE_SIZE; } out: if (ret) CH_ERR(adap, "boot config data %s failed %d\n", (size == 0 ? "clear" : "download"), ret); return ret; } /** * t4_set_filter_mode - configure the optional components of filter tuples * @adap: the adapter * @mode_map: a bitmap selcting which optional filter components to enable * @sleep_ok: if true we may sleep while awaiting command completion * * Sets the filter mode by selecting the optional components to enable * in filter tuples. Returns 0 on success and a negative error if the * requested mode needs more bits than are available for optional * components. */ int t4_set_filter_mode(struct adapter *adap, unsigned int mode_map, bool sleep_ok) { static u8 width[] = { 1, 3, 17, 17, 8, 8, 16, 9, 3, 1 }; int i, nbits = 0; for (i = S_FCOE; i <= S_FRAGMENTATION; i++) if (mode_map & (1 << i)) nbits += width[i]; if (nbits > FILTER_OPT_LEN) return -EINVAL; t4_tp_pio_write(adap, &mode_map, 1, A_TP_VLAN_PRI_MAP, sleep_ok); read_filter_mode_and_ingress_config(adap, sleep_ok); return 0; } /** * t4_clr_port_stats - clear port statistics * @adap: the adapter * @idx: the port index * * Clear HW statistics for the given port. */ void t4_clr_port_stats(struct adapter *adap, int idx) { unsigned int i; u32 bgmap = adap2pinfo(adap, idx)->mps_bg_map; u32 port_base_addr; if (is_t4(adap)) port_base_addr = PORT_BASE(idx); else port_base_addr = T5_PORT_BASE(idx); for (i = A_MPS_PORT_STAT_TX_PORT_BYTES_L; i <= A_MPS_PORT_STAT_TX_PORT_PPP7_H; i += 8) t4_write_reg(adap, port_base_addr + i, 0); for (i = A_MPS_PORT_STAT_RX_PORT_BYTES_L; i <= A_MPS_PORT_STAT_RX_PORT_LESS_64B_H; i += 8) t4_write_reg(adap, port_base_addr + i, 0); for (i = 0; i < 4; i++) if (bgmap & (1 << i)) { t4_write_reg(adap, A_MPS_STAT_RX_BG_0_MAC_DROP_FRAME_L + i * 8, 0); t4_write_reg(adap, A_MPS_STAT_RX_BG_0_MAC_TRUNC_FRAME_L + i * 8, 0); } } /** * t4_i2c_io - read/write I2C data from adapter * @adap: the adapter * @port: Port number if per-port device; <0 if not * @devid: per-port device ID or absolute device ID * @offset: byte offset into device I2C space * @len: byte length of I2C space data * @buf: buffer in which to return I2C data for read * buffer which holds the I2C data for write * @write: if true, do a write; else do a read * Reads/Writes the I2C data from/to the indicated device and location. */ int t4_i2c_io(struct adapter *adap, unsigned int mbox, int port, unsigned int devid, unsigned int offset, unsigned int len, u8 *buf, bool write) { struct fw_ldst_cmd ldst_cmd, ldst_rpl; unsigned int i2c_max = sizeof(ldst_cmd.u.i2c.data); int ret = 0; if (len > I2C_PAGE_SIZE) return -EINVAL; /* Dont allow reads that spans multiple pages */ if (offset < I2C_PAGE_SIZE && offset + len > I2C_PAGE_SIZE) return -EINVAL; memset(&ldst_cmd, 0, sizeof(ldst_cmd)); ldst_cmd.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) | F_FW_CMD_REQUEST | (write ? F_FW_CMD_WRITE : F_FW_CMD_READ) | V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_I2C)); ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd)); ldst_cmd.u.i2c.pid = (port < 0 ? 0xff : port); ldst_cmd.u.i2c.did = devid; while (len > 0) { unsigned int i2c_len = (len < i2c_max) ? len : i2c_max; ldst_cmd.u.i2c.boffset = offset; ldst_cmd.u.i2c.blen = i2c_len; if (write) memcpy(ldst_cmd.u.i2c.data, buf, i2c_len); ret = t4_wr_mbox(adap, mbox, &ldst_cmd, sizeof(ldst_cmd), write ? NULL : &ldst_rpl); if (ret) break; if (!write) memcpy(buf, ldst_rpl.u.i2c.data, i2c_len); offset += i2c_len; buf += i2c_len; len -= i2c_len; } return ret; } int t4_i2c_rd(struct adapter *adap, unsigned int mbox, int port, unsigned int devid, unsigned int offset, unsigned int len, u8 *buf) { return t4_i2c_io(adap, mbox, port, devid, offset, len, buf, false); } int t4_i2c_wr(struct adapter *adap, unsigned int mbox, int port, unsigned int devid, unsigned int offset, unsigned int len, u8 *buf) { return t4_i2c_io(adap, mbox, port, devid, offset, len, buf, true); } /** * t4_sge_ctxt_rd - read an SGE context through FW * @adap: the adapter * @mbox: mailbox to use for the FW command * @cid: the context id * @ctype: the context type * @data: where to store the context data * * Issues a FW command through the given mailbox to read an SGE context. */ int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid, enum ctxt_type ctype, u32 *data) { int ret; struct fw_ldst_cmd c; if (ctype == CTXT_EGRESS) ret = FW_LDST_ADDRSPC_SGE_EGRC; else if (ctype == CTXT_INGRESS) ret = FW_LDST_ADDRSPC_SGE_INGC; else if (ctype == CTXT_FLM) ret = FW_LDST_ADDRSPC_SGE_FLMC; else ret = FW_LDST_ADDRSPC_SGE_CONMC; memset(&c, 0, sizeof(c)); c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_READ | V_FW_LDST_CMD_ADDRSPACE(ret)); c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); c.u.idctxt.physid = cpu_to_be32(cid); ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); if (ret == 0) { data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0); data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1); data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2); data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3); data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4); data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5); } return ret; } /** * t4_sge_ctxt_rd_bd - read an SGE context bypassing FW * @adap: the adapter * @cid: the context id * @ctype: the context type * @data: where to store the context data * * Reads an SGE context directly, bypassing FW. This is only for * debugging when FW is unavailable. */ int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid, enum ctxt_type ctype, u32 *data) { int i, ret; t4_write_reg(adap, A_SGE_CTXT_CMD, V_CTXTQID(cid) | V_CTXTTYPE(ctype)); ret = t4_wait_op_done(adap, A_SGE_CTXT_CMD, F_BUSY, 0, 3, 1); if (!ret) for (i = A_SGE_CTXT_DATA0; i <= A_SGE_CTXT_DATA5; i += 4) *data++ = t4_read_reg(adap, i); return ret; } int t4_sched_config(struct adapter *adapter, int type, int minmaxen, int sleep_ok) { struct fw_sched_cmd cmd; memset(&cmd, 0, sizeof(cmd)); cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_WRITE); cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); cmd.u.config.sc = FW_SCHED_SC_CONFIG; cmd.u.config.type = type; cmd.u.config.minmaxen = minmaxen; return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd), NULL, sleep_ok); } int t4_sched_params(struct adapter *adapter, int type, int level, int mode, int rateunit, int ratemode, int channel, int cl, int minrate, int maxrate, int weight, int pktsize, int burstsize, int sleep_ok) { struct fw_sched_cmd cmd; memset(&cmd, 0, sizeof(cmd)); cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_WRITE); cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); cmd.u.params.sc = FW_SCHED_SC_PARAMS; cmd.u.params.type = type; cmd.u.params.level = level; cmd.u.params.mode = mode; cmd.u.params.ch = channel; cmd.u.params.cl = cl; cmd.u.params.unit = rateunit; cmd.u.params.rate = ratemode; cmd.u.params.min = cpu_to_be32(minrate); cmd.u.params.max = cpu_to_be32(maxrate); cmd.u.params.weight = cpu_to_be16(weight); cmd.u.params.pktsize = cpu_to_be16(pktsize); cmd.u.params.burstsize = cpu_to_be16(burstsize); return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd), NULL, sleep_ok); } int t4_sched_params_ch_rl(struct adapter *adapter, int channel, int ratemode, unsigned int maxrate, int sleep_ok) { struct fw_sched_cmd cmd; memset(&cmd, 0, sizeof(cmd)); cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_WRITE); cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); cmd.u.params.sc = FW_SCHED_SC_PARAMS; cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED; cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CH_RL; cmd.u.params.ch = channel; cmd.u.params.rate = ratemode; /* REL or ABS */ cmd.u.params.max = cpu_to_be32(maxrate);/* % or kbps */ return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd), NULL, sleep_ok); } int t4_sched_params_cl_wrr(struct adapter *adapter, int channel, int cl, int weight, int sleep_ok) { struct fw_sched_cmd cmd; if (weight < 0 || weight > 100) return -EINVAL; memset(&cmd, 0, sizeof(cmd)); cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_WRITE); cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); cmd.u.params.sc = FW_SCHED_SC_PARAMS; cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED; cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CL_WRR; cmd.u.params.ch = channel; cmd.u.params.cl = cl; cmd.u.params.weight = cpu_to_be16(weight); return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd), NULL, sleep_ok); } int t4_sched_params_cl_rl_kbps(struct adapter *adapter, int channel, int cl, int mode, unsigned int maxrate, int pktsize, int sleep_ok) { struct fw_sched_cmd cmd; memset(&cmd, 0, sizeof(cmd)); cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_WRITE); cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); cmd.u.params.sc = FW_SCHED_SC_PARAMS; cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED; cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CL_RL; cmd.u.params.mode = mode; cmd.u.params.ch = channel; cmd.u.params.cl = cl; cmd.u.params.unit = FW_SCHED_PARAMS_UNIT_BITRATE; cmd.u.params.rate = FW_SCHED_PARAMS_RATE_ABS; cmd.u.params.max = cpu_to_be32(maxrate); cmd.u.params.pktsize = cpu_to_be16(pktsize); return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd), NULL, sleep_ok); } /* * t4_config_watchdog - configure (enable/disable) a watchdog timer * @adapter: the adapter * @mbox: mailbox to use for the FW command * @pf: the PF owning the queue * @vf: the VF owning the queue * @timeout: watchdog timeout in ms * @action: watchdog timer / action * * There are separate watchdog timers for each possible watchdog * action. Configure one of the watchdog timers by setting a non-zero * timeout. Disable a watchdog timer by using a timeout of zero. */ int t4_config_watchdog(struct adapter *adapter, unsigned int mbox, unsigned int pf, unsigned int vf, unsigned int timeout, unsigned int action) { struct fw_watchdog_cmd wdog; unsigned int ticks; /* * The watchdog command expects a timeout in units of 10ms so we need * to convert it here (via rounding) and force a minimum of one 10ms * "tick" if the timeout is non-zero but the conversion results in 0 * ticks. */ ticks = (timeout + 5)/10; if (timeout && !ticks) ticks = 1; memset(&wdog, 0, sizeof wdog); wdog.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_WATCHDOG_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_WRITE | V_FW_PARAMS_CMD_PFN(pf) | V_FW_PARAMS_CMD_VFN(vf)); wdog.retval_len16 = cpu_to_be32(FW_LEN16(wdog)); wdog.timeout = cpu_to_be32(ticks); wdog.action = cpu_to_be32(action); return t4_wr_mbox(adapter, mbox, &wdog, sizeof wdog, NULL); } int t4_get_devlog_level(struct adapter *adapter, unsigned int *level) { struct fw_devlog_cmd devlog_cmd; int ret; memset(&devlog_cmd, 0, sizeof(devlog_cmd)); devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_READ); devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd)); ret = t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd, sizeof(devlog_cmd), &devlog_cmd); if (ret) return ret; *level = devlog_cmd.level; return 0; } int t4_set_devlog_level(struct adapter *adapter, unsigned int level) { struct fw_devlog_cmd devlog_cmd; memset(&devlog_cmd, 0, sizeof(devlog_cmd)); devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_WRITE); devlog_cmd.level = level; devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd)); return t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd, sizeof(devlog_cmd), &devlog_cmd); } int t4_configure_add_smac(struct adapter *adap) { unsigned int param, val; int ret = 0; adap->params.smac_add_support = 0; param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_ADD_SMAC)); /* Query FW to check if FW supports adding source mac address * to TCAM feature or not. * If FW returns 1, driver can use this feature and driver need to send * FW_PARAMS_PARAM_DEV_ADD_SMAC write command with value 1 to * enable adding smac to TCAM. */ ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, ¶m, &val); if (ret) return ret; if (val == 1) { ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, ¶m, &val); if (!ret) /* Firmware allows adding explicit TCAM entries. * Save this internally. */ adap->params.smac_add_support = 1; } return ret; } int t4_configure_ringbb(struct adapter *adap) { unsigned int param, val; int ret = 0; param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RING_BACKBONE)); /* Query FW to check if FW supports ring switch feature or not. * If FW returns 1, driver can use this feature and driver need to send * FW_PARAMS_PARAM_DEV_RING_BACKBONE write command with value 1 to * enable the ring backbone configuration. */ ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, ¶m, &val); if (ret < 0) { CH_ERR(adap, "Querying FW using Ring backbone params command failed, err=%d\n", ret); goto out; } if (val != 1) { CH_ERR(adap, "FW doesnot support ringbackbone features\n"); goto out; } ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, ¶m, &val); if (ret < 0) { CH_ERR(adap, "Could not set Ringbackbone, err= %d\n", ret); goto out; } out: return ret; } /* * t4_set_vlan_acl - Set a VLAN id for the specified VF * @adapter: the adapter * @mbox: mailbox to use for the FW command * @vf: one of the VFs instantiated by the specified PF * @vlan: The vlanid to be set * */ int t4_set_vlan_acl(struct adapter *adap, unsigned int mbox, unsigned int vf, u16 vlan) { struct fw_acl_vlan_cmd vlan_cmd; unsigned int enable; enable = (vlan ? F_FW_ACL_VLAN_CMD_EN : 0); memset(&vlan_cmd, 0, sizeof(vlan_cmd)); vlan_cmd.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_ACL_VLAN_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_ACL_VLAN_CMD_PFN(adap->pf) | V_FW_ACL_VLAN_CMD_VFN(vf)); vlan_cmd.en_to_len16 = cpu_to_be32(enable | FW_LEN16(vlan_cmd)); /* Drop all packets that donot match vlan id */ vlan_cmd.dropnovlan_fm = (enable ? (F_FW_ACL_VLAN_CMD_DROPNOVLAN | F_FW_ACL_VLAN_CMD_FM) : 0); if (enable != 0) { vlan_cmd.nvlan = 1; vlan_cmd.vlanid[0] = cpu_to_be16(vlan); } return t4_wr_mbox(adap, adap->mbox, &vlan_cmd, sizeof(vlan_cmd), NULL); } /** * t4_del_mac - Removes the exact-match filter for a MAC address * @adap: the adapter * @mbox: mailbox to use for the FW command * @viid: the VI id * @addr: the MAC address value * @smac: if true, delete from only the smac region of MPS * * Modifies an exact-match filter and sets it to the new MAC address if * @idx >= 0, or adds the MAC address to a new filter if @idx < 0. In the * latter case the address is added persistently if @persist is %true. * * Returns a negative error number or the index of the filter with the new * MAC value. Note that this index may differ from @idx. */ int t4_del_mac(struct adapter *adap, unsigned int mbox, unsigned int viid, const u8 *addr, bool smac) { int ret; struct fw_vi_mac_cmd c; struct fw_vi_mac_exact *p = c.u.exact; unsigned int max_mac_addr = adap->chip_params->mps_tcam_size; memset(&c, 0, sizeof(c)); c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_WRITE | V_FW_VI_MAC_CMD_VIID(viid)); c.freemacs_to_len16 = cpu_to_be32( V_FW_CMD_LEN16(1) | (smac ? F_FW_VI_MAC_CMD_IS_SMAC : 0)); memcpy(p->macaddr, addr, sizeof(p->macaddr)); p->valid_to_idx = cpu_to_be16( F_FW_VI_MAC_CMD_VALID | V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_MAC_BASED_FREE)); ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); if (ret == 0) { ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx)); if (ret < max_mac_addr) return -ENOMEM; } return ret; } /** * t4_add_mac - Adds an exact-match filter for a MAC address * @adap: the adapter * @mbox: mailbox to use for the FW command * @viid: the VI id * @idx: index of existing filter for old value of MAC address, or -1 * @addr: the new MAC address value * @persist: whether a new MAC allocation should be persistent * @add_smt: if true also add the address to the HW SMT * @smac: if true, update only the smac region of MPS * * Modifies an exact-match filter and sets it to the new MAC address if * @idx >= 0, or adds the MAC address to a new filter if @idx < 0. In the * latter case the address is added persistently if @persist is %true. * * Returns a negative error number or the index of the filter with the new * MAC value. Note that this index may differ from @idx. */ int t4_add_mac(struct adapter *adap, unsigned int mbox, unsigned int viid, int idx, const u8 *addr, bool persist, u8 *smt_idx, bool smac) { int ret, mode; struct fw_vi_mac_cmd c; struct fw_vi_mac_exact *p = c.u.exact; unsigned int max_mac_addr = adap->chip_params->mps_tcam_size; if (idx < 0) /* new allocation */ idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC; mode = smt_idx ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY; memset(&c, 0, sizeof(c)); c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_WRITE | V_FW_VI_MAC_CMD_VIID(viid)); c.freemacs_to_len16 = cpu_to_be32( V_FW_CMD_LEN16(1) | (smac ? F_FW_VI_MAC_CMD_IS_SMAC : 0)); p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID | V_FW_VI_MAC_CMD_SMAC_RESULT(mode) | V_FW_VI_MAC_CMD_IDX(idx)); memcpy(p->macaddr, addr, sizeof(p->macaddr)); ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); if (ret == 0) { ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx)); if (ret >= max_mac_addr) return -ENOMEM; if (smt_idx) { /* Does fw supports returning smt_idx? */ if (adap->params.viid_smt_extn_support) *smt_idx = G_FW_VI_MAC_CMD_SMTID(be32_to_cpu(c.op_to_viid)); else { /* In T4/T5, SMT contains 256 SMAC entries * organized in 128 rows of 2 entries each. * In T6, SMT contains 256 SMAC entries in * 256 rows. */ if (chip_id(adap) <= CHELSIO_T5) *smt_idx = ((viid & M_FW_VIID_VIN) << 1); else *smt_idx = (viid & M_FW_VIID_VIN); } } } return ret; }