/*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2011, Bryan Venteicher * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice unmodified, this list of conditions, and the following * disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* Driver for VirtIO network devices. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "virtio_if.h" #include "opt_inet.h" #include "opt_inet6.h" static int vtnet_modevent(module_t, int, void *); static int vtnet_probe(device_t); static int vtnet_attach(device_t); static int vtnet_detach(device_t); static int vtnet_suspend(device_t); static int vtnet_resume(device_t); static int vtnet_shutdown(device_t); static int vtnet_attach_completed(device_t); static int vtnet_config_change(device_t); static void vtnet_negotiate_features(struct vtnet_softc *); static void vtnet_setup_features(struct vtnet_softc *); static int vtnet_init_rxq(struct vtnet_softc *, int); static int vtnet_init_txq(struct vtnet_softc *, int); static int vtnet_alloc_rxtx_queues(struct vtnet_softc *); static void vtnet_free_rxtx_queues(struct vtnet_softc *); static int vtnet_alloc_rx_filters(struct vtnet_softc *); static void vtnet_free_rx_filters(struct vtnet_softc *); static int vtnet_alloc_virtqueues(struct vtnet_softc *); static int vtnet_setup_interface(struct vtnet_softc *); static int vtnet_change_mtu(struct vtnet_softc *, int); static int vtnet_ioctl(struct ifnet *, u_long, caddr_t); static uint64_t vtnet_get_counter(struct ifnet *, ift_counter); static int vtnet_rxq_populate(struct vtnet_rxq *); static void vtnet_rxq_free_mbufs(struct vtnet_rxq *); static struct mbuf * vtnet_rx_alloc_buf(struct vtnet_softc *, int , struct mbuf **); static int vtnet_rxq_replace_lro_nomgr_buf(struct vtnet_rxq *, struct mbuf *, int); static int vtnet_rxq_replace_buf(struct vtnet_rxq *, struct mbuf *, int); static int vtnet_rxq_enqueue_buf(struct vtnet_rxq *, struct mbuf *); static int vtnet_rxq_new_buf(struct vtnet_rxq *); static int vtnet_rxq_csum(struct vtnet_rxq *, struct mbuf *, struct virtio_net_hdr *); static void vtnet_rxq_discard_merged_bufs(struct vtnet_rxq *, int); static void vtnet_rxq_discard_buf(struct vtnet_rxq *, struct mbuf *); static int vtnet_rxq_merged_eof(struct vtnet_rxq *, struct mbuf *, int); static void vtnet_rxq_input(struct vtnet_rxq *, struct mbuf *, struct virtio_net_hdr *); static int vtnet_rxq_eof(struct vtnet_rxq *); static void vtnet_rx_vq_process(struct vtnet_rxq *rxq, int tries); static void vtnet_rx_vq_intr(void *); static void vtnet_rxq_tq_intr(void *, int); static int vtnet_txq_below_threshold(struct vtnet_txq *); static int vtnet_txq_notify(struct vtnet_txq *); static void vtnet_txq_free_mbufs(struct vtnet_txq *); static int vtnet_txq_offload_ctx(struct vtnet_txq *, struct mbuf *, int *, int *, int *); static int vtnet_txq_offload_tso(struct vtnet_txq *, struct mbuf *, int, int, struct virtio_net_hdr *); static struct mbuf * vtnet_txq_offload(struct vtnet_txq *, struct mbuf *, struct virtio_net_hdr *); static int vtnet_txq_enqueue_buf(struct vtnet_txq *, struct mbuf **, struct vtnet_tx_header *); static int vtnet_txq_encap(struct vtnet_txq *, struct mbuf **, int); #ifdef VTNET_LEGACY_TX static void vtnet_start_locked(struct vtnet_txq *, struct ifnet *); static void vtnet_start(struct ifnet *); #else static int vtnet_txq_mq_start_locked(struct vtnet_txq *, struct mbuf *); static int vtnet_txq_mq_start(struct ifnet *, struct mbuf *); static void vtnet_txq_tq_deferred(void *, int); #endif static void vtnet_txq_start(struct vtnet_txq *); static void vtnet_txq_tq_intr(void *, int); static int vtnet_txq_eof(struct vtnet_txq *); static void vtnet_tx_vq_intr(void *); static void vtnet_tx_start_all(struct vtnet_softc *); #ifndef VTNET_LEGACY_TX static void vtnet_qflush(struct ifnet *); #endif static int vtnet_watchdog(struct vtnet_txq *); static void vtnet_accum_stats(struct vtnet_softc *, struct vtnet_rxq_stats *, struct vtnet_txq_stats *); static void vtnet_tick(void *); static void vtnet_start_taskqueues(struct vtnet_softc *); static void vtnet_free_taskqueues(struct vtnet_softc *); static void vtnet_drain_taskqueues(struct vtnet_softc *); static void vtnet_drain_rxtx_queues(struct vtnet_softc *); static void vtnet_stop_rendezvous(struct vtnet_softc *); static void vtnet_stop(struct vtnet_softc *); static int vtnet_virtio_reinit(struct vtnet_softc *); static void vtnet_init_rx_filters(struct vtnet_softc *); static int vtnet_init_rx_queues(struct vtnet_softc *); static int vtnet_init_tx_queues(struct vtnet_softc *); static int vtnet_init_rxtx_queues(struct vtnet_softc *); static void vtnet_set_active_vq_pairs(struct vtnet_softc *); static int vtnet_reinit(struct vtnet_softc *); static void vtnet_init_locked(struct vtnet_softc *, int); static void vtnet_init(void *); static void vtnet_free_ctrl_vq(struct vtnet_softc *); static void vtnet_exec_ctrl_cmd(struct vtnet_softc *, void *, struct sglist *, int, int); static int vtnet_ctrl_mac_cmd(struct vtnet_softc *, uint8_t *); static int vtnet_ctrl_mq_cmd(struct vtnet_softc *, uint16_t); static int vtnet_ctrl_rx_cmd(struct vtnet_softc *, int, int); static int vtnet_set_promisc(struct vtnet_softc *, int); static int vtnet_set_allmulti(struct vtnet_softc *, int); static void vtnet_attach_disable_promisc(struct vtnet_softc *); static void vtnet_rx_filter(struct vtnet_softc *); static void vtnet_rx_filter_mac(struct vtnet_softc *); static int vtnet_exec_vlan_filter(struct vtnet_softc *, int, uint16_t); static void vtnet_rx_filter_vlan(struct vtnet_softc *); static void vtnet_update_vlan_filter(struct vtnet_softc *, int, uint16_t); static void vtnet_register_vlan(void *, struct ifnet *, uint16_t); static void vtnet_unregister_vlan(void *, struct ifnet *, uint16_t); static int vtnet_is_link_up(struct vtnet_softc *); static void vtnet_update_link_status(struct vtnet_softc *); static int vtnet_ifmedia_upd(struct ifnet *); static void vtnet_ifmedia_sts(struct ifnet *, struct ifmediareq *); static void vtnet_get_hwaddr(struct vtnet_softc *); static void vtnet_set_hwaddr(struct vtnet_softc *); static void vtnet_vlan_tag_remove(struct mbuf *); static void vtnet_set_rx_process_limit(struct vtnet_softc *); static void vtnet_set_tx_intr_threshold(struct vtnet_softc *); static void vtnet_setup_rxq_sysctl(struct sysctl_ctx_list *, struct sysctl_oid_list *, struct vtnet_rxq *); static void vtnet_setup_txq_sysctl(struct sysctl_ctx_list *, struct sysctl_oid_list *, struct vtnet_txq *); static void vtnet_setup_queue_sysctl(struct vtnet_softc *); static void vtnet_setup_sysctl(struct vtnet_softc *); static int vtnet_rxq_enable_intr(struct vtnet_rxq *); static void vtnet_rxq_disable_intr(struct vtnet_rxq *); static int vtnet_txq_enable_intr(struct vtnet_txq *); static void vtnet_txq_disable_intr(struct vtnet_txq *); static void vtnet_enable_rx_interrupts(struct vtnet_softc *); static void vtnet_enable_tx_interrupts(struct vtnet_softc *); static void vtnet_enable_interrupts(struct vtnet_softc *); static void vtnet_disable_rx_interrupts(struct vtnet_softc *); static void vtnet_disable_tx_interrupts(struct vtnet_softc *); static void vtnet_disable_interrupts(struct vtnet_softc *); static int vtnet_tunable_int(struct vtnet_softc *, const char *, int); DEBUGNET_DEFINE(vtnet); /* Tunables. */ static SYSCTL_NODE(_hw, OID_AUTO, vtnet, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "VNET driver parameters"); static int vtnet_csum_disable = 0; TUNABLE_INT("hw.vtnet.csum_disable", &vtnet_csum_disable); SYSCTL_INT(_hw_vtnet, OID_AUTO, csum_disable, CTLFLAG_RDTUN, &vtnet_csum_disable, 0, "Disables receive and send checksum offload"); static int vtnet_tso_disable = 0; TUNABLE_INT("hw.vtnet.tso_disable", &vtnet_tso_disable); SYSCTL_INT(_hw_vtnet, OID_AUTO, tso_disable, CTLFLAG_RDTUN, &vtnet_tso_disable, 0, "Disables TCP Segmentation Offload"); static int vtnet_lro_disable = 0; TUNABLE_INT("hw.vtnet.lro_disable", &vtnet_lro_disable); SYSCTL_INT(_hw_vtnet, OID_AUTO, lro_disable, CTLFLAG_RDTUN, &vtnet_lro_disable, 0, "Disables TCP Large Receive Offload"); static int vtnet_mq_disable = 0; TUNABLE_INT("hw.vtnet.mq_disable", &vtnet_mq_disable); SYSCTL_INT(_hw_vtnet, OID_AUTO, mq_disable, CTLFLAG_RDTUN, &vtnet_mq_disable, 0, "Disables Multi Queue support"); static int vtnet_mq_max_pairs = VTNET_MAX_QUEUE_PAIRS; TUNABLE_INT("hw.vtnet.mq_max_pairs", &vtnet_mq_max_pairs); SYSCTL_INT(_hw_vtnet, OID_AUTO, mq_max_pairs, CTLFLAG_RDTUN, &vtnet_mq_max_pairs, 0, "Sets the maximum number of Multi Queue pairs"); static int vtnet_rx_process_limit = 512; TUNABLE_INT("hw.vtnet.rx_process_limit", &vtnet_rx_process_limit); SYSCTL_INT(_hw_vtnet, OID_AUTO, rx_process_limit, CTLFLAG_RDTUN, &vtnet_rx_process_limit, 0, "Limits the number RX segments processed in a single pass"); static uma_zone_t vtnet_tx_header_zone; static struct virtio_feature_desc vtnet_feature_desc[] = { { VIRTIO_NET_F_CSUM, "TxChecksum" }, { VIRTIO_NET_F_GUEST_CSUM, "RxChecksum" }, { VIRTIO_NET_F_MAC, "MacAddress" }, { VIRTIO_NET_F_GSO, "TxAllGSO" }, { VIRTIO_NET_F_GUEST_TSO4, "RxTSOv4" }, { VIRTIO_NET_F_GUEST_TSO6, "RxTSOv6" }, { VIRTIO_NET_F_GUEST_ECN, "RxECN" }, { VIRTIO_NET_F_GUEST_UFO, "RxUFO" }, { VIRTIO_NET_F_HOST_TSO4, "TxTSOv4" }, { VIRTIO_NET_F_HOST_TSO6, "TxTSOv6" }, { VIRTIO_NET_F_HOST_ECN, "TxTSOECN" }, { VIRTIO_NET_F_HOST_UFO, "TxUFO" }, { VIRTIO_NET_F_MRG_RXBUF, "MrgRxBuf" }, { VIRTIO_NET_F_STATUS, "Status" }, { VIRTIO_NET_F_CTRL_VQ, "ControlVq" }, { VIRTIO_NET_F_CTRL_RX, "RxMode" }, { VIRTIO_NET_F_CTRL_VLAN, "VLanFilter" }, { VIRTIO_NET_F_CTRL_RX_EXTRA, "RxModeExtra" }, { VIRTIO_NET_F_GUEST_ANNOUNCE, "GuestAnnounce" }, { VIRTIO_NET_F_MQ, "Multiqueue" }, { VIRTIO_NET_F_CTRL_MAC_ADDR, "SetMacAddress" }, { 0, NULL } }; static device_method_t vtnet_methods[] = { /* Device methods. */ DEVMETHOD(device_probe, vtnet_probe), DEVMETHOD(device_attach, vtnet_attach), DEVMETHOD(device_detach, vtnet_detach), DEVMETHOD(device_suspend, vtnet_suspend), DEVMETHOD(device_resume, vtnet_resume), DEVMETHOD(device_shutdown, vtnet_shutdown), /* VirtIO methods. */ DEVMETHOD(virtio_attach_completed, vtnet_attach_completed), DEVMETHOD(virtio_config_change, vtnet_config_change), DEVMETHOD_END }; #ifdef DEV_NETMAP #include #endif /* DEV_NETMAP */ static driver_t vtnet_driver = { "vtnet", vtnet_methods, sizeof(struct vtnet_softc) }; static devclass_t vtnet_devclass; DRIVER_MODULE(vtnet, virtio_mmio, vtnet_driver, vtnet_devclass, vtnet_modevent, 0); DRIVER_MODULE(vtnet, virtio_pci, vtnet_driver, vtnet_devclass, vtnet_modevent, 0); MODULE_VERSION(vtnet, 1); MODULE_DEPEND(vtnet, virtio, 1, 1, 1); #ifdef DEV_NETMAP MODULE_DEPEND(vtnet, netmap, 1, 1, 1); #endif /* DEV_NETMAP */ VIRTIO_SIMPLE_PNPTABLE(vtnet, VIRTIO_ID_NETWORK, "VirtIO Networking Adapter"); VIRTIO_SIMPLE_PNPINFO(virtio_mmio, vtnet); VIRTIO_SIMPLE_PNPINFO(virtio_pci, vtnet); static int vtnet_modevent(module_t mod, int type, void *unused) { int error = 0; static int loaded = 0; switch (type) { case MOD_LOAD: if (loaded++ == 0) { vtnet_tx_header_zone = uma_zcreate("vtnet_tx_hdr", sizeof(struct vtnet_tx_header), NULL, NULL, NULL, NULL, 0, 0); #ifdef DEBUGNET /* * We need to allocate from this zone in the transmit path, so ensure * that we have at least one item per header available. * XXX add a separate zone like we do for mbufs? otherwise we may alloc * buckets */ uma_zone_reserve(vtnet_tx_header_zone, DEBUGNET_MAX_IN_FLIGHT * 2); uma_prealloc(vtnet_tx_header_zone, DEBUGNET_MAX_IN_FLIGHT * 2); #endif } break; case MOD_QUIESCE: if (uma_zone_get_cur(vtnet_tx_header_zone) > 0) error = EBUSY; break; case MOD_UNLOAD: if (--loaded == 0) { uma_zdestroy(vtnet_tx_header_zone); vtnet_tx_header_zone = NULL; } break; case MOD_SHUTDOWN: break; default: error = EOPNOTSUPP; break; } return (error); } static int vtnet_probe(device_t dev) { return (VIRTIO_SIMPLE_PROBE(dev, vtnet)); } static int vtnet_attach(device_t dev) { struct vtnet_softc *sc; int error; sc = device_get_softc(dev); sc->vtnet_dev = dev; /* Register our feature descriptions. */ virtio_set_feature_desc(dev, vtnet_feature_desc); VTNET_CORE_LOCK_INIT(sc); callout_init_mtx(&sc->vtnet_tick_ch, VTNET_CORE_MTX(sc), 0); vtnet_setup_sysctl(sc); vtnet_setup_features(sc); error = vtnet_alloc_rx_filters(sc); if (error) { device_printf(dev, "cannot allocate Rx filters\n"); goto fail; } error = vtnet_alloc_rxtx_queues(sc); if (error) { device_printf(dev, "cannot allocate queues\n"); goto fail; } error = vtnet_alloc_virtqueues(sc); if (error) { device_printf(dev, "cannot allocate virtqueues\n"); goto fail; } error = vtnet_setup_interface(sc); if (error) { device_printf(dev, "cannot setup interface\n"); goto fail; } error = virtio_setup_intr(dev, INTR_TYPE_NET); if (error) { device_printf(dev, "cannot setup virtqueue interrupts\n"); /* BMV: This will crash if during boot! */ ether_ifdetach(sc->vtnet_ifp); goto fail; } #ifdef DEV_NETMAP vtnet_netmap_attach(sc); #endif /* DEV_NETMAP */ vtnet_start_taskqueues(sc); fail: if (error) vtnet_detach(dev); return (error); } static int vtnet_detach(device_t dev) { struct vtnet_softc *sc; struct ifnet *ifp; sc = device_get_softc(dev); ifp = sc->vtnet_ifp; if (device_is_attached(dev)) { VTNET_CORE_LOCK(sc); vtnet_stop(sc); VTNET_CORE_UNLOCK(sc); callout_drain(&sc->vtnet_tick_ch); vtnet_drain_taskqueues(sc); ether_ifdetach(ifp); } #ifdef DEV_NETMAP netmap_detach(ifp); #endif /* DEV_NETMAP */ vtnet_free_taskqueues(sc); if (sc->vtnet_vlan_attach != NULL) { EVENTHANDLER_DEREGISTER(vlan_config, sc->vtnet_vlan_attach); sc->vtnet_vlan_attach = NULL; } if (sc->vtnet_vlan_detach != NULL) { EVENTHANDLER_DEREGISTER(vlan_unconfig, sc->vtnet_vlan_detach); sc->vtnet_vlan_detach = NULL; } ifmedia_removeall(&sc->vtnet_media); if (ifp != NULL) { if_free(ifp); sc->vtnet_ifp = NULL; } vtnet_free_rxtx_queues(sc); vtnet_free_rx_filters(sc); if (sc->vtnet_ctrl_vq != NULL) vtnet_free_ctrl_vq(sc); VTNET_CORE_LOCK_DESTROY(sc); return (0); } static int vtnet_suspend(device_t dev) { struct vtnet_softc *sc; sc = device_get_softc(dev); VTNET_CORE_LOCK(sc); vtnet_stop(sc); sc->vtnet_flags |= VTNET_FLAG_SUSPENDED; VTNET_CORE_UNLOCK(sc); return (0); } static int vtnet_resume(device_t dev) { struct vtnet_softc *sc; struct ifnet *ifp; sc = device_get_softc(dev); ifp = sc->vtnet_ifp; VTNET_CORE_LOCK(sc); if (ifp->if_flags & IFF_UP) vtnet_init_locked(sc, 0); sc->vtnet_flags &= ~VTNET_FLAG_SUSPENDED; VTNET_CORE_UNLOCK(sc); return (0); } static int vtnet_shutdown(device_t dev) { /* * Suspend already does all of what we need to * do here; we just never expect to be resumed. */ return (vtnet_suspend(dev)); } static int vtnet_attach_completed(device_t dev) { vtnet_attach_disable_promisc(device_get_softc(dev)); return (0); } static int vtnet_config_change(device_t dev) { struct vtnet_softc *sc; sc = device_get_softc(dev); VTNET_CORE_LOCK(sc); vtnet_update_link_status(sc); if (sc->vtnet_link_active != 0) vtnet_tx_start_all(sc); VTNET_CORE_UNLOCK(sc); return (0); } static void vtnet_negotiate_features(struct vtnet_softc *sc) { device_t dev; uint64_t mask, features; dev = sc->vtnet_dev; mask = 0; /* * TSO and LRO are only available when their corresponding checksum * offload feature is also negotiated. */ if (vtnet_tunable_int(sc, "csum_disable", vtnet_csum_disable)) { mask |= VIRTIO_NET_F_CSUM | VIRTIO_NET_F_GUEST_CSUM; mask |= VTNET_TSO_FEATURES | VTNET_LRO_FEATURES; } if (vtnet_tunable_int(sc, "tso_disable", vtnet_tso_disable)) mask |= VTNET_TSO_FEATURES; if (vtnet_tunable_int(sc, "lro_disable", vtnet_lro_disable)) mask |= VTNET_LRO_FEATURES; #ifndef VTNET_LEGACY_TX if (vtnet_tunable_int(sc, "mq_disable", vtnet_mq_disable)) mask |= VIRTIO_NET_F_MQ; #else mask |= VIRTIO_NET_F_MQ; #endif features = VTNET_FEATURES & ~mask; sc->vtnet_features = virtio_negotiate_features(dev, features); if (virtio_with_feature(dev, VTNET_LRO_FEATURES) && virtio_with_feature(dev, VIRTIO_NET_F_MRG_RXBUF) == 0) { /* * LRO without mergeable buffers requires special care. This * is not ideal because every receive buffer must be large * enough to hold the maximum TCP packet, the Ethernet header, * and the header. This requires up to 34 descriptors with * MCLBYTES clusters. If we do not have indirect descriptors, * LRO is disabled since the virtqueue will not contain very * many receive buffers. */ if (!virtio_with_feature(dev, VIRTIO_RING_F_INDIRECT_DESC)) { device_printf(dev, "LRO disabled due to both mergeable buffers and " "indirect descriptors not negotiated\n"); features &= ~VTNET_LRO_FEATURES; sc->vtnet_features = virtio_negotiate_features(dev, features); } else sc->vtnet_flags |= VTNET_FLAG_LRO_NOMRG; } } static void vtnet_setup_features(struct vtnet_softc *sc) { device_t dev; dev = sc->vtnet_dev; vtnet_negotiate_features(sc); if (virtio_with_feature(dev, VIRTIO_RING_F_INDIRECT_DESC)) sc->vtnet_flags |= VTNET_FLAG_INDIRECT; if (virtio_with_feature(dev, VIRTIO_RING_F_EVENT_IDX)) sc->vtnet_flags |= VTNET_FLAG_EVENT_IDX; if (virtio_with_feature(dev, VIRTIO_NET_F_MAC)) { /* This feature should always be negotiated. */ sc->vtnet_flags |= VTNET_FLAG_MAC; } if (virtio_with_feature(dev, VIRTIO_NET_F_MRG_RXBUF)) sc->vtnet_flags |= VTNET_FLAG_MRG_RXBUFS; if (virtio_with_feature(dev, VIRTIO_NET_F_MRG_RXBUF) || virtio_with_feature(dev, VIRTIO_F_VERSION_1)) sc->vtnet_hdr_size = sizeof(struct virtio_net_hdr_mrg_rxbuf); else sc->vtnet_hdr_size = sizeof(struct virtio_net_hdr); if (sc->vtnet_flags & VTNET_FLAG_MRG_RXBUFS) sc->vtnet_rx_nsegs = VTNET_MRG_RX_SEGS; else if (sc->vtnet_flags & VTNET_FLAG_LRO_NOMRG) sc->vtnet_rx_nsegs = VTNET_MAX_RX_SEGS; else sc->vtnet_rx_nsegs = VTNET_MIN_RX_SEGS; if (virtio_with_feature(dev, VIRTIO_NET_F_GSO) || virtio_with_feature(dev, VIRTIO_NET_F_HOST_TSO4) || virtio_with_feature(dev, VIRTIO_NET_F_HOST_TSO6)) sc->vtnet_tx_nsegs = VTNET_MAX_TX_SEGS; else sc->vtnet_tx_nsegs = VTNET_MIN_TX_SEGS; if (virtio_with_feature(dev, VIRTIO_NET_F_CTRL_VQ)) { sc->vtnet_flags |= VTNET_FLAG_CTRL_VQ; if (virtio_with_feature(dev, VIRTIO_NET_F_CTRL_RX)) sc->vtnet_flags |= VTNET_FLAG_CTRL_RX; if (virtio_with_feature(dev, VIRTIO_NET_F_CTRL_VLAN)) sc->vtnet_flags |= VTNET_FLAG_VLAN_FILTER; if (virtio_with_feature(dev, VIRTIO_NET_F_CTRL_MAC_ADDR)) sc->vtnet_flags |= VTNET_FLAG_CTRL_MAC; } if (virtio_with_feature(dev, VIRTIO_NET_F_MQ) && sc->vtnet_flags & VTNET_FLAG_CTRL_VQ) { sc->vtnet_max_vq_pairs = virtio_read_dev_config_2(dev, offsetof(struct virtio_net_config, max_virtqueue_pairs)); } else sc->vtnet_max_vq_pairs = 1; if (sc->vtnet_max_vq_pairs > 1) { /* * Limit the maximum number of queue pairs to the lower of * the number of CPUs and the configured maximum. * The actual number of queues that get used may be less. */ int max; max = vtnet_tunable_int(sc, "mq_max_pairs", vtnet_mq_max_pairs); if (max > VIRTIO_NET_CTRL_MQ_VQ_PAIRS_MIN) { if (max > mp_ncpus) max = mp_ncpus; if (max > VIRTIO_NET_CTRL_MQ_VQ_PAIRS_MAX) max = VIRTIO_NET_CTRL_MQ_VQ_PAIRS_MAX; if (max > 1) { sc->vtnet_requested_vq_pairs = max; sc->vtnet_flags |= VTNET_FLAG_MULTIQ; } } } } static int vtnet_init_rxq(struct vtnet_softc *sc, int id) { struct vtnet_rxq *rxq; rxq = &sc->vtnet_rxqs[id]; snprintf(rxq->vtnrx_name, sizeof(rxq->vtnrx_name), "%s-rx%d", device_get_nameunit(sc->vtnet_dev), id); mtx_init(&rxq->vtnrx_mtx, rxq->vtnrx_name, NULL, MTX_DEF); rxq->vtnrx_sc = sc; rxq->vtnrx_id = id; rxq->vtnrx_sg = sglist_alloc(sc->vtnet_rx_nsegs, M_NOWAIT); if (rxq->vtnrx_sg == NULL) return (ENOMEM); NET_TASK_INIT(&rxq->vtnrx_intrtask, 0, vtnet_rxq_tq_intr, rxq); rxq->vtnrx_tq = taskqueue_create(rxq->vtnrx_name, M_NOWAIT, taskqueue_thread_enqueue, &rxq->vtnrx_tq); return (rxq->vtnrx_tq == NULL ? ENOMEM : 0); } static int vtnet_init_txq(struct vtnet_softc *sc, int id) { struct vtnet_txq *txq; txq = &sc->vtnet_txqs[id]; snprintf(txq->vtntx_name, sizeof(txq->vtntx_name), "%s-tx%d", device_get_nameunit(sc->vtnet_dev), id); mtx_init(&txq->vtntx_mtx, txq->vtntx_name, NULL, MTX_DEF); txq->vtntx_sc = sc; txq->vtntx_id = id; txq->vtntx_sg = sglist_alloc(sc->vtnet_tx_nsegs, M_NOWAIT); if (txq->vtntx_sg == NULL) return (ENOMEM); #ifndef VTNET_LEGACY_TX txq->vtntx_br = buf_ring_alloc(VTNET_DEFAULT_BUFRING_SIZE, M_DEVBUF, M_NOWAIT, &txq->vtntx_mtx); if (txq->vtntx_br == NULL) return (ENOMEM); TASK_INIT(&txq->vtntx_defrtask, 0, vtnet_txq_tq_deferred, txq); #endif TASK_INIT(&txq->vtntx_intrtask, 0, vtnet_txq_tq_intr, txq); txq->vtntx_tq = taskqueue_create(txq->vtntx_name, M_NOWAIT, taskqueue_thread_enqueue, &txq->vtntx_tq); if (txq->vtntx_tq == NULL) return (ENOMEM); return (0); } static int vtnet_alloc_rxtx_queues(struct vtnet_softc *sc) { int i, npairs, error; npairs = sc->vtnet_max_vq_pairs; sc->vtnet_rxqs = malloc(sizeof(struct vtnet_rxq) * npairs, M_DEVBUF, M_NOWAIT | M_ZERO); sc->vtnet_txqs = malloc(sizeof(struct vtnet_txq) * npairs, M_DEVBUF, M_NOWAIT | M_ZERO); if (sc->vtnet_rxqs == NULL || sc->vtnet_txqs == NULL) return (ENOMEM); for (i = 0; i < npairs; i++) { error = vtnet_init_rxq(sc, i); if (error) return (error); error = vtnet_init_txq(sc, i); if (error) return (error); } vtnet_setup_queue_sysctl(sc); return (0); } static void vtnet_destroy_rxq(struct vtnet_rxq *rxq) { rxq->vtnrx_sc = NULL; rxq->vtnrx_id = -1; if (rxq->vtnrx_sg != NULL) { sglist_free(rxq->vtnrx_sg); rxq->vtnrx_sg = NULL; } if (mtx_initialized(&rxq->vtnrx_mtx) != 0) mtx_destroy(&rxq->vtnrx_mtx); } static void vtnet_destroy_txq(struct vtnet_txq *txq) { txq->vtntx_sc = NULL; txq->vtntx_id = -1; if (txq->vtntx_sg != NULL) { sglist_free(txq->vtntx_sg); txq->vtntx_sg = NULL; } #ifndef VTNET_LEGACY_TX if (txq->vtntx_br != NULL) { buf_ring_free(txq->vtntx_br, M_DEVBUF); txq->vtntx_br = NULL; } #endif if (mtx_initialized(&txq->vtntx_mtx) != 0) mtx_destroy(&txq->vtntx_mtx); } static void vtnet_free_rxtx_queues(struct vtnet_softc *sc) { int i; if (sc->vtnet_rxqs != NULL) { for (i = 0; i < sc->vtnet_max_vq_pairs; i++) vtnet_destroy_rxq(&sc->vtnet_rxqs[i]); free(sc->vtnet_rxqs, M_DEVBUF); sc->vtnet_rxqs = NULL; } if (sc->vtnet_txqs != NULL) { for (i = 0; i < sc->vtnet_max_vq_pairs; i++) vtnet_destroy_txq(&sc->vtnet_txqs[i]); free(sc->vtnet_txqs, M_DEVBUF); sc->vtnet_txqs = NULL; } } static int vtnet_alloc_rx_filters(struct vtnet_softc *sc) { if (sc->vtnet_flags & VTNET_FLAG_CTRL_RX) { sc->vtnet_mac_filter = malloc(sizeof(struct vtnet_mac_filter), M_DEVBUF, M_NOWAIT | M_ZERO); if (sc->vtnet_mac_filter == NULL) return (ENOMEM); } if (sc->vtnet_flags & VTNET_FLAG_VLAN_FILTER) { sc->vtnet_vlan_filter = malloc(sizeof(uint32_t) * VTNET_VLAN_FILTER_NWORDS, M_DEVBUF, M_NOWAIT | M_ZERO); if (sc->vtnet_vlan_filter == NULL) return (ENOMEM); } return (0); } static void vtnet_free_rx_filters(struct vtnet_softc *sc) { if (sc->vtnet_mac_filter != NULL) { free(sc->vtnet_mac_filter, M_DEVBUF); sc->vtnet_mac_filter = NULL; } if (sc->vtnet_vlan_filter != NULL) { free(sc->vtnet_vlan_filter, M_DEVBUF); sc->vtnet_vlan_filter = NULL; } } static int vtnet_alloc_virtqueues(struct vtnet_softc *sc) { device_t dev; struct vq_alloc_info *info; struct vtnet_rxq *rxq; struct vtnet_txq *txq; int i, idx, flags, nvqs, error; dev = sc->vtnet_dev; flags = 0; nvqs = sc->vtnet_max_vq_pairs * 2; if (sc->vtnet_flags & VTNET_FLAG_CTRL_VQ) nvqs++; info = malloc(sizeof(struct vq_alloc_info) * nvqs, M_TEMP, M_NOWAIT); if (info == NULL) return (ENOMEM); for (i = 0, idx = 0; i < sc->vtnet_max_vq_pairs; i++, idx+=2) { rxq = &sc->vtnet_rxqs[i]; VQ_ALLOC_INFO_INIT(&info[idx], sc->vtnet_rx_nsegs, vtnet_rx_vq_intr, rxq, &rxq->vtnrx_vq, "%s-%d rx", device_get_nameunit(dev), rxq->vtnrx_id); txq = &sc->vtnet_txqs[i]; VQ_ALLOC_INFO_INIT(&info[idx+1], sc->vtnet_tx_nsegs, vtnet_tx_vq_intr, txq, &txq->vtntx_vq, "%s-%d tx", device_get_nameunit(dev), txq->vtntx_id); } if (sc->vtnet_flags & VTNET_FLAG_CTRL_VQ) { VQ_ALLOC_INFO_INIT(&info[idx], 0, NULL, NULL, &sc->vtnet_ctrl_vq, "%s ctrl", device_get_nameunit(dev)); } /* * Enable interrupt binding if this is multiqueue. This only matters * when per-vq MSIX is available. */ if (sc->vtnet_flags & VTNET_FLAG_MULTIQ) flags |= 0; error = virtio_alloc_virtqueues(dev, flags, nvqs, info); free(info, M_TEMP); return (error); } static int vtnet_setup_interface(struct vtnet_softc *sc) { device_t dev; struct pfil_head_args pa; struct ifnet *ifp; dev = sc->vtnet_dev; ifp = sc->vtnet_ifp = if_alloc(IFT_ETHER); if (ifp == NULL) { device_printf(dev, "cannot allocate ifnet structure\n"); return (ENOSPC); } if_initname(ifp, device_get_name(dev), device_get_unit(dev)); ifp->if_baudrate = IF_Gbps(10); /* Approx. */ ifp->if_softc = sc; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST | IFF_KNOWSEPOCH; ifp->if_init = vtnet_init; ifp->if_ioctl = vtnet_ioctl; ifp->if_get_counter = vtnet_get_counter; #ifndef VTNET_LEGACY_TX ifp->if_transmit = vtnet_txq_mq_start; ifp->if_qflush = vtnet_qflush; #else struct virtqueue *vq = sc->vtnet_txqs[0].vtntx_vq; ifp->if_start = vtnet_start; IFQ_SET_MAXLEN(&ifp->if_snd, virtqueue_size(vq) - 1); ifp->if_snd.ifq_drv_maxlen = virtqueue_size(vq) - 1; IFQ_SET_READY(&ifp->if_snd); #endif ifmedia_init(&sc->vtnet_media, IFM_IMASK, vtnet_ifmedia_upd, vtnet_ifmedia_sts); ifmedia_add(&sc->vtnet_media, VTNET_MEDIATYPE, 0, NULL); ifmedia_set(&sc->vtnet_media, VTNET_MEDIATYPE); /* Read (or generate) the MAC address for the adapter. */ vtnet_get_hwaddr(sc); ether_ifattach(ifp, sc->vtnet_hwaddr); if (virtio_with_feature(dev, VIRTIO_NET_F_STATUS)) ifp->if_capabilities |= IFCAP_LINKSTATE; /* Tell the upper layer(s) we support long frames. */ ifp->if_hdrlen = sizeof(struct ether_vlan_header); ifp->if_capabilities |= IFCAP_JUMBO_MTU | IFCAP_VLAN_MTU; if (virtio_with_feature(dev, VIRTIO_NET_F_CSUM)) { ifp->if_capabilities |= IFCAP_TXCSUM | IFCAP_TXCSUM_IPV6; if (virtio_with_feature(dev, VIRTIO_NET_F_GSO)) { ifp->if_capabilities |= IFCAP_TSO4 | IFCAP_TSO6; sc->vtnet_flags |= VTNET_FLAG_TSO_ECN; } else { if (virtio_with_feature(dev, VIRTIO_NET_F_HOST_TSO4)) ifp->if_capabilities |= IFCAP_TSO4; if (virtio_with_feature(dev, VIRTIO_NET_F_HOST_TSO6)) ifp->if_capabilities |= IFCAP_TSO6; if (virtio_with_feature(dev, VIRTIO_NET_F_HOST_ECN)) sc->vtnet_flags |= VTNET_FLAG_TSO_ECN; } if (ifp->if_capabilities & IFCAP_TSO) ifp->if_capabilities |= IFCAP_VLAN_HWTSO; } if (virtio_with_feature(dev, VIRTIO_NET_F_GUEST_CSUM)) { ifp->if_capabilities |= IFCAP_RXCSUM | IFCAP_RXCSUM_IPV6; if (virtio_with_feature(dev, VIRTIO_NET_F_GUEST_TSO4) || virtio_with_feature(dev, VIRTIO_NET_F_GUEST_TSO6)) ifp->if_capabilities |= IFCAP_LRO; } if (ifp->if_capabilities & IFCAP_HWCSUM) { /* * VirtIO does not support VLAN tagging, but we can fake * it by inserting and removing the 802.1Q header during * transmit and receive. We are then able to do checksum * offloading of VLAN frames. */ ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWCSUM; } ifp->if_capenable = ifp->if_capabilities; /* * Capabilities after here are not enabled by default. */ if (sc->vtnet_flags & VTNET_FLAG_VLAN_FILTER) { ifp->if_capabilities |= IFCAP_VLAN_HWFILTER; sc->vtnet_vlan_attach = EVENTHANDLER_REGISTER(vlan_config, vtnet_register_vlan, sc, EVENTHANDLER_PRI_FIRST); sc->vtnet_vlan_detach = EVENTHANDLER_REGISTER(vlan_unconfig, vtnet_unregister_vlan, sc, EVENTHANDLER_PRI_FIRST); } vtnet_set_rx_process_limit(sc); vtnet_set_tx_intr_threshold(sc); DEBUGNET_SET(ifp, vtnet); pa.pa_version = PFIL_VERSION; pa.pa_flags = PFIL_IN; pa.pa_type = PFIL_TYPE_ETHERNET; pa.pa_headname = ifp->if_xname; sc->vtnet_pfil = pfil_head_register(&pa); return (0); } static int vtnet_change_mtu(struct vtnet_softc *sc, int new_mtu) { struct ifnet *ifp; int frame_size, clsize; ifp = sc->vtnet_ifp; if (new_mtu < ETHERMIN || new_mtu > VTNET_MAX_MTU) return (EINVAL); frame_size = sc->vtnet_hdr_size + sizeof(struct ether_vlan_header) + new_mtu; /* * Based on the new MTU (and hence frame size) determine which * cluster size is most appropriate for the receive queues. */ if (frame_size <= MCLBYTES) { clsize = MCLBYTES; } else if ((sc->vtnet_flags & VTNET_FLAG_MRG_RXBUFS) == 0) { /* Avoid going past 9K jumbos. */ if (frame_size > MJUM9BYTES) return (EINVAL); clsize = MJUM9BYTES; } else clsize = MJUMPAGESIZE; ifp->if_mtu = new_mtu; sc->vtnet_rx_new_clsize = clsize; if (ifp->if_drv_flags & IFF_DRV_RUNNING) { ifp->if_drv_flags &= ~IFF_DRV_RUNNING; vtnet_init_locked(sc, 0); } return (0); } static int vtnet_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) { struct vtnet_softc *sc; struct ifreq *ifr; int reinit, mask, error; sc = ifp->if_softc; ifr = (struct ifreq *) data; error = 0; switch (cmd) { case SIOCSIFMTU: if (ifp->if_mtu != ifr->ifr_mtu) { VTNET_CORE_LOCK(sc); error = vtnet_change_mtu(sc, ifr->ifr_mtu); VTNET_CORE_UNLOCK(sc); } break; case SIOCSIFFLAGS: VTNET_CORE_LOCK(sc); if ((ifp->if_flags & IFF_UP) == 0) { if (ifp->if_drv_flags & IFF_DRV_RUNNING) vtnet_stop(sc); } else if (ifp->if_drv_flags & IFF_DRV_RUNNING) { if ((ifp->if_flags ^ sc->vtnet_if_flags) & (IFF_PROMISC | IFF_ALLMULTI)) { if (sc->vtnet_flags & VTNET_FLAG_CTRL_RX) vtnet_rx_filter(sc); else { ifp->if_flags |= IFF_PROMISC; if ((ifp->if_flags ^ sc->vtnet_if_flags) & IFF_ALLMULTI) error = ENOTSUP; } } } else vtnet_init_locked(sc, 0); if (error == 0) sc->vtnet_if_flags = ifp->if_flags; VTNET_CORE_UNLOCK(sc); break; case SIOCADDMULTI: case SIOCDELMULTI: if ((sc->vtnet_flags & VTNET_FLAG_CTRL_RX) == 0) break; VTNET_CORE_LOCK(sc); if (ifp->if_drv_flags & IFF_DRV_RUNNING) vtnet_rx_filter_mac(sc); VTNET_CORE_UNLOCK(sc); break; case SIOCSIFMEDIA: case SIOCGIFMEDIA: error = ifmedia_ioctl(ifp, ifr, &sc->vtnet_media, cmd); break; case SIOCSIFCAP: VTNET_CORE_LOCK(sc); mask = ifr->ifr_reqcap ^ ifp->if_capenable; if (mask & IFCAP_TXCSUM) ifp->if_capenable ^= IFCAP_TXCSUM; if (mask & IFCAP_TXCSUM_IPV6) ifp->if_capenable ^= IFCAP_TXCSUM_IPV6; if (mask & IFCAP_TSO4) ifp->if_capenable ^= IFCAP_TSO4; if (mask & IFCAP_TSO6) ifp->if_capenable ^= IFCAP_TSO6; if (mask & (IFCAP_RXCSUM | IFCAP_RXCSUM_IPV6 | IFCAP_LRO | IFCAP_VLAN_HWFILTER)) { /* These Rx features require us to renegotiate. */ reinit = 1; if (mask & IFCAP_RXCSUM) ifp->if_capenable ^= IFCAP_RXCSUM; if (mask & IFCAP_RXCSUM_IPV6) ifp->if_capenable ^= IFCAP_RXCSUM_IPV6; if (mask & IFCAP_LRO) ifp->if_capenable ^= IFCAP_LRO; if (mask & IFCAP_VLAN_HWFILTER) ifp->if_capenable ^= IFCAP_VLAN_HWFILTER; } else reinit = 0; if (mask & IFCAP_VLAN_HWTSO) ifp->if_capenable ^= IFCAP_VLAN_HWTSO; if (mask & IFCAP_VLAN_HWTAGGING) ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING; if (reinit && (ifp->if_drv_flags & IFF_DRV_RUNNING)) { ifp->if_drv_flags &= ~IFF_DRV_RUNNING; vtnet_init_locked(sc, 0); } VTNET_CORE_UNLOCK(sc); VLAN_CAPABILITIES(ifp); break; default: error = ether_ioctl(ifp, cmd, data); break; } VTNET_CORE_LOCK_ASSERT_NOTOWNED(sc); return (error); } static int vtnet_rxq_populate(struct vtnet_rxq *rxq) { struct virtqueue *vq; int nbufs, error; #ifdef DEV_NETMAP error = vtnet_netmap_rxq_populate(rxq); if (error >= 0) return (error); #endif /* DEV_NETMAP */ vq = rxq->vtnrx_vq; error = ENOSPC; for (nbufs = 0; !virtqueue_full(vq); nbufs++) { error = vtnet_rxq_new_buf(rxq); if (error) break; } if (nbufs > 0) { virtqueue_notify(vq); /* * EMSGSIZE signifies the virtqueue did not have enough * entries available to hold the last mbuf. This is not * an error. */ if (error == EMSGSIZE) error = 0; } return (error); } static void vtnet_rxq_free_mbufs(struct vtnet_rxq *rxq) { struct virtqueue *vq; struct mbuf *m; int last; #ifdef DEV_NETMAP struct netmap_kring *kring = netmap_kring_on(NA(rxq->vtnrx_sc->vtnet_ifp), rxq->vtnrx_id, NR_RX); #else /* !DEV_NETMAP */ void *kring = NULL; #endif /* !DEV_NETMAP */ vq = rxq->vtnrx_vq; last = 0; while ((m = virtqueue_drain(vq, &last)) != NULL) { if (kring == NULL) m_freem(m); } KASSERT(virtqueue_empty(vq), ("%s: mbufs remaining in rx queue %p", __func__, rxq)); } static struct mbuf * vtnet_rx_alloc_buf(struct vtnet_softc *sc, int nbufs, struct mbuf **m_tailp) { struct mbuf *m_head, *m_tail, *m; int i, clsize; clsize = sc->vtnet_rx_clsize; KASSERT(nbufs == 1 || sc->vtnet_flags & VTNET_FLAG_LRO_NOMRG, ("%s: chained mbuf %d request without LRO_NOMRG", __func__, nbufs)); m_head = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, clsize); if (m_head == NULL) goto fail; m_head->m_len = clsize; m_tail = m_head; /* Allocate the rest of the chain. */ for (i = 1; i < nbufs; i++) { m = m_getjcl(M_NOWAIT, MT_DATA, 0, clsize); if (m == NULL) goto fail; m->m_len = clsize; m_tail->m_next = m; m_tail = m; } if (m_tailp != NULL) *m_tailp = m_tail; return (m_head); fail: sc->vtnet_stats.mbuf_alloc_failed++; m_freem(m_head); return (NULL); } /* * Slow path for when LRO without mergeable buffers is negotiated. */ static int vtnet_rxq_replace_lro_nomgr_buf(struct vtnet_rxq *rxq, struct mbuf *m0, int len0) { struct vtnet_softc *sc; struct mbuf *m, *m_prev; struct mbuf *m_new, *m_tail; int len, clsize, nreplace, error; sc = rxq->vtnrx_sc; clsize = sc->vtnet_rx_clsize; m_prev = NULL; m_tail = NULL; nreplace = 0; m = m0; len = len0; /* * Since these mbuf chains are so large, we avoid allocating an * entire replacement chain if possible. When the received frame * did not consume the entire chain, the unused mbufs are moved * to the replacement chain. */ while (len > 0) { /* * Something is seriously wrong if we received a frame * larger than the chain. Drop it. */ if (m == NULL) { sc->vtnet_stats.rx_frame_too_large++; return (EMSGSIZE); } /* We always allocate the same cluster size. */ KASSERT(m->m_len == clsize, ("%s: mbuf size %d is not the cluster size %d", __func__, m->m_len, clsize)); m->m_len = MIN(m->m_len, len); len -= m->m_len; m_prev = m; m = m->m_next; nreplace++; } KASSERT(nreplace <= sc->vtnet_rx_nmbufs, ("%s: too many replacement mbufs %d max %d", __func__, nreplace, sc->vtnet_rx_nmbufs)); m_new = vtnet_rx_alloc_buf(sc, nreplace, &m_tail); if (m_new == NULL) { m_prev->m_len = clsize; return (ENOBUFS); } /* * Move any unused mbufs from the received chain onto the end * of the new chain. */ if (m_prev->m_next != NULL) { m_tail->m_next = m_prev->m_next; m_prev->m_next = NULL; } error = vtnet_rxq_enqueue_buf(rxq, m_new); if (error) { /* * BAD! We could not enqueue the replacement mbuf chain. We * must restore the m0 chain to the original state if it was * modified so we can subsequently discard it. * * NOTE: The replacement is suppose to be an identical copy * to the one just dequeued so this is an unexpected error. */ sc->vtnet_stats.rx_enq_replacement_failed++; if (m_tail->m_next != NULL) { m_prev->m_next = m_tail->m_next; m_tail->m_next = NULL; } m_prev->m_len = clsize; m_freem(m_new); } return (error); } static int vtnet_rxq_replace_buf(struct vtnet_rxq *rxq, struct mbuf *m, int len) { struct vtnet_softc *sc; struct mbuf *m_new; int error; sc = rxq->vtnrx_sc; KASSERT(sc->vtnet_flags & VTNET_FLAG_LRO_NOMRG || m->m_next == NULL, ("%s: chained mbuf without LRO_NOMRG", __func__)); if (m->m_next == NULL) { /* Fast-path for the common case of just one mbuf. */ if (m->m_len < len) return (EINVAL); m_new = vtnet_rx_alloc_buf(sc, 1, NULL); if (m_new == NULL) return (ENOBUFS); error = vtnet_rxq_enqueue_buf(rxq, m_new); if (error) { /* * The new mbuf is suppose to be an identical * copy of the one just dequeued so this is an * unexpected error. */ m_freem(m_new); sc->vtnet_stats.rx_enq_replacement_failed++; } else m->m_len = len; } else error = vtnet_rxq_replace_lro_nomgr_buf(rxq, m, len); return (error); } static int vtnet_rxq_enqueue_buf(struct vtnet_rxq *rxq, struct mbuf *m) { struct vtnet_softc *sc; struct sglist *sg; struct vtnet_rx_header *rxhdr; uint8_t *mdata; int offset, error; sc = rxq->vtnrx_sc; sg = rxq->vtnrx_sg; mdata = mtod(m, uint8_t *); VTNET_RXQ_LOCK_ASSERT(rxq); KASSERT(sc->vtnet_flags & VTNET_FLAG_LRO_NOMRG || m->m_next == NULL, ("%s: chained mbuf without LRO_NOMRG", __func__)); KASSERT(m->m_len == sc->vtnet_rx_clsize, ("%s: unexpected cluster size %d/%d", __func__, m->m_len, sc->vtnet_rx_clsize)); sglist_reset(sg); if ((sc->vtnet_flags & VTNET_FLAG_MRG_RXBUFS) == 0) { MPASS(sc->vtnet_hdr_size == sizeof(rxhdr->vrh_uhdr.hdr) || sc->vtnet_hdr_size == sizeof(rxhdr->vrh_uhdr.mhdr)); rxhdr = (struct vtnet_rx_header *) mdata; sglist_append(sg, &rxhdr->vrh_uhdr, sc->vtnet_hdr_size); offset = sizeof(struct vtnet_rx_header); } else offset = 0; sglist_append(sg, mdata + offset, m->m_len - offset); if (m->m_next != NULL) { error = sglist_append_mbuf(sg, m->m_next); MPASS(error == 0); } error = virtqueue_enqueue(rxq->vtnrx_vq, m, sg, 0, sg->sg_nseg); return (error); } static int vtnet_rxq_new_buf(struct vtnet_rxq *rxq) { struct vtnet_softc *sc; struct mbuf *m; int error; sc = rxq->vtnrx_sc; m = vtnet_rx_alloc_buf(sc, sc->vtnet_rx_nmbufs, NULL); if (m == NULL) return (ENOBUFS); error = vtnet_rxq_enqueue_buf(rxq, m); if (error) m_freem(m); return (error); } /* * Use the checksum offset in the VirtIO header to set the * correct CSUM_* flags. */ static int vtnet_rxq_csum_by_offset(struct vtnet_rxq *rxq, struct mbuf *m, uint16_t eth_type, int ip_start, struct virtio_net_hdr *hdr) { struct vtnet_softc *sc; #if defined(INET) || defined(INET6) int offset = hdr->csum_start + hdr->csum_offset; #endif sc = rxq->vtnrx_sc; /* Only do a basic sanity check on the offset. */ switch (eth_type) { #if defined(INET) case ETHERTYPE_IP: if (__predict_false(offset < ip_start + sizeof(struct ip))) return (1); break; #endif #if defined(INET6) case ETHERTYPE_IPV6: if (__predict_false(offset < ip_start + sizeof(struct ip6_hdr))) return (1); break; #endif default: sc->vtnet_stats.rx_csum_bad_ethtype++; return (1); } /* * Use the offset to determine the appropriate CSUM_* flags. This is * a bit dirty, but we can get by with it since the checksum offsets * happen to be different. We assume the host host does not do IPv4 * header checksum offloading. */ switch (hdr->csum_offset) { case offsetof(struct udphdr, uh_sum): case offsetof(struct tcphdr, th_sum): m->m_pkthdr.csum_flags |= CSUM_DATA_VALID | CSUM_PSEUDO_HDR; m->m_pkthdr.csum_data = 0xFFFF; break; default: sc->vtnet_stats.rx_csum_bad_offset++; return (1); } return (0); } static int vtnet_rxq_csum_by_parse(struct vtnet_rxq *rxq, struct mbuf *m, uint16_t eth_type, int ip_start, struct virtio_net_hdr *hdr) { struct vtnet_softc *sc; int offset, proto; sc = rxq->vtnrx_sc; switch (eth_type) { #if defined(INET) case ETHERTYPE_IP: { struct ip *ip; if (__predict_false(m->m_len < ip_start + sizeof(struct ip))) return (1); ip = (struct ip *)(m->m_data + ip_start); proto = ip->ip_p; offset = ip_start + (ip->ip_hl << 2); break; } #endif #if defined(INET6) case ETHERTYPE_IPV6: if (__predict_false(m->m_len < ip_start + sizeof(struct ip6_hdr))) return (1); offset = ip6_lasthdr(m, ip_start, IPPROTO_IPV6, &proto); if (__predict_false(offset < 0)) return (1); break; #endif default: sc->vtnet_stats.rx_csum_bad_ethtype++; return (1); } switch (proto) { case IPPROTO_TCP: if (__predict_false(m->m_len < offset + sizeof(struct tcphdr))) return (1); m->m_pkthdr.csum_flags |= CSUM_DATA_VALID | CSUM_PSEUDO_HDR; m->m_pkthdr.csum_data = 0xFFFF; break; case IPPROTO_UDP: if (__predict_false(m->m_len < offset + sizeof(struct udphdr))) return (1); m->m_pkthdr.csum_flags |= CSUM_DATA_VALID | CSUM_PSEUDO_HDR; m->m_pkthdr.csum_data = 0xFFFF; break; default: /* * For the remaining protocols, FreeBSD does not support * checksum offloading, so the checksum will be recomputed. */ #if 0 if_printf(sc->vtnet_ifp, "cksum offload of unsupported " "protocol eth_type=%#x proto=%d csum_start=%d " "csum_offset=%d\n", __func__, eth_type, proto, hdr->csum_start, hdr->csum_offset); #endif break; } return (0); } /* * Set the appropriate CSUM_* flags. Unfortunately, the information * provided is not directly useful to us. The VirtIO header gives the * offset of the checksum, which is all Linux needs, but this is not * how FreeBSD does things. We are forced to peek inside the packet * a bit. * * It would be nice if VirtIO gave us the L4 protocol or if FreeBSD * could accept the offsets and let the stack figure it out. */ static int vtnet_rxq_csum(struct vtnet_rxq *rxq, struct mbuf *m, struct virtio_net_hdr *hdr) { struct ether_header *eh; struct ether_vlan_header *evh; uint16_t eth_type; int offset, error; eh = mtod(m, struct ether_header *); eth_type = ntohs(eh->ether_type); if (eth_type == ETHERTYPE_VLAN) { /* BMV: We should handle nested VLAN tags too. */ evh = mtod(m, struct ether_vlan_header *); eth_type = ntohs(evh->evl_proto); offset = sizeof(struct ether_vlan_header); } else offset = sizeof(struct ether_header); if (hdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) error = vtnet_rxq_csum_by_offset(rxq, m, eth_type, offset, hdr); else error = vtnet_rxq_csum_by_parse(rxq, m, eth_type, offset, hdr); return (error); } static void vtnet_rxq_discard_merged_bufs(struct vtnet_rxq *rxq, int nbufs) { struct mbuf *m; while (--nbufs > 0) { m = virtqueue_dequeue(rxq->vtnrx_vq, NULL); if (m == NULL) break; vtnet_rxq_discard_buf(rxq, m); } } static void vtnet_rxq_discard_buf(struct vtnet_rxq *rxq, struct mbuf *m) { int error; /* * Requeue the discarded mbuf. This should always be successful * since it was just dequeued. */ error = vtnet_rxq_enqueue_buf(rxq, m); KASSERT(error == 0, ("%s: cannot requeue discarded mbuf %d", __func__, error)); } static int vtnet_rxq_merged_eof(struct vtnet_rxq *rxq, struct mbuf *m_head, int nbufs) { struct vtnet_softc *sc; struct virtqueue *vq; struct mbuf *m, *m_tail; int len; sc = rxq->vtnrx_sc; vq = rxq->vtnrx_vq; m_tail = m_head; while (--nbufs > 0) { m = virtqueue_dequeue(vq, &len); if (m == NULL) { rxq->vtnrx_stats.vrxs_ierrors++; goto fail; } if (vtnet_rxq_new_buf(rxq) != 0) { rxq->vtnrx_stats.vrxs_iqdrops++; vtnet_rxq_discard_buf(rxq, m); if (nbufs > 1) vtnet_rxq_discard_merged_bufs(rxq, nbufs); goto fail; } if (m->m_len < len) len = m->m_len; m->m_len = len; m->m_flags &= ~M_PKTHDR; m_head->m_pkthdr.len += len; m_tail->m_next = m; m_tail = m; } return (0); fail: sc->vtnet_stats.rx_mergeable_failed++; m_freem(m_head); return (1); } static void vtnet_rxq_input(struct vtnet_rxq *rxq, struct mbuf *m, struct virtio_net_hdr *hdr) { struct vtnet_softc *sc; struct ifnet *ifp; struct ether_header *eh; sc = rxq->vtnrx_sc; ifp = sc->vtnet_ifp; if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) { eh = mtod(m, struct ether_header *); if (eh->ether_type == htons(ETHERTYPE_VLAN)) { vtnet_vlan_tag_remove(m); /* * With the 802.1Q header removed, update the * checksum starting location accordingly. */ if (hdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) hdr->csum_start -= ETHER_VLAN_ENCAP_LEN; } } m->m_pkthdr.flowid = rxq->vtnrx_id; M_HASHTYPE_SET(m, M_HASHTYPE_OPAQUE); /* * BMV: FreeBSD does not have the UNNECESSARY and PARTIAL checksum * distinction that Linux does. Need to reevaluate if performing * offloading for the NEEDS_CSUM case is really appropriate. */ if (hdr->flags & (VIRTIO_NET_HDR_F_NEEDS_CSUM | VIRTIO_NET_HDR_F_DATA_VALID)) { if (vtnet_rxq_csum(rxq, m, hdr) == 0) rxq->vtnrx_stats.vrxs_csum++; else rxq->vtnrx_stats.vrxs_csum_failed++; } rxq->vtnrx_stats.vrxs_ipackets++; rxq->vtnrx_stats.vrxs_ibytes += m->m_pkthdr.len; VTNET_RXQ_UNLOCK(rxq); (*ifp->if_input)(ifp, m); VTNET_RXQ_LOCK(rxq); } static int vtnet_rxq_eof(struct vtnet_rxq *rxq) { struct virtio_net_hdr lhdr, *hdr; struct vtnet_softc *sc; struct ifnet *ifp; struct virtqueue *vq; struct mbuf *m, *mr; struct virtio_net_hdr_mrg_rxbuf *mhdr; int len, deq, nbufs, adjsz, count; pfil_return_t pfil; bool pfil_done; sc = rxq->vtnrx_sc; vq = rxq->vtnrx_vq; ifp = sc->vtnet_ifp; hdr = &lhdr; deq = 0; count = sc->vtnet_rx_process_limit; VTNET_RXQ_LOCK_ASSERT(rxq); while (count-- > 0) { m = virtqueue_dequeue(vq, &len); if (m == NULL) break; deq++; if (len < sc->vtnet_hdr_size + ETHER_HDR_LEN) { rxq->vtnrx_stats.vrxs_ierrors++; vtnet_rxq_discard_buf(rxq, m); continue; } if ((sc->vtnet_flags & VTNET_FLAG_MRG_RXBUFS) == 0) { nbufs = 1; adjsz = sizeof(struct vtnet_rx_header); /* * Account for our pad inserted between the header * and the actual start of the frame. This includes * the unused num_buffers when using a legacy device. */ len += adjsz - sc->vtnet_hdr_size; } else { mhdr = mtod(m, struct virtio_net_hdr_mrg_rxbuf *); nbufs = mhdr->num_buffers; adjsz = sizeof(struct virtio_net_hdr_mrg_rxbuf); } /* * If we have enough data in first mbuf, run it through * pfil as a memory buffer before dequeueing the rest. */ if (PFIL_HOOKED_IN(sc->vtnet_pfil) && len - adjsz >= ETHER_HDR_LEN + max_protohdr) { pfil = pfil_run_hooks(sc->vtnet_pfil, m->m_data + adjsz, ifp, (len - adjsz) | PFIL_MEMPTR | PFIL_IN, NULL); switch (pfil) { case PFIL_REALLOCED: mr = pfil_mem2mbuf(m->m_data + adjsz); vtnet_rxq_input(rxq, mr, hdr); /* FALLTHROUGH */ case PFIL_DROPPED: case PFIL_CONSUMED: vtnet_rxq_discard_buf(rxq, m); if (nbufs > 1) vtnet_rxq_discard_merged_bufs(rxq, nbufs); continue; default: KASSERT(pfil == PFIL_PASS, ("Filter returned %d!\n", pfil)); }; pfil_done = true; } else pfil_done = false; if (vtnet_rxq_replace_buf(rxq, m, len) != 0) { rxq->vtnrx_stats.vrxs_iqdrops++; vtnet_rxq_discard_buf(rxq, m); if (nbufs > 1) vtnet_rxq_discard_merged_bufs(rxq, nbufs); continue; } m->m_pkthdr.len = len; m->m_pkthdr.rcvif = ifp; m->m_pkthdr.csum_flags = 0; if (nbufs > 1) { /* Dequeue the rest of chain. */ if (vtnet_rxq_merged_eof(rxq, m, nbufs) != 0) continue; } /* * Save copy of header before we strip it. For both mergeable * and non-mergeable, the header is at the beginning of the * mbuf data. We no longer need num_buffers, so always use a * regular header. * * BMV: Is this memcpy() expensive? We know the mbuf data is * still valid even after the m_adj(). */ memcpy(hdr, mtod(m, void *), sizeof(struct virtio_net_hdr)); m_adj(m, adjsz); if (PFIL_HOOKED_IN(sc->vtnet_pfil) && pfil_done == false) { pfil = pfil_run_hooks(sc->vtnet_pfil, &m, ifp, PFIL_IN, NULL); switch (pfil) { case PFIL_DROPPED: case PFIL_CONSUMED: continue; default: KASSERT(pfil == PFIL_PASS, ("Filter returned %d!\n", pfil)); } } vtnet_rxq_input(rxq, m, hdr); /* Must recheck after dropping the Rx lock. */ if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) break; } if (deq > 0) virtqueue_notify(vq); return (count > 0 ? 0 : EAGAIN); } static void vtnet_rx_vq_process(struct vtnet_rxq *rxq, int tries) { struct vtnet_softc *sc; struct ifnet *ifp; int more; #ifdef DEV_NETMAP int nmirq; #endif /* DEV_NETMAP */ sc = rxq->vtnrx_sc; ifp = sc->vtnet_ifp; if (__predict_false(rxq->vtnrx_id >= sc->vtnet_act_vq_pairs)) { /* * Ignore this interrupt. Either this is a spurious interrupt * or multiqueue without per-VQ MSIX so every queue needs to * be polled (a brain dead configuration we could try harder * to avoid). */ vtnet_rxq_disable_intr(rxq); return; } VTNET_RXQ_LOCK(rxq); #ifdef DEV_NETMAP /* * We call netmap_rx_irq() under lock to prevent concurrent calls. * This is not necessary to serialize the access to the RX vq, but * rather to avoid races that may happen if this interface is * attached to a VALE switch, which would cause received packets * to stall in the RX queue (nm_kr_tryget() could find the kring * busy when called from netmap_bwrap_intr_notify()). */ nmirq = netmap_rx_irq(ifp, rxq->vtnrx_id, &more); if (nmirq != NM_IRQ_PASS) { VTNET_RXQ_UNLOCK(rxq); if (nmirq == NM_IRQ_RESCHED) { taskqueue_enqueue(rxq->vtnrx_tq, &rxq->vtnrx_intrtask); } return; } #endif /* DEV_NETMAP */ again: if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { VTNET_RXQ_UNLOCK(rxq); return; } more = vtnet_rxq_eof(rxq); if (more || vtnet_rxq_enable_intr(rxq) != 0) { if (!more) vtnet_rxq_disable_intr(rxq); /* * This is an occasional condition or race (when !more), * so retry a few times before scheduling the taskqueue. */ if (tries-- > 0) goto again; rxq->vtnrx_stats.vrxs_rescheduled++; VTNET_RXQ_UNLOCK(rxq); taskqueue_enqueue(rxq->vtnrx_tq, &rxq->vtnrx_intrtask); } else VTNET_RXQ_UNLOCK(rxq); } static void vtnet_rx_vq_intr(void *xrxq) { struct vtnet_rxq *rxq; rxq = xrxq; vtnet_rx_vq_process(rxq, VTNET_INTR_DISABLE_RETRIES); } static void vtnet_rxq_tq_intr(void *xrxq, int pending) { struct vtnet_rxq *rxq; rxq = xrxq; vtnet_rx_vq_process(rxq, 0); } static int vtnet_txq_below_threshold(struct vtnet_txq *txq) { struct vtnet_softc *sc; struct virtqueue *vq; sc = txq->vtntx_sc; vq = txq->vtntx_vq; return (virtqueue_nfree(vq) <= sc->vtnet_tx_intr_thresh); } static int vtnet_txq_notify(struct vtnet_txq *txq) { struct virtqueue *vq; vq = txq->vtntx_vq; txq->vtntx_watchdog = VTNET_TX_TIMEOUT; virtqueue_notify(vq); if (vtnet_txq_enable_intr(txq) == 0) return (0); /* * Drain frames that were completed since last checked. If this * causes the queue to go above the threshold, the caller should * continue transmitting. */ if (vtnet_txq_eof(txq) != 0 && vtnet_txq_below_threshold(txq) == 0) { virtqueue_disable_intr(vq); return (1); } return (0); } static void vtnet_txq_free_mbufs(struct vtnet_txq *txq) { struct virtqueue *vq; struct vtnet_tx_header *txhdr; int last; #ifdef DEV_NETMAP struct netmap_kring *kring = netmap_kring_on(NA(txq->vtntx_sc->vtnet_ifp), txq->vtntx_id, NR_TX); #else /* !DEV_NETMAP */ void *kring = NULL; #endif /* !DEV_NETMAP */ vq = txq->vtntx_vq; last = 0; while ((txhdr = virtqueue_drain(vq, &last)) != NULL) { if (kring == NULL) { m_freem(txhdr->vth_mbuf); uma_zfree(vtnet_tx_header_zone, txhdr); } } KASSERT(virtqueue_empty(vq), ("%s: mbufs remaining in tx queue %p", __func__, txq)); } /* * BMV: Much of this can go away once we finally have offsets in * the mbuf packet header. Bug andre@. */ static int vtnet_txq_offload_ctx(struct vtnet_txq *txq, struct mbuf *m, int *etype, int *proto, int *start) { struct vtnet_softc *sc; struct ether_vlan_header *evh; int offset; sc = txq->vtntx_sc; evh = mtod(m, struct ether_vlan_header *); if (evh->evl_encap_proto == htons(ETHERTYPE_VLAN)) { /* BMV: We should handle nested VLAN tags too. */ *etype = ntohs(evh->evl_proto); offset = sizeof(struct ether_vlan_header); } else { *etype = ntohs(evh->evl_encap_proto); offset = sizeof(struct ether_header); } switch (*etype) { #if defined(INET) case ETHERTYPE_IP: { struct ip *ip, iphdr; if (__predict_false(m->m_len < offset + sizeof(struct ip))) { m_copydata(m, offset, sizeof(struct ip), (caddr_t) &iphdr); ip = &iphdr; } else ip = (struct ip *)(m->m_data + offset); *proto = ip->ip_p; *start = offset + (ip->ip_hl << 2); break; } #endif #if defined(INET6) case ETHERTYPE_IPV6: *proto = -1; *start = ip6_lasthdr(m, offset, IPPROTO_IPV6, proto); /* Assert the network stack sent us a valid packet. */ KASSERT(*start > offset, ("%s: mbuf %p start %d offset %d proto %d", __func__, m, *start, offset, *proto)); break; #endif default: sc->vtnet_stats.tx_csum_bad_ethtype++; return (EINVAL); } return (0); } static int vtnet_txq_offload_tso(struct vtnet_txq *txq, struct mbuf *m, int eth_type, int offset, struct virtio_net_hdr *hdr) { static struct timeval lastecn; static int curecn; struct vtnet_softc *sc; struct tcphdr *tcp, tcphdr; sc = txq->vtntx_sc; if (__predict_false(m->m_len < offset + sizeof(struct tcphdr))) { m_copydata(m, offset, sizeof(struct tcphdr), (caddr_t) &tcphdr); tcp = &tcphdr; } else tcp = (struct tcphdr *)(m->m_data + offset); hdr->hdr_len = offset + (tcp->th_off << 2); hdr->gso_size = m->m_pkthdr.tso_segsz; hdr->gso_type = eth_type == ETHERTYPE_IP ? VIRTIO_NET_HDR_GSO_TCPV4 : VIRTIO_NET_HDR_GSO_TCPV6; if (tcp->th_flags & TH_CWR) { /* * Drop if VIRTIO_NET_F_HOST_ECN was not negotiated. In FreeBSD, * ECN support is not on a per-interface basis, but globally via * the net.inet.tcp.ecn.enable sysctl knob. The default is off. */ if ((sc->vtnet_flags & VTNET_FLAG_TSO_ECN) == 0) { if (ppsratecheck(&lastecn, &curecn, 1)) if_printf(sc->vtnet_ifp, "TSO with ECN not negotiated with host\n"); return (ENOTSUP); } hdr->gso_type |= VIRTIO_NET_HDR_GSO_ECN; } txq->vtntx_stats.vtxs_tso++; return (0); } static struct mbuf * vtnet_txq_offload(struct vtnet_txq *txq, struct mbuf *m, struct virtio_net_hdr *hdr) { struct vtnet_softc *sc; int flags, etype, csum_start, proto, error; sc = txq->vtntx_sc; flags = m->m_pkthdr.csum_flags; error = vtnet_txq_offload_ctx(txq, m, &etype, &proto, &csum_start); if (error) goto drop; if ((etype == ETHERTYPE_IP && flags & VTNET_CSUM_OFFLOAD) || (etype == ETHERTYPE_IPV6 && flags & VTNET_CSUM_OFFLOAD_IPV6)) { /* * We could compare the IP protocol vs the CSUM_ flag too, * but that really should not be necessary. */ hdr->flags |= VIRTIO_NET_HDR_F_NEEDS_CSUM; hdr->csum_start = csum_start; hdr->csum_offset = m->m_pkthdr.csum_data; txq->vtntx_stats.vtxs_csum++; } if (flags & CSUM_TSO) { if (__predict_false(proto != IPPROTO_TCP)) { /* Likely failed to correctly parse the mbuf. */ sc->vtnet_stats.tx_tso_not_tcp++; goto drop; } KASSERT(hdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM, ("%s: mbuf %p TSO without checksum offload %#x", __func__, m, flags)); error = vtnet_txq_offload_tso(txq, m, etype, csum_start, hdr); if (error) goto drop; } return (m); drop: m_freem(m); return (NULL); } static int vtnet_txq_enqueue_buf(struct vtnet_txq *txq, struct mbuf **m_head, struct vtnet_tx_header *txhdr) { struct vtnet_softc *sc; struct virtqueue *vq; struct sglist *sg; struct mbuf *m; int error; sc = txq->vtntx_sc; vq = txq->vtntx_vq; sg = txq->vtntx_sg; m = *m_head; sglist_reset(sg); error = sglist_append(sg, &txhdr->vth_uhdr, sc->vtnet_hdr_size); KASSERT(error == 0 && sg->sg_nseg == 1, ("%s: error %d adding header to sglist", __func__, error)); error = sglist_append_mbuf(sg, m); if (error) { m = m_defrag(m, M_NOWAIT); if (m == NULL) goto fail; *m_head = m; sc->vtnet_stats.tx_defragged++; error = sglist_append_mbuf(sg, m); if (error) goto fail; } txhdr->vth_mbuf = m; error = virtqueue_enqueue(vq, txhdr, sg, sg->sg_nseg, 0); return (error); fail: sc->vtnet_stats.tx_defrag_failed++; m_freem(*m_head); *m_head = NULL; return (ENOBUFS); } static int vtnet_txq_encap(struct vtnet_txq *txq, struct mbuf **m_head, int flags) { struct vtnet_tx_header *txhdr; struct virtio_net_hdr *hdr; struct mbuf *m; int error; m = *m_head; M_ASSERTPKTHDR(m); txhdr = uma_zalloc(vtnet_tx_header_zone, flags | M_ZERO); if (txhdr == NULL) { m_freem(m); *m_head = NULL; return (ENOMEM); } /* * Always use the non-mergeable header, regardless if the feature * was negotiated. For transmit, num_buffers is always zero. The * vtnet_hdr_size is used to enqueue the correct header size. */ hdr = &txhdr->vth_uhdr.hdr; if (m->m_flags & M_VLANTAG) { m = ether_vlanencap(m, m->m_pkthdr.ether_vtag); if ((*m_head = m) == NULL) { error = ENOBUFS; goto fail; } m->m_flags &= ~M_VLANTAG; } if (m->m_pkthdr.csum_flags & VTNET_CSUM_ALL_OFFLOAD) { m = vtnet_txq_offload(txq, m, hdr); if ((*m_head = m) == NULL) { error = ENOBUFS; goto fail; } } error = vtnet_txq_enqueue_buf(txq, m_head, txhdr); if (error == 0) return (0); fail: uma_zfree(vtnet_tx_header_zone, txhdr); return (error); } #ifdef VTNET_LEGACY_TX static void vtnet_start_locked(struct vtnet_txq *txq, struct ifnet *ifp) { struct vtnet_softc *sc; struct virtqueue *vq; struct mbuf *m0; int tries, enq; sc = txq->vtntx_sc; vq = txq->vtntx_vq; tries = 0; VTNET_TXQ_LOCK_ASSERT(txq); if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->vtnet_link_active == 0) return; vtnet_txq_eof(txq); again: enq = 0; while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) { if (virtqueue_full(vq)) break; IFQ_DRV_DEQUEUE(&ifp->if_snd, m0); if (m0 == NULL) break; if (vtnet_txq_encap(txq, &m0, M_NOWAIT) != 0) { if (m0 != NULL) IFQ_DRV_PREPEND(&ifp->if_snd, m0); break; } enq++; ETHER_BPF_MTAP(ifp, m0); } if (enq > 0 && vtnet_txq_notify(txq) != 0) { if (tries++ < VTNET_NOTIFY_RETRIES) goto again; txq->vtntx_stats.vtxs_rescheduled++; taskqueue_enqueue(txq->vtntx_tq, &txq->vtntx_intrtask); } } static void vtnet_start(struct ifnet *ifp) { struct vtnet_softc *sc; struct vtnet_txq *txq; sc = ifp->if_softc; txq = &sc->vtnet_txqs[0]; VTNET_TXQ_LOCK(txq); vtnet_start_locked(txq, ifp); VTNET_TXQ_UNLOCK(txq); } #else /* !VTNET_LEGACY_TX */ static int vtnet_txq_mq_start_locked(struct vtnet_txq *txq, struct mbuf *m) { struct vtnet_softc *sc; struct virtqueue *vq; struct buf_ring *br; struct ifnet *ifp; int enq, tries, error; sc = txq->vtntx_sc; vq = txq->vtntx_vq; br = txq->vtntx_br; ifp = sc->vtnet_ifp; tries = 0; error = 0; VTNET_TXQ_LOCK_ASSERT(txq); if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->vtnet_link_active == 0) { if (m != NULL) error = drbr_enqueue(ifp, br, m); return (error); } if (m != NULL) { error = drbr_enqueue(ifp, br, m); if (error) return (error); } vtnet_txq_eof(txq); again: enq = 0; while ((m = drbr_peek(ifp, br)) != NULL) { if (virtqueue_full(vq)) { drbr_putback(ifp, br, m); break; } if (vtnet_txq_encap(txq, &m, M_NOWAIT) != 0) { if (m != NULL) drbr_putback(ifp, br, m); else drbr_advance(ifp, br); break; } drbr_advance(ifp, br); enq++; ETHER_BPF_MTAP(ifp, m); } if (enq > 0 && vtnet_txq_notify(txq) != 0) { if (tries++ < VTNET_NOTIFY_RETRIES) goto again; txq->vtntx_stats.vtxs_rescheduled++; taskqueue_enqueue(txq->vtntx_tq, &txq->vtntx_intrtask); } return (0); } static int vtnet_txq_mq_start(struct ifnet *ifp, struct mbuf *m) { struct vtnet_softc *sc; struct vtnet_txq *txq; int i, npairs, error; sc = ifp->if_softc; npairs = sc->vtnet_act_vq_pairs; /* check if flowid is set */ if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) i = m->m_pkthdr.flowid % npairs; else i = curcpu % npairs; txq = &sc->vtnet_txqs[i]; if (VTNET_TXQ_TRYLOCK(txq) != 0) { error = vtnet_txq_mq_start_locked(txq, m); VTNET_TXQ_UNLOCK(txq); } else { error = drbr_enqueue(ifp, txq->vtntx_br, m); taskqueue_enqueue(txq->vtntx_tq, &txq->vtntx_defrtask); } return (error); } static void vtnet_txq_tq_deferred(void *xtxq, int pending) { struct vtnet_softc *sc; struct vtnet_txq *txq; txq = xtxq; sc = txq->vtntx_sc; VTNET_TXQ_LOCK(txq); if (!drbr_empty(sc->vtnet_ifp, txq->vtntx_br)) vtnet_txq_mq_start_locked(txq, NULL); VTNET_TXQ_UNLOCK(txq); } #endif /* VTNET_LEGACY_TX */ static void vtnet_txq_start(struct vtnet_txq *txq) { struct vtnet_softc *sc; struct ifnet *ifp; sc = txq->vtntx_sc; ifp = sc->vtnet_ifp; #ifdef VTNET_LEGACY_TX if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) vtnet_start_locked(txq, ifp); #else if (!drbr_empty(ifp, txq->vtntx_br)) vtnet_txq_mq_start_locked(txq, NULL); #endif } static void vtnet_txq_tq_intr(void *xtxq, int pending) { struct vtnet_softc *sc; struct vtnet_txq *txq; struct ifnet *ifp; txq = xtxq; sc = txq->vtntx_sc; ifp = sc->vtnet_ifp; VTNET_TXQ_LOCK(txq); if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { VTNET_TXQ_UNLOCK(txq); return; } vtnet_txq_eof(txq); vtnet_txq_start(txq); VTNET_TXQ_UNLOCK(txq); } static int vtnet_txq_eof(struct vtnet_txq *txq) { struct virtqueue *vq; struct vtnet_tx_header *txhdr; struct mbuf *m; int deq; vq = txq->vtntx_vq; deq = 0; VTNET_TXQ_LOCK_ASSERT(txq); while ((txhdr = virtqueue_dequeue(vq, NULL)) != NULL) { m = txhdr->vth_mbuf; deq++; txq->vtntx_stats.vtxs_opackets++; txq->vtntx_stats.vtxs_obytes += m->m_pkthdr.len; if (m->m_flags & M_MCAST) txq->vtntx_stats.vtxs_omcasts++; m_freem(m); uma_zfree(vtnet_tx_header_zone, txhdr); } if (virtqueue_empty(vq)) txq->vtntx_watchdog = 0; return (deq); } static void vtnet_tx_vq_intr(void *xtxq) { struct vtnet_softc *sc; struct vtnet_txq *txq; struct ifnet *ifp; txq = xtxq; sc = txq->vtntx_sc; ifp = sc->vtnet_ifp; if (__predict_false(txq->vtntx_id >= sc->vtnet_act_vq_pairs)) { /* * Ignore this interrupt. Either this is a spurious interrupt * or multiqueue without per-VQ MSIX so every queue needs to * be polled (a brain dead configuration we could try harder * to avoid). */ vtnet_txq_disable_intr(txq); return; } #ifdef DEV_NETMAP if (netmap_tx_irq(ifp, txq->vtntx_id) != NM_IRQ_PASS) return; #endif /* DEV_NETMAP */ VTNET_TXQ_LOCK(txq); if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { VTNET_TXQ_UNLOCK(txq); return; } vtnet_txq_eof(txq); vtnet_txq_start(txq); VTNET_TXQ_UNLOCK(txq); } static void vtnet_tx_start_all(struct vtnet_softc *sc) { struct vtnet_txq *txq; int i; VTNET_CORE_LOCK_ASSERT(sc); for (i = 0; i < sc->vtnet_act_vq_pairs; i++) { txq = &sc->vtnet_txqs[i]; VTNET_TXQ_LOCK(txq); vtnet_txq_start(txq); VTNET_TXQ_UNLOCK(txq); } } #ifndef VTNET_LEGACY_TX static void vtnet_qflush(struct ifnet *ifp) { struct vtnet_softc *sc; struct vtnet_txq *txq; struct mbuf *m; int i; sc = ifp->if_softc; for (i = 0; i < sc->vtnet_act_vq_pairs; i++) { txq = &sc->vtnet_txqs[i]; VTNET_TXQ_LOCK(txq); while ((m = buf_ring_dequeue_sc(txq->vtntx_br)) != NULL) m_freem(m); VTNET_TXQ_UNLOCK(txq); } if_qflush(ifp); } #endif static int vtnet_watchdog(struct vtnet_txq *txq) { struct ifnet *ifp; ifp = txq->vtntx_sc->vtnet_ifp; VTNET_TXQ_LOCK(txq); if (txq->vtntx_watchdog == 1) { /* * Only drain completed frames if the watchdog is about to * expire. If any frames were drained, there may be enough * free descriptors now available to transmit queued frames. * In that case, the timer will immediately be decremented * below, but the timeout is generous enough that should not * be a problem. */ if (vtnet_txq_eof(txq) != 0) vtnet_txq_start(txq); } if (txq->vtntx_watchdog == 0 || --txq->vtntx_watchdog) { VTNET_TXQ_UNLOCK(txq); return (0); } VTNET_TXQ_UNLOCK(txq); if_printf(ifp, "watchdog timeout on queue %d\n", txq->vtntx_id); return (1); } static void vtnet_accum_stats(struct vtnet_softc *sc, struct vtnet_rxq_stats *rxacc, struct vtnet_txq_stats *txacc) { bzero(rxacc, sizeof(struct vtnet_rxq_stats)); bzero(txacc, sizeof(struct vtnet_txq_stats)); for (int i = 0; i < sc->vtnet_max_vq_pairs; i++) { struct vtnet_rxq_stats *rxst; struct vtnet_txq_stats *txst; rxst = &sc->vtnet_rxqs[i].vtnrx_stats; rxacc->vrxs_ipackets += rxst->vrxs_ipackets; rxacc->vrxs_ibytes += rxst->vrxs_ibytes; rxacc->vrxs_iqdrops += rxst->vrxs_iqdrops; rxacc->vrxs_csum += rxst->vrxs_csum; rxacc->vrxs_csum_failed += rxst->vrxs_csum_failed; rxacc->vrxs_rescheduled += rxst->vrxs_rescheduled; txst = &sc->vtnet_txqs[i].vtntx_stats; txacc->vtxs_opackets += txst->vtxs_opackets; txacc->vtxs_obytes += txst->vtxs_obytes; txacc->vtxs_csum += txst->vtxs_csum; txacc->vtxs_tso += txst->vtxs_tso; txacc->vtxs_rescheduled += txst->vtxs_rescheduled; } } static uint64_t vtnet_get_counter(if_t ifp, ift_counter cnt) { struct vtnet_softc *sc; struct vtnet_rxq_stats rxaccum; struct vtnet_txq_stats txaccum; sc = if_getsoftc(ifp); vtnet_accum_stats(sc, &rxaccum, &txaccum); switch (cnt) { case IFCOUNTER_IPACKETS: return (rxaccum.vrxs_ipackets); case IFCOUNTER_IQDROPS: return (rxaccum.vrxs_iqdrops); case IFCOUNTER_IERRORS: return (rxaccum.vrxs_ierrors); case IFCOUNTER_OPACKETS: return (txaccum.vtxs_opackets); #ifndef VTNET_LEGACY_TX case IFCOUNTER_OBYTES: return (txaccum.vtxs_obytes); case IFCOUNTER_OMCASTS: return (txaccum.vtxs_omcasts); #endif default: return (if_get_counter_default(ifp, cnt)); } } static void vtnet_tick(void *xsc) { struct vtnet_softc *sc; struct ifnet *ifp; int i, timedout; sc = xsc; ifp = sc->vtnet_ifp; timedout = 0; VTNET_CORE_LOCK_ASSERT(sc); for (i = 0; i < sc->vtnet_act_vq_pairs; i++) timedout |= vtnet_watchdog(&sc->vtnet_txqs[i]); if (timedout != 0) { ifp->if_drv_flags &= ~IFF_DRV_RUNNING; vtnet_init_locked(sc, 0); } else callout_schedule(&sc->vtnet_tick_ch, hz); } static void vtnet_start_taskqueues(struct vtnet_softc *sc) { device_t dev; struct vtnet_rxq *rxq; struct vtnet_txq *txq; int i, error; dev = sc->vtnet_dev; /* * Errors here are very difficult to recover from - we cannot * easily fail because, if this is during boot, we will hang * when freeing any successfully started taskqueues because * the scheduler isn't up yet. * * Most drivers just ignore the return value - it only fails * with ENOMEM so an error is not likely. */ for (i = 0; i < sc->vtnet_max_vq_pairs; i++) { rxq = &sc->vtnet_rxqs[i]; error = taskqueue_start_threads(&rxq->vtnrx_tq, 1, PI_NET, "%s rxq %d", device_get_nameunit(dev), rxq->vtnrx_id); if (error) { device_printf(dev, "failed to start rx taskq %d\n", rxq->vtnrx_id); } txq = &sc->vtnet_txqs[i]; error = taskqueue_start_threads(&txq->vtntx_tq, 1, PI_NET, "%s txq %d", device_get_nameunit(dev), txq->vtntx_id); if (error) { device_printf(dev, "failed to start tx taskq %d\n", txq->vtntx_id); } } } static void vtnet_free_taskqueues(struct vtnet_softc *sc) { struct vtnet_rxq *rxq; struct vtnet_txq *txq; int i; for (i = 0; i < sc->vtnet_max_vq_pairs; i++) { rxq = &sc->vtnet_rxqs[i]; if (rxq->vtnrx_tq != NULL) { taskqueue_free(rxq->vtnrx_tq); rxq->vtnrx_tq = NULL; } txq = &sc->vtnet_txqs[i]; if (txq->vtntx_tq != NULL) { taskqueue_free(txq->vtntx_tq); txq->vtntx_tq = NULL; } } } static void vtnet_drain_taskqueues(struct vtnet_softc *sc) { struct vtnet_rxq *rxq; struct vtnet_txq *txq; int i; for (i = 0; i < sc->vtnet_max_vq_pairs; i++) { rxq = &sc->vtnet_rxqs[i]; if (rxq->vtnrx_tq != NULL) taskqueue_drain(rxq->vtnrx_tq, &rxq->vtnrx_intrtask); txq = &sc->vtnet_txqs[i]; if (txq->vtntx_tq != NULL) { taskqueue_drain(txq->vtntx_tq, &txq->vtntx_intrtask); #ifndef VTNET_LEGACY_TX taskqueue_drain(txq->vtntx_tq, &txq->vtntx_defrtask); #endif } } } static void vtnet_drain_rxtx_queues(struct vtnet_softc *sc) { struct vtnet_rxq *rxq; struct vtnet_txq *txq; int i; for (i = 0; i < sc->vtnet_act_vq_pairs; i++) { rxq = &sc->vtnet_rxqs[i]; vtnet_rxq_free_mbufs(rxq); txq = &sc->vtnet_txqs[i]; vtnet_txq_free_mbufs(txq); } } static void vtnet_stop_rendezvous(struct vtnet_softc *sc) { struct vtnet_rxq *rxq; struct vtnet_txq *txq; int i; /* * Lock and unlock the per-queue mutex so we known the stop * state is visible. Doing only the active queues should be * sufficient, but it does not cost much extra to do all the * queues. Note we hold the core mutex here too. */ for (i = 0; i < sc->vtnet_max_vq_pairs; i++) { rxq = &sc->vtnet_rxqs[i]; VTNET_RXQ_LOCK(rxq); VTNET_RXQ_UNLOCK(rxq); txq = &sc->vtnet_txqs[i]; VTNET_TXQ_LOCK(txq); VTNET_TXQ_UNLOCK(txq); } } static void vtnet_stop(struct vtnet_softc *sc) { device_t dev; struct ifnet *ifp; dev = sc->vtnet_dev; ifp = sc->vtnet_ifp; VTNET_CORE_LOCK_ASSERT(sc); ifp->if_drv_flags &= ~IFF_DRV_RUNNING; sc->vtnet_link_active = 0; callout_stop(&sc->vtnet_tick_ch); /* Only advisory. */ vtnet_disable_interrupts(sc); /* * Stop the host adapter. This resets it to the pre-initialized * state. It will not generate any interrupts until after it is * reinitialized. */ virtio_stop(dev); vtnet_stop_rendezvous(sc); /* Free any mbufs left in the virtqueues. */ vtnet_drain_rxtx_queues(sc); } static int vtnet_virtio_reinit(struct vtnet_softc *sc) { device_t dev; struct ifnet *ifp; uint64_t features; int mask, error; dev = sc->vtnet_dev; ifp = sc->vtnet_ifp; features = sc->vtnet_features; mask = 0; #if defined(INET) mask |= IFCAP_RXCSUM; #endif #if defined (INET6) mask |= IFCAP_RXCSUM_IPV6; #endif /* * Re-negotiate with the host, removing any disabled receive * features. Transmit features are disabled only on our side * via if_capenable and if_hwassist. */ if (ifp->if_capabilities & mask) { /* * We require both IPv4 and IPv6 offloading to be enabled * in order to negotiated it: VirtIO does not distinguish * between the two. */ if ((ifp->if_capenable & mask) != mask) features &= ~VIRTIO_NET_F_GUEST_CSUM; } if (ifp->if_capabilities & IFCAP_LRO) { if ((ifp->if_capenable & IFCAP_LRO) == 0) features &= ~VTNET_LRO_FEATURES; } if (ifp->if_capabilities & IFCAP_VLAN_HWFILTER) { if ((ifp->if_capenable & IFCAP_VLAN_HWFILTER) == 0) features &= ~VIRTIO_NET_F_CTRL_VLAN; } error = virtio_reinit(dev, features); if (error) device_printf(dev, "virtio reinit error %d\n", error); return (error); } static void vtnet_init_rx_filters(struct vtnet_softc *sc) { struct ifnet *ifp; ifp = sc->vtnet_ifp; if (sc->vtnet_flags & VTNET_FLAG_CTRL_RX) { /* Restore promiscuous and all-multicast modes. */ vtnet_rx_filter(sc); /* Restore filtered MAC addresses. */ vtnet_rx_filter_mac(sc); } if (ifp->if_capenable & IFCAP_VLAN_HWFILTER) vtnet_rx_filter_vlan(sc); } static int vtnet_init_rx_queues(struct vtnet_softc *sc) { device_t dev; struct vtnet_rxq *rxq; int i, clsize, error; dev = sc->vtnet_dev; /* * Use the new cluster size if one has been set (via a MTU * change). Otherwise, use the standard 2K clusters. * * BMV: It might make sense to use page sized clusters as * the default (depending on the features negotiated). */ if (sc->vtnet_rx_new_clsize != 0) { clsize = sc->vtnet_rx_new_clsize; sc->vtnet_rx_new_clsize = 0; } else clsize = MCLBYTES; sc->vtnet_rx_clsize = clsize; sc->vtnet_rx_nmbufs = VTNET_NEEDED_RX_MBUFS(sc, clsize); KASSERT(sc->vtnet_flags & VTNET_FLAG_MRG_RXBUFS || sc->vtnet_rx_nmbufs < sc->vtnet_rx_nsegs, ("%s: too many rx mbufs %d for %d segments", __func__, sc->vtnet_rx_nmbufs, sc->vtnet_rx_nsegs)); for (i = 0; i < sc->vtnet_act_vq_pairs; i++) { rxq = &sc->vtnet_rxqs[i]; /* Hold the lock to satisfy asserts. */ VTNET_RXQ_LOCK(rxq); error = vtnet_rxq_populate(rxq); VTNET_RXQ_UNLOCK(rxq); if (error) { device_printf(dev, "cannot allocate mbufs for Rx queue %d\n", i); return (error); } } return (0); } static int vtnet_init_tx_queues(struct vtnet_softc *sc) { struct vtnet_txq *txq; int i; for (i = 0; i < sc->vtnet_act_vq_pairs; i++) { txq = &sc->vtnet_txqs[i]; txq->vtntx_watchdog = 0; #ifdef DEV_NETMAP netmap_reset(NA(sc->vtnet_ifp), NR_TX, i, 0); #endif /* DEV_NETMAP */ } return (0); } static int vtnet_init_rxtx_queues(struct vtnet_softc *sc) { int error; error = vtnet_init_rx_queues(sc); if (error) return (error); error = vtnet_init_tx_queues(sc); if (error) return (error); return (0); } static void vtnet_set_active_vq_pairs(struct vtnet_softc *sc) { device_t dev; int npairs; dev = sc->vtnet_dev; if ((sc->vtnet_flags & VTNET_FLAG_MULTIQ) == 0) { sc->vtnet_act_vq_pairs = 1; return; } npairs = sc->vtnet_requested_vq_pairs; if (vtnet_ctrl_mq_cmd(sc, npairs) != 0) { device_printf(dev, "cannot set active queue pairs to %d\n", npairs); npairs = 1; } sc->vtnet_act_vq_pairs = npairs; } static int vtnet_reinit(struct vtnet_softc *sc) { struct ifnet *ifp; int error; ifp = sc->vtnet_ifp; /* Use the current MAC address. */ bcopy(IF_LLADDR(ifp), sc->vtnet_hwaddr, ETHER_ADDR_LEN); vtnet_set_hwaddr(sc); vtnet_set_active_vq_pairs(sc); ifp->if_hwassist = 0; if (ifp->if_capenable & IFCAP_TXCSUM) ifp->if_hwassist |= VTNET_CSUM_OFFLOAD; if (ifp->if_capenable & IFCAP_TXCSUM_IPV6) ifp->if_hwassist |= VTNET_CSUM_OFFLOAD_IPV6; if (ifp->if_capenable & IFCAP_TSO4) ifp->if_hwassist |= CSUM_IP_TSO; if (ifp->if_capenable & IFCAP_TSO6) ifp->if_hwassist |= CSUM_IP6_TSO; if (sc->vtnet_flags & VTNET_FLAG_CTRL_VQ) vtnet_init_rx_filters(sc); error = vtnet_init_rxtx_queues(sc); if (error) return (error); vtnet_enable_interrupts(sc); ifp->if_drv_flags |= IFF_DRV_RUNNING; return (0); } static void vtnet_init_locked(struct vtnet_softc *sc, int init_mode) { device_t dev; struct ifnet *ifp; dev = sc->vtnet_dev; ifp = sc->vtnet_ifp; VTNET_CORE_LOCK_ASSERT(sc); if (ifp->if_drv_flags & IFF_DRV_RUNNING) return; vtnet_stop(sc); #ifdef DEV_NETMAP /* Once stopped we can update the netmap flags, if necessary. */ switch (init_mode) { case VTNET_INIT_NETMAP_ENTER: nm_set_native_flags(NA(ifp)); break; case VTNET_INIT_NETMAP_EXIT: nm_clear_native_flags(NA(ifp)); break; } #endif /* DEV_NETMAP */ /* Reinitialize with the host. */ if (vtnet_virtio_reinit(sc) != 0) goto fail; if (vtnet_reinit(sc) != 0) goto fail; virtio_reinit_complete(dev); vtnet_update_link_status(sc); callout_reset(&sc->vtnet_tick_ch, hz, vtnet_tick, sc); return; fail: vtnet_stop(sc); } static void vtnet_init(void *xsc) { struct vtnet_softc *sc; sc = xsc; VTNET_CORE_LOCK(sc); vtnet_init_locked(sc, 0); VTNET_CORE_UNLOCK(sc); } static void vtnet_free_ctrl_vq(struct vtnet_softc *sc) { struct virtqueue *vq; vq = sc->vtnet_ctrl_vq; /* * The control virtqueue is only polled and therefore it should * already be empty. */ KASSERT(virtqueue_empty(vq), ("%s: ctrl vq %p not empty", __func__, vq)); } static void vtnet_exec_ctrl_cmd(struct vtnet_softc *sc, void *cookie, struct sglist *sg, int readable, int writable) { struct virtqueue *vq; vq = sc->vtnet_ctrl_vq; VTNET_CORE_LOCK_ASSERT(sc); KASSERT(sc->vtnet_flags & VTNET_FLAG_CTRL_VQ, ("%s: CTRL_VQ feature not negotiated", __func__)); if (!virtqueue_empty(vq)) return; if (virtqueue_enqueue(vq, cookie, sg, readable, writable) != 0) return; /* * Poll for the response, but the command is likely already * done when we return from the notify. */ virtqueue_notify(vq); virtqueue_poll(vq, NULL); } static int vtnet_ctrl_mac_cmd(struct vtnet_softc *sc, uint8_t *hwaddr) { struct virtio_net_ctrl_hdr hdr __aligned(2); struct sglist_seg segs[3]; struct sglist sg; uint8_t ack; int error; hdr.class = VIRTIO_NET_CTRL_MAC; hdr.cmd = VIRTIO_NET_CTRL_MAC_ADDR_SET; ack = VIRTIO_NET_ERR; sglist_init(&sg, 3, segs); error = 0; error |= sglist_append(&sg, &hdr, sizeof(struct virtio_net_ctrl_hdr)); error |= sglist_append(&sg, hwaddr, ETHER_ADDR_LEN); error |= sglist_append(&sg, &ack, sizeof(uint8_t)); KASSERT(error == 0 && sg.sg_nseg == 3, ("%s: error %d adding set MAC msg to sglist", __func__, error)); vtnet_exec_ctrl_cmd(sc, &ack, &sg, sg.sg_nseg - 1, 1); return (ack == VIRTIO_NET_OK ? 0 : EIO); } static int vtnet_ctrl_mq_cmd(struct vtnet_softc *sc, uint16_t npairs) { struct sglist_seg segs[3]; struct sglist sg; struct { struct virtio_net_ctrl_hdr hdr; uint8_t pad1; struct virtio_net_ctrl_mq mq; uint8_t pad2; uint8_t ack; } s __aligned(2); int error; s.hdr.class = VIRTIO_NET_CTRL_MQ; s.hdr.cmd = VIRTIO_NET_CTRL_MQ_VQ_PAIRS_SET; s.mq.virtqueue_pairs = npairs; s.ack = VIRTIO_NET_ERR; sglist_init(&sg, 3, segs); error = 0; error |= sglist_append(&sg, &s.hdr, sizeof(struct virtio_net_ctrl_hdr)); error |= sglist_append(&sg, &s.mq, sizeof(struct virtio_net_ctrl_mq)); error |= sglist_append(&sg, &s.ack, sizeof(uint8_t)); KASSERT(error == 0 && sg.sg_nseg == 3, ("%s: error %d adding MQ message to sglist", __func__, error)); vtnet_exec_ctrl_cmd(sc, &s.ack, &sg, sg.sg_nseg - 1, 1); return (s.ack == VIRTIO_NET_OK ? 0 : EIO); } static int vtnet_ctrl_rx_cmd(struct vtnet_softc *sc, int cmd, int on) { struct sglist_seg segs[3]; struct sglist sg; struct { struct virtio_net_ctrl_hdr hdr; uint8_t pad1; uint8_t onoff; uint8_t pad2; uint8_t ack; } s __aligned(2); int error; KASSERT(sc->vtnet_flags & VTNET_FLAG_CTRL_RX, ("%s: CTRL_RX feature not negotiated", __func__)); s.hdr.class = VIRTIO_NET_CTRL_RX; s.hdr.cmd = cmd; s.onoff = !!on; s.ack = VIRTIO_NET_ERR; sglist_init(&sg, 3, segs); error = 0; error |= sglist_append(&sg, &s.hdr, sizeof(struct virtio_net_ctrl_hdr)); error |= sglist_append(&sg, &s.onoff, sizeof(uint8_t)); error |= sglist_append(&sg, &s.ack, sizeof(uint8_t)); KASSERT(error == 0 && sg.sg_nseg == 3, ("%s: error %d adding Rx message to sglist", __func__, error)); vtnet_exec_ctrl_cmd(sc, &s.ack, &sg, sg.sg_nseg - 1, 1); return (s.ack == VIRTIO_NET_OK ? 0 : EIO); } static int vtnet_set_promisc(struct vtnet_softc *sc, int on) { return (vtnet_ctrl_rx_cmd(sc, VIRTIO_NET_CTRL_RX_PROMISC, on)); } static int vtnet_set_allmulti(struct vtnet_softc *sc, int on) { return (vtnet_ctrl_rx_cmd(sc, VIRTIO_NET_CTRL_RX_ALLMULTI, on)); } /* * The device defaults to promiscuous mode for backwards compatibility. * Turn it off at attach time if possible. */ static void vtnet_attach_disable_promisc(struct vtnet_softc *sc) { struct ifnet *ifp; ifp = sc->vtnet_ifp; VTNET_CORE_LOCK(sc); if ((sc->vtnet_flags & VTNET_FLAG_CTRL_RX) == 0) { ifp->if_flags |= IFF_PROMISC; } else if (vtnet_set_promisc(sc, 0) != 0) { ifp->if_flags |= IFF_PROMISC; device_printf(sc->vtnet_dev, "cannot disable default promiscuous mode\n"); } VTNET_CORE_UNLOCK(sc); } static void vtnet_rx_filter(struct vtnet_softc *sc) { device_t dev; struct ifnet *ifp; dev = sc->vtnet_dev; ifp = sc->vtnet_ifp; VTNET_CORE_LOCK_ASSERT(sc); if (vtnet_set_promisc(sc, ifp->if_flags & IFF_PROMISC) != 0) device_printf(dev, "cannot %s promiscuous mode\n", ifp->if_flags & IFF_PROMISC ? "enable" : "disable"); if (vtnet_set_allmulti(sc, ifp->if_flags & IFF_ALLMULTI) != 0) device_printf(dev, "cannot %s all-multicast mode\n", ifp->if_flags & IFF_ALLMULTI ? "enable" : "disable"); } static u_int vtnet_copy_ifaddr(void *arg, struct sockaddr_dl *sdl, u_int ucnt) { struct vtnet_softc *sc = arg; if (memcmp(LLADDR(sdl), sc->vtnet_hwaddr, ETHER_ADDR_LEN) == 0) return (0); if (ucnt < VTNET_MAX_MAC_ENTRIES) bcopy(LLADDR(sdl), &sc->vtnet_mac_filter->vmf_unicast.macs[ucnt], ETHER_ADDR_LEN); return (1); } static u_int vtnet_copy_maddr(void *arg, struct sockaddr_dl *sdl, u_int mcnt) { struct vtnet_mac_filter *filter = arg; if (mcnt < VTNET_MAX_MAC_ENTRIES) bcopy(LLADDR(sdl), &filter->vmf_multicast.macs[mcnt], ETHER_ADDR_LEN); return (1); } static void vtnet_rx_filter_mac(struct vtnet_softc *sc) { struct virtio_net_ctrl_hdr hdr __aligned(2); struct vtnet_mac_filter *filter; struct sglist_seg segs[4]; struct sglist sg; struct ifnet *ifp; bool promisc, allmulti; u_int ucnt, mcnt; int error; uint8_t ack; ifp = sc->vtnet_ifp; filter = sc->vtnet_mac_filter; VTNET_CORE_LOCK_ASSERT(sc); KASSERT(sc->vtnet_flags & VTNET_FLAG_CTRL_RX, ("%s: CTRL_RX feature not negotiated", __func__)); /* Unicast MAC addresses: */ ucnt = if_foreach_lladdr(ifp, vtnet_copy_ifaddr, sc); promisc = (ucnt > VTNET_MAX_MAC_ENTRIES); if (promisc) { filter->vmf_unicast.nentries = 0; if_printf(ifp, "more than %d MAC addresses assigned, " "falling back to promiscuous mode\n", VTNET_MAX_MAC_ENTRIES); } else filter->vmf_unicast.nentries = ucnt; /* Multicast MAC addresses: */ mcnt = if_foreach_llmaddr(ifp, vtnet_copy_maddr, filter); allmulti = (mcnt > VTNET_MAX_MAC_ENTRIES); if (allmulti) { filter->vmf_multicast.nentries = 0; if_printf(ifp, "more than %d multicast MAC addresses " "assigned, falling back to all-multicast mode\n", VTNET_MAX_MAC_ENTRIES); } else filter->vmf_multicast.nentries = mcnt; if (promisc && allmulti) goto out; hdr.class = VIRTIO_NET_CTRL_MAC; hdr.cmd = VIRTIO_NET_CTRL_MAC_TABLE_SET; ack = VIRTIO_NET_ERR; sglist_init(&sg, 4, segs); error = 0; error |= sglist_append(&sg, &hdr, sizeof(struct virtio_net_ctrl_hdr)); error |= sglist_append(&sg, &filter->vmf_unicast, sizeof(uint32_t) + filter->vmf_unicast.nentries * ETHER_ADDR_LEN); error |= sglist_append(&sg, &filter->vmf_multicast, sizeof(uint32_t) + filter->vmf_multicast.nentries * ETHER_ADDR_LEN); error |= sglist_append(&sg, &ack, sizeof(uint8_t)); KASSERT(error == 0 && sg.sg_nseg == 4, ("%s: error %d adding MAC filter msg to sglist", __func__, error)); vtnet_exec_ctrl_cmd(sc, &ack, &sg, sg.sg_nseg - 1, 1); if (ack != VIRTIO_NET_OK) if_printf(ifp, "error setting host MAC filter table\n"); out: if (promisc != 0 && vtnet_set_promisc(sc, 1) != 0) if_printf(ifp, "cannot enable promiscuous mode\n"); if (allmulti != 0 && vtnet_set_allmulti(sc, 1) != 0) if_printf(ifp, "cannot enable all-multicast mode\n"); } static int vtnet_exec_vlan_filter(struct vtnet_softc *sc, int add, uint16_t tag) { struct sglist_seg segs[3]; struct sglist sg; struct { struct virtio_net_ctrl_hdr hdr; uint8_t pad1; uint16_t tag; uint8_t pad2; uint8_t ack; } s __aligned(2); int error; s.hdr.class = VIRTIO_NET_CTRL_VLAN; s.hdr.cmd = add ? VIRTIO_NET_CTRL_VLAN_ADD : VIRTIO_NET_CTRL_VLAN_DEL; s.tag = tag; s.ack = VIRTIO_NET_ERR; sglist_init(&sg, 3, segs); error = 0; error |= sglist_append(&sg, &s.hdr, sizeof(struct virtio_net_ctrl_hdr)); error |= sglist_append(&sg, &s.tag, sizeof(uint16_t)); error |= sglist_append(&sg, &s.ack, sizeof(uint8_t)); KASSERT(error == 0 && sg.sg_nseg == 3, ("%s: error %d adding VLAN message to sglist", __func__, error)); vtnet_exec_ctrl_cmd(sc, &s.ack, &sg, sg.sg_nseg - 1, 1); return (s.ack == VIRTIO_NET_OK ? 0 : EIO); } static void vtnet_rx_filter_vlan(struct vtnet_softc *sc) { uint32_t w; uint16_t tag; int i, bit; VTNET_CORE_LOCK_ASSERT(sc); KASSERT(sc->vtnet_flags & VTNET_FLAG_VLAN_FILTER, ("%s: VLAN_FILTER feature not negotiated", __func__)); /* Enable the filter for each configured VLAN. */ for (i = 0; i < VTNET_VLAN_FILTER_NWORDS; i++) { w = sc->vtnet_vlan_filter[i]; while ((bit = ffs(w) - 1) != -1) { w &= ~(1 << bit); tag = sizeof(w) * CHAR_BIT * i + bit; if (vtnet_exec_vlan_filter(sc, 1, tag) != 0) { device_printf(sc->vtnet_dev, "cannot enable VLAN %d filter\n", tag); } } } } static void vtnet_update_vlan_filter(struct vtnet_softc *sc, int add, uint16_t tag) { struct ifnet *ifp; int idx, bit; ifp = sc->vtnet_ifp; idx = (tag >> 5) & 0x7F; bit = tag & 0x1F; if (tag == 0 || tag > 4095) return; VTNET_CORE_LOCK(sc); if (add) sc->vtnet_vlan_filter[idx] |= (1 << bit); else sc->vtnet_vlan_filter[idx] &= ~(1 << bit); if (ifp->if_capenable & IFCAP_VLAN_HWFILTER && ifp->if_drv_flags & IFF_DRV_RUNNING && vtnet_exec_vlan_filter(sc, add, tag) != 0) { device_printf(sc->vtnet_dev, "cannot %s VLAN %d %s the host filter table\n", add ? "add" : "remove", tag, add ? "to" : "from"); } VTNET_CORE_UNLOCK(sc); } static void vtnet_register_vlan(void *arg, struct ifnet *ifp, uint16_t tag) { if (ifp->if_softc != arg) return; vtnet_update_vlan_filter(arg, 1, tag); } static void vtnet_unregister_vlan(void *arg, struct ifnet *ifp, uint16_t tag) { if (ifp->if_softc != arg) return; vtnet_update_vlan_filter(arg, 0, tag); } static int vtnet_is_link_up(struct vtnet_softc *sc) { device_t dev; struct ifnet *ifp; uint16_t status; dev = sc->vtnet_dev; ifp = sc->vtnet_ifp; if ((ifp->if_capabilities & IFCAP_LINKSTATE) == 0) status = VIRTIO_NET_S_LINK_UP; else status = virtio_read_dev_config_2(dev, offsetof(struct virtio_net_config, status)); return ((status & VIRTIO_NET_S_LINK_UP) != 0); } static void vtnet_update_link_status(struct vtnet_softc *sc) { struct ifnet *ifp; int link; ifp = sc->vtnet_ifp; VTNET_CORE_LOCK_ASSERT(sc); link = vtnet_is_link_up(sc); /* Notify if the link status has changed. */ if (link != 0 && sc->vtnet_link_active == 0) { sc->vtnet_link_active = 1; if_link_state_change(ifp, LINK_STATE_UP); } else if (link == 0 && sc->vtnet_link_active != 0) { sc->vtnet_link_active = 0; if_link_state_change(ifp, LINK_STATE_DOWN); } } static int vtnet_ifmedia_upd(struct ifnet *ifp) { struct vtnet_softc *sc; struct ifmedia *ifm; sc = ifp->if_softc; ifm = &sc->vtnet_media; if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) return (EINVAL); return (0); } static void vtnet_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) { struct vtnet_softc *sc; sc = ifp->if_softc; ifmr->ifm_status = IFM_AVALID; ifmr->ifm_active = IFM_ETHER; VTNET_CORE_LOCK(sc); if (vtnet_is_link_up(sc) != 0) { ifmr->ifm_status |= IFM_ACTIVE; ifmr->ifm_active |= VTNET_MEDIATYPE; } else ifmr->ifm_active |= IFM_NONE; VTNET_CORE_UNLOCK(sc); } static void vtnet_set_hwaddr(struct vtnet_softc *sc) { device_t dev; int i; dev = sc->vtnet_dev; if (sc->vtnet_flags & VTNET_FLAG_CTRL_MAC) { if (vtnet_ctrl_mac_cmd(sc, sc->vtnet_hwaddr) != 0) device_printf(dev, "unable to set MAC address\n"); } else if (sc->vtnet_flags & VTNET_FLAG_MAC) { for (i = 0; i < ETHER_ADDR_LEN; i++) { virtio_write_dev_config_1(dev, offsetof(struct virtio_net_config, mac) + i, sc->vtnet_hwaddr[i]); } } } static void vtnet_get_hwaddr(struct vtnet_softc *sc) { device_t dev; int i; dev = sc->vtnet_dev; if ((sc->vtnet_flags & VTNET_FLAG_MAC) == 0) { /* * Generate a random locally administered unicast address. * * It would be nice to generate the same MAC address across * reboots, but it seems all the hosts currently available * support the MAC feature, so this isn't too important. */ sc->vtnet_hwaddr[0] = 0xB2; arc4rand(&sc->vtnet_hwaddr[1], ETHER_ADDR_LEN - 1, 0); vtnet_set_hwaddr(sc); return; } for (i = 0; i < ETHER_ADDR_LEN; i++) { sc->vtnet_hwaddr[i] = virtio_read_dev_config_1(dev, offsetof(struct virtio_net_config, mac) + i); } } static void vtnet_vlan_tag_remove(struct mbuf *m) { struct ether_vlan_header *evh; evh = mtod(m, struct ether_vlan_header *); m->m_pkthdr.ether_vtag = ntohs(evh->evl_tag); m->m_flags |= M_VLANTAG; /* Strip the 802.1Q header. */ bcopy((char *) evh, (char *) evh + ETHER_VLAN_ENCAP_LEN, ETHER_HDR_LEN - ETHER_TYPE_LEN); m_adj(m, ETHER_VLAN_ENCAP_LEN); } static void vtnet_set_rx_process_limit(struct vtnet_softc *sc) { int limit; limit = vtnet_tunable_int(sc, "rx_process_limit", vtnet_rx_process_limit); if (limit < 0) limit = INT_MAX; sc->vtnet_rx_process_limit = limit; } static void vtnet_set_tx_intr_threshold(struct vtnet_softc *sc) { int size, thresh; size = virtqueue_size(sc->vtnet_txqs[0].vtntx_vq); /* * The Tx interrupt is disabled until the queue free count falls * below our threshold. Completed frames are drained from the Tx * virtqueue before transmitting new frames and in the watchdog * callout, so the frequency of Tx interrupts is greatly reduced, * at the cost of not freeing mbufs as quickly as they otherwise * would be. * * N.B. We assume all the Tx queues are the same size. */ thresh = size / 4; /* * Without indirect descriptors, leave enough room for the most * segments we handle. */ if ((sc->vtnet_flags & VTNET_FLAG_INDIRECT) == 0 && thresh < sc->vtnet_tx_nsegs) thresh = sc->vtnet_tx_nsegs; sc->vtnet_tx_intr_thresh = thresh; } static void vtnet_setup_rxq_sysctl(struct sysctl_ctx_list *ctx, struct sysctl_oid_list *child, struct vtnet_rxq *rxq) { struct sysctl_oid *node; struct sysctl_oid_list *list; struct vtnet_rxq_stats *stats; char namebuf[16]; snprintf(namebuf, sizeof(namebuf), "rxq%d", rxq->vtnrx_id); node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Receive Queue"); list = SYSCTL_CHILDREN(node); stats = &rxq->vtnrx_stats; SYSCTL_ADD_UQUAD(ctx, list, OID_AUTO, "ipackets", CTLFLAG_RD, &stats->vrxs_ipackets, "Receive packets"); SYSCTL_ADD_UQUAD(ctx, list, OID_AUTO, "ibytes", CTLFLAG_RD, &stats->vrxs_ibytes, "Receive bytes"); SYSCTL_ADD_UQUAD(ctx, list, OID_AUTO, "iqdrops", CTLFLAG_RD, &stats->vrxs_iqdrops, "Receive drops"); SYSCTL_ADD_UQUAD(ctx, list, OID_AUTO, "ierrors", CTLFLAG_RD, &stats->vrxs_ierrors, "Receive errors"); SYSCTL_ADD_UQUAD(ctx, list, OID_AUTO, "csum", CTLFLAG_RD, &stats->vrxs_csum, "Receive checksum offloaded"); SYSCTL_ADD_UQUAD(ctx, list, OID_AUTO, "csum_failed", CTLFLAG_RD, &stats->vrxs_csum_failed, "Receive checksum offload failed"); SYSCTL_ADD_UQUAD(ctx, list, OID_AUTO, "rescheduled", CTLFLAG_RD, &stats->vrxs_rescheduled, "Receive interrupt handler rescheduled"); } static void vtnet_setup_txq_sysctl(struct sysctl_ctx_list *ctx, struct sysctl_oid_list *child, struct vtnet_txq *txq) { struct sysctl_oid *node; struct sysctl_oid_list *list; struct vtnet_txq_stats *stats; char namebuf[16]; snprintf(namebuf, sizeof(namebuf), "txq%d", txq->vtntx_id); node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Transmit Queue"); list = SYSCTL_CHILDREN(node); stats = &txq->vtntx_stats; SYSCTL_ADD_UQUAD(ctx, list, OID_AUTO, "opackets", CTLFLAG_RD, &stats->vtxs_opackets, "Transmit packets"); SYSCTL_ADD_UQUAD(ctx, list, OID_AUTO, "obytes", CTLFLAG_RD, &stats->vtxs_obytes, "Transmit bytes"); SYSCTL_ADD_UQUAD(ctx, list, OID_AUTO, "omcasts", CTLFLAG_RD, &stats->vtxs_omcasts, "Transmit multicasts"); SYSCTL_ADD_UQUAD(ctx, list, OID_AUTO, "csum", CTLFLAG_RD, &stats->vtxs_csum, "Transmit checksum offloaded"); SYSCTL_ADD_UQUAD(ctx, list, OID_AUTO, "tso", CTLFLAG_RD, &stats->vtxs_tso, "Transmit segmentation offloaded"); SYSCTL_ADD_UQUAD(ctx, list, OID_AUTO, "rescheduled", CTLFLAG_RD, &stats->vtxs_rescheduled, "Transmit interrupt handler rescheduled"); } static void vtnet_setup_queue_sysctl(struct vtnet_softc *sc) { device_t dev; struct sysctl_ctx_list *ctx; struct sysctl_oid *tree; struct sysctl_oid_list *child; int i; dev = sc->vtnet_dev; ctx = device_get_sysctl_ctx(dev); tree = device_get_sysctl_tree(dev); child = SYSCTL_CHILDREN(tree); for (i = 0; i < sc->vtnet_max_vq_pairs; i++) { vtnet_setup_rxq_sysctl(ctx, child, &sc->vtnet_rxqs[i]); vtnet_setup_txq_sysctl(ctx, child, &sc->vtnet_txqs[i]); } } static void vtnet_setup_stat_sysctl(struct sysctl_ctx_list *ctx, struct sysctl_oid_list *child, struct vtnet_softc *sc) { struct vtnet_statistics *stats; struct vtnet_rxq_stats rxaccum; struct vtnet_txq_stats txaccum; vtnet_accum_stats(sc, &rxaccum, &txaccum); stats = &sc->vtnet_stats; stats->rx_csum_offloaded = rxaccum.vrxs_csum; stats->rx_csum_failed = rxaccum.vrxs_csum_failed; stats->rx_task_rescheduled = rxaccum.vrxs_rescheduled; stats->tx_csum_offloaded = txaccum.vtxs_csum; stats->tx_tso_offloaded = txaccum.vtxs_tso; stats->tx_task_rescheduled = txaccum.vtxs_rescheduled; SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "mbuf_alloc_failed", CTLFLAG_RD, &stats->mbuf_alloc_failed, "Mbuf cluster allocation failures"); SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "rx_frame_too_large", CTLFLAG_RD, &stats->rx_frame_too_large, "Received frame larger than the mbuf chain"); SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "rx_enq_replacement_failed", CTLFLAG_RD, &stats->rx_enq_replacement_failed, "Enqueuing the replacement receive mbuf failed"); SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "rx_mergeable_failed", CTLFLAG_RD, &stats->rx_mergeable_failed, "Mergeable buffers receive failures"); SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "rx_csum_bad_ethtype", CTLFLAG_RD, &stats->rx_csum_bad_ethtype, "Received checksum offloaded buffer with unsupported " "Ethernet type"); SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "rx_csum_bad_ipproto", CTLFLAG_RD, &stats->rx_csum_bad_ipproto, "Received checksum offloaded buffer with incorrect IP protocol"); SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "rx_csum_bad_offset", CTLFLAG_RD, &stats->rx_csum_bad_offset, "Received checksum offloaded buffer with incorrect offset"); SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "rx_csum_bad_proto", CTLFLAG_RD, &stats->rx_csum_bad_proto, "Received checksum offloaded buffer with incorrect protocol"); SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "rx_csum_failed", CTLFLAG_RD, &stats->rx_csum_failed, "Received buffer checksum offload failed"); SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "rx_csum_offloaded", CTLFLAG_RD, &stats->rx_csum_offloaded, "Received buffer checksum offload succeeded"); SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "rx_task_rescheduled", CTLFLAG_RD, &stats->rx_task_rescheduled, "Times the receive interrupt task rescheduled itself"); SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "tx_csum_bad_ethtype", CTLFLAG_RD, &stats->tx_csum_bad_ethtype, "Aborted transmit of checksum offloaded buffer with unknown " "Ethernet type"); SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "tx_tso_bad_ethtype", CTLFLAG_RD, &stats->tx_tso_bad_ethtype, "Aborted transmit of TSO buffer with unknown Ethernet type"); SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "tx_tso_not_tcp", CTLFLAG_RD, &stats->tx_tso_not_tcp, "Aborted transmit of TSO buffer with non TCP protocol"); SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "tx_defragged", CTLFLAG_RD, &stats->tx_defragged, "Transmit mbufs defragged"); SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "tx_defrag_failed", CTLFLAG_RD, &stats->tx_defrag_failed, "Aborted transmit of buffer because defrag failed"); SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "tx_csum_offloaded", CTLFLAG_RD, &stats->tx_csum_offloaded, "Offloaded checksum of transmitted buffer"); SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "tx_tso_offloaded", CTLFLAG_RD, &stats->tx_tso_offloaded, "Segmentation offload of transmitted buffer"); SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "tx_task_rescheduled", CTLFLAG_RD, &stats->tx_task_rescheduled, "Times the transmit interrupt task rescheduled itself"); } static void vtnet_setup_sysctl(struct vtnet_softc *sc) { device_t dev; struct sysctl_ctx_list *ctx; struct sysctl_oid *tree; struct sysctl_oid_list *child; dev = sc->vtnet_dev; ctx = device_get_sysctl_ctx(dev); tree = device_get_sysctl_tree(dev); child = SYSCTL_CHILDREN(tree); SYSCTL_ADD_INT(ctx, child, OID_AUTO, "max_vq_pairs", CTLFLAG_RD, &sc->vtnet_max_vq_pairs, 0, "Maximum number of supported virtqueue pairs"); SYSCTL_ADD_INT(ctx, child, OID_AUTO, "requested_vq_pairs", CTLFLAG_RD, &sc->vtnet_requested_vq_pairs, 0, "Requested number of virtqueue pairs"); SYSCTL_ADD_INT(ctx, child, OID_AUTO, "act_vq_pairs", CTLFLAG_RD, &sc->vtnet_act_vq_pairs, 0, "Number of active virtqueue pairs"); vtnet_setup_stat_sysctl(ctx, child, sc); } static int vtnet_rxq_enable_intr(struct vtnet_rxq *rxq) { return (virtqueue_enable_intr(rxq->vtnrx_vq)); } static void vtnet_rxq_disable_intr(struct vtnet_rxq *rxq) { virtqueue_disable_intr(rxq->vtnrx_vq); } static int vtnet_txq_enable_intr(struct vtnet_txq *txq) { struct virtqueue *vq; vq = txq->vtntx_vq; if (vtnet_txq_below_threshold(txq) != 0) return (virtqueue_postpone_intr(vq, VQ_POSTPONE_LONG)); /* * The free count is above our threshold. Keep the Tx interrupt * disabled until the queue is fuller. */ return (0); } static void vtnet_txq_disable_intr(struct vtnet_txq *txq) { virtqueue_disable_intr(txq->vtntx_vq); } static void vtnet_enable_rx_interrupts(struct vtnet_softc *sc) { int i; for (i = 0; i < sc->vtnet_act_vq_pairs; i++) vtnet_rxq_enable_intr(&sc->vtnet_rxqs[i]); } static void vtnet_enable_tx_interrupts(struct vtnet_softc *sc) { int i; for (i = 0; i < sc->vtnet_act_vq_pairs; i++) vtnet_txq_enable_intr(&sc->vtnet_txqs[i]); } static void vtnet_enable_interrupts(struct vtnet_softc *sc) { vtnet_enable_rx_interrupts(sc); vtnet_enable_tx_interrupts(sc); } static void vtnet_disable_rx_interrupts(struct vtnet_softc *sc) { int i; for (i = 0; i < sc->vtnet_act_vq_pairs; i++) vtnet_rxq_disable_intr(&sc->vtnet_rxqs[i]); } static void vtnet_disable_tx_interrupts(struct vtnet_softc *sc) { int i; for (i = 0; i < sc->vtnet_act_vq_pairs; i++) vtnet_txq_disable_intr(&sc->vtnet_txqs[i]); } static void vtnet_disable_interrupts(struct vtnet_softc *sc) { vtnet_disable_rx_interrupts(sc); vtnet_disable_tx_interrupts(sc); } static int vtnet_tunable_int(struct vtnet_softc *sc, const char *knob, int def) { char path[64]; snprintf(path, sizeof(path), "hw.vtnet.%d.%s", device_get_unit(sc->vtnet_dev), knob); TUNABLE_INT_FETCH(path, &def); return (def); } #ifdef DEBUGNET static void vtnet_debugnet_init(struct ifnet *ifp, int *nrxr, int *ncl, int *clsize) { struct vtnet_softc *sc; sc = if_getsoftc(ifp); VTNET_CORE_LOCK(sc); *nrxr = sc->vtnet_max_vq_pairs; *ncl = DEBUGNET_MAX_IN_FLIGHT; *clsize = sc->vtnet_rx_clsize; VTNET_CORE_UNLOCK(sc); } static void vtnet_debugnet_event(struct ifnet *ifp __unused, enum debugnet_ev event __unused) { } static int vtnet_debugnet_transmit(struct ifnet *ifp, struct mbuf *m) { struct vtnet_softc *sc; struct vtnet_txq *txq; int error; sc = if_getsoftc(ifp); if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != IFF_DRV_RUNNING) return (EBUSY); txq = &sc->vtnet_txqs[0]; error = vtnet_txq_encap(txq, &m, M_NOWAIT | M_USE_RESERVE); if (error == 0) (void)vtnet_txq_notify(txq); return (error); } static int vtnet_debugnet_poll(struct ifnet *ifp, int count) { struct vtnet_softc *sc; int i; sc = if_getsoftc(ifp); if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != IFF_DRV_RUNNING) return (EBUSY); (void)vtnet_txq_eof(&sc->vtnet_txqs[0]); for (i = 0; i < sc->vtnet_max_vq_pairs; i++) (void)vtnet_rxq_eof(&sc->vtnet_rxqs[i]); return (0); } #endif /* DEBUGNET */