/*-
* SPDX-License-Identifier: BSD-2-Clause
*
* Copyright (c) 2019 Ruslan Bukin
*
* This software was developed by SRI International and the University of
* Cambridge Computer Laboratory (Department of Computer Science and
* Technology) under DARPA contract HR0011-18-C-0016 ("ECATS"), as part of the
* DARPA SSITH research programme.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/* Xilinx AXI DMA controller driver. */
#include
__FBSDID("$FreeBSD$");
#include "opt_platform.h"
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#ifdef FDT
#include
#include
#include
#endif
#include
#include
#include "xdma_if.h"
#define READ4(_sc, _reg) \
bus_space_read_4(_sc->bst, _sc->bsh, _reg)
#define WRITE4(_sc, _reg, _val) \
bus_space_write_4(_sc->bst, _sc->bsh, _reg, _val)
#define READ8(_sc, _reg) \
bus_space_read_8(_sc->bst, _sc->bsh, _reg)
#define WRITE8(_sc, _reg, _val) \
bus_space_write_8(_sc->bst, _sc->bsh, _reg, _val)
#define AXIDMA_DEBUG
#undef AXIDMA_DEBUG
#ifdef AXIDMA_DEBUG
#define dprintf(fmt, ...) printf(fmt, ##__VA_ARGS__)
#else
#define dprintf(fmt, ...)
#endif
extern struct bus_space memmap_bus;
struct axidma_channel {
struct axidma_softc *sc;
xdma_channel_t *xchan;
bool used;
int idx_head;
int idx_tail;
struct axidma_desc **descs;
vm_paddr_t *descs_phys;
uint32_t descs_num;
vm_size_t mem_size;
vm_offset_t mem_paddr;
vm_offset_t mem_vaddr;
uint32_t descs_used_count;
};
struct axidma_softc {
device_t dev;
struct resource *res[3];
bus_space_tag_t bst;
bus_space_handle_t bsh;
void *ih[2];
struct axidma_desc desc;
struct axidma_channel channels[AXIDMA_NCHANNELS];
};
static struct resource_spec axidma_spec[] = {
{ SYS_RES_MEMORY, 0, RF_ACTIVE },
{ SYS_RES_IRQ, 0, RF_ACTIVE },
{ SYS_RES_IRQ, 1, RF_ACTIVE },
{ -1, 0 }
};
#define HWTYPE_NONE 0
#define HWTYPE_STD 1
static struct ofw_compat_data compat_data[] = {
{ "xlnx,eth-dma", HWTYPE_STD },
{ NULL, HWTYPE_NONE },
};
static int axidma_probe(device_t dev);
static int axidma_attach(device_t dev);
static int axidma_detach(device_t dev);
static inline uint32_t
axidma_next_desc(struct axidma_channel *chan, uint32_t curidx)
{
return ((curidx + 1) % chan->descs_num);
}
static void
axidma_intr(struct axidma_softc *sc,
struct axidma_channel *chan)
{
xdma_transfer_status_t status;
xdma_transfer_status_t st;
struct axidma_fdt_data *data;
xdma_controller_t *xdma;
struct axidma_desc *desc;
struct xdma_channel *xchan;
uint32_t tot_copied;
int pending;
int errors;
xchan = chan->xchan;
xdma = xchan->xdma;
data = xdma->data;
pending = READ4(sc, AXI_DMASR(data->id));
WRITE4(sc, AXI_DMASR(data->id), pending);
errors = (pending & (DMASR_DMAINTERR | DMASR_DMASLVERR
| DMASR_DMADECOREERR | DMASR_SGINTERR
| DMASR_SGSLVERR | DMASR_SGDECERR));
dprintf("%s: AXI_DMASR %x\n", __func__,
READ4(sc, AXI_DMASR(data->id)));
dprintf("%s: AXI_CURDESC %x\n", __func__,
READ4(sc, AXI_CURDESC(data->id)));
dprintf("%s: AXI_TAILDESC %x\n", __func__,
READ4(sc, AXI_TAILDESC(data->id)));
tot_copied = 0;
while (chan->idx_tail != chan->idx_head) {
desc = chan->descs[chan->idx_tail];
if ((desc->status & BD_STATUS_CMPLT) == 0)
break;
st.error = errors;
st.transferred = desc->status & BD_CONTROL_LEN_M;
tot_copied += st.transferred;
xchan_seg_done(xchan, &st);
chan->idx_tail = axidma_next_desc(chan, chan->idx_tail);
atomic_subtract_int(&chan->descs_used_count, 1);
}
/* Finish operation */
status.error = errors;
status.transferred = tot_copied;
xdma_callback(chan->xchan, &status);
}
static void
axidma_intr_rx(void *arg)
{
struct axidma_softc *sc;
struct axidma_channel *chan;
dprintf("%s\n", __func__);
sc = arg;
chan = &sc->channels[AXIDMA_RX_CHAN];
axidma_intr(sc, chan);
}
static void
axidma_intr_tx(void *arg)
{
struct axidma_softc *sc;
struct axidma_channel *chan;
dprintf("%s\n", __func__);
sc = arg;
chan = &sc->channels[AXIDMA_TX_CHAN];
axidma_intr(sc, chan);
}
static int
axidma_reset(struct axidma_softc *sc, int chan_id)
{
int timeout;
WRITE4(sc, AXI_DMACR(chan_id), DMACR_RESET);
timeout = 100;
do {
if ((READ4(sc, AXI_DMACR(chan_id)) & DMACR_RESET) == 0)
break;
} while (timeout--);
dprintf("timeout %d\n", timeout);
if (timeout == 0)
return (-1);
dprintf("%s: read control after reset: %x\n",
__func__, READ4(sc, AXI_DMACR(chan_id)));
return (0);
}
static int
axidma_probe(device_t dev)
{
int hwtype;
if (!ofw_bus_status_okay(dev))
return (ENXIO);
hwtype = ofw_bus_search_compatible(dev, compat_data)->ocd_data;
if (hwtype == HWTYPE_NONE)
return (ENXIO);
device_set_desc(dev, "Xilinx AXI DMA");
return (BUS_PROBE_DEFAULT);
}
static int
axidma_attach(device_t dev)
{
struct axidma_softc *sc;
phandle_t xref, node;
int err;
sc = device_get_softc(dev);
sc->dev = dev;
if (bus_alloc_resources(dev, axidma_spec, sc->res)) {
device_printf(dev, "could not allocate resources.\n");
return (ENXIO);
}
/* CSR memory interface */
sc->bst = rman_get_bustag(sc->res[0]);
sc->bsh = rman_get_bushandle(sc->res[0]);
/* Setup interrupt handler */
err = bus_setup_intr(dev, sc->res[1], INTR_TYPE_MISC | INTR_MPSAFE,
NULL, axidma_intr_tx, sc, &sc->ih[0]);
if (err) {
device_printf(dev, "Unable to alloc interrupt resource.\n");
return (ENXIO);
}
/* Setup interrupt handler */
err = bus_setup_intr(dev, sc->res[2], INTR_TYPE_MISC | INTR_MPSAFE,
NULL, axidma_intr_rx, sc, &sc->ih[1]);
if (err) {
device_printf(dev, "Unable to alloc interrupt resource.\n");
return (ENXIO);
}
node = ofw_bus_get_node(dev);
xref = OF_xref_from_node(node);
OF_device_register_xref(xref, dev);
return (0);
}
static int
axidma_detach(device_t dev)
{
struct axidma_softc *sc;
sc = device_get_softc(dev);
bus_teardown_intr(dev, sc->res[1], sc->ih[0]);
bus_teardown_intr(dev, sc->res[2], sc->ih[1]);
bus_release_resources(dev, axidma_spec, sc->res);
return (0);
}
static int
axidma_desc_free(struct axidma_softc *sc, struct axidma_channel *chan)
{
struct xdma_channel *xchan;
int nsegments;
nsegments = chan->descs_num;
xchan = chan->xchan;
free(chan->descs, M_DEVBUF);
free(chan->descs_phys, M_DEVBUF);
pmap_kremove_device(chan->mem_vaddr, chan->mem_size);
kva_free(chan->mem_vaddr, chan->mem_size);
vmem_free(xchan->vmem, chan->mem_paddr, chan->mem_size);
return (0);
}
static int
axidma_desc_alloc(struct axidma_softc *sc, struct xdma_channel *xchan,
uint32_t desc_size)
{
struct axidma_channel *chan;
int nsegments;
int i;
chan = (struct axidma_channel *)xchan->chan;
nsegments = chan->descs_num;
chan->descs = malloc(nsegments * sizeof(struct axidma_desc *),
M_DEVBUF, M_NOWAIT | M_ZERO);
if (chan->descs == NULL) {
device_printf(sc->dev,
"%s: Can't allocate memory.\n", __func__);
return (-1);
}
chan->descs_phys = malloc(nsegments * sizeof(bus_dma_segment_t),
M_DEVBUF, M_NOWAIT | M_ZERO);
chan->mem_size = desc_size * nsegments;
if (vmem_alloc(xchan->vmem, chan->mem_size, M_FIRSTFIT | M_NOWAIT,
&chan->mem_paddr)) {
device_printf(sc->dev, "Failed to allocate memory.\n");
return (-1);
}
chan->mem_vaddr = kva_alloc(chan->mem_size);
pmap_kenter_device(chan->mem_vaddr, chan->mem_size, chan->mem_paddr);
device_printf(sc->dev, "Allocated chunk %lx %lu\n",
chan->mem_paddr, chan->mem_size);
for (i = 0; i < nsegments; i++) {
chan->descs[i] = (struct axidma_desc *)
((uint64_t)chan->mem_vaddr + desc_size * i);
chan->descs_phys[i] = chan->mem_paddr + desc_size * i;
}
return (0);
}
static int
axidma_channel_alloc(device_t dev, struct xdma_channel *xchan)
{
xdma_controller_t *xdma;
struct axidma_fdt_data *data;
struct axidma_channel *chan;
struct axidma_softc *sc;
sc = device_get_softc(dev);
if (xchan->caps & XCHAN_CAP_BUSDMA) {
device_printf(sc->dev,
"Error: busdma operation is not implemented.");
return (-1);
}
xdma = xchan->xdma;
data = xdma->data;
chan = &sc->channels[data->id];
if (chan->used == false) {
if (axidma_reset(sc, data->id) != 0)
return (-1);
chan->xchan = xchan;
xchan->caps |= XCHAN_CAP_BOUNCE;
xchan->chan = (void *)chan;
chan->sc = sc;
chan->used = true;
chan->idx_head = 0;
chan->idx_tail = 0;
chan->descs_used_count = 0;
chan->descs_num = AXIDMA_DESCS_NUM;
return (0);
}
return (-1);
}
static int
axidma_channel_free(device_t dev, struct xdma_channel *xchan)
{
struct axidma_channel *chan;
struct axidma_softc *sc;
sc = device_get_softc(dev);
chan = (struct axidma_channel *)xchan->chan;
axidma_desc_free(sc, chan);
chan->used = false;
return (0);
}
static int
axidma_channel_capacity(device_t dev, xdma_channel_t *xchan,
uint32_t *capacity)
{
struct axidma_channel *chan;
uint32_t c;
chan = (struct axidma_channel *)xchan->chan;
/* At least one descriptor must be left empty. */
c = (chan->descs_num - chan->descs_used_count - 1);
*capacity = c;
return (0);
}
static int
axidma_channel_submit_sg(device_t dev, struct xdma_channel *xchan,
struct xdma_sglist *sg, uint32_t sg_n)
{
xdma_controller_t *xdma;
struct axidma_fdt_data *data;
struct axidma_channel *chan;
struct axidma_desc *desc;
struct axidma_softc *sc;
uint32_t src_addr;
uint32_t dst_addr;
uint32_t addr;
uint32_t len;
uint32_t tmp;
int i;
int tail;
dprintf("%s: sg_n %d\n", __func__, sg_n);
sc = device_get_softc(dev);
chan = (struct axidma_channel *)xchan->chan;
xdma = xchan->xdma;
data = xdma->data;
if (sg_n == 0)
return (0);
tail = chan->idx_head;
tmp = 0;
for (i = 0; i < sg_n; i++) {
src_addr = (uint32_t)sg[i].src_addr;
dst_addr = (uint32_t)sg[i].dst_addr;
len = (uint32_t)sg[i].len;
dprintf("%s(%d): src %x dst %x len %d\n", __func__,
data->id, src_addr, dst_addr, len);
desc = chan->descs[chan->idx_head];
if (sg[i].direction == XDMA_MEM_TO_DEV)
desc->phys = src_addr;
else
desc->phys = dst_addr;
desc->status = 0;
desc->control = len;
if (sg[i].first == 1)
desc->control |= BD_CONTROL_TXSOF;
if (sg[i].last == 1)
desc->control |= BD_CONTROL_TXEOF;
tmp = chan->idx_head;
atomic_add_int(&chan->descs_used_count, 1);
chan->idx_head = axidma_next_desc(chan, chan->idx_head);
}
dprintf("%s(%d): _curdesc %x\n", __func__, data->id,
READ8(sc, AXI_CURDESC(data->id)));
dprintf("%s(%d): _curdesc %x\n", __func__, data->id,
READ8(sc, AXI_CURDESC(data->id)));
dprintf("%s(%d): status %x\n", __func__, data->id,
READ4(sc, AXI_DMASR(data->id)));
addr = chan->descs_phys[tmp];
WRITE8(sc, AXI_TAILDESC(data->id), addr);
return (0);
}
static int
axidma_channel_prep_sg(device_t dev, struct xdma_channel *xchan)
{
xdma_controller_t *xdma;
struct axidma_fdt_data *data;
struct axidma_channel *chan;
struct axidma_desc *desc;
struct axidma_softc *sc;
uint32_t addr;
uint32_t reg;
int ret;
int i;
sc = device_get_softc(dev);
chan = (struct axidma_channel *)xchan->chan;
xdma = xchan->xdma;
data = xdma->data;
dprintf("%s(%d)\n", __func__, data->id);
ret = axidma_desc_alloc(sc, xchan, sizeof(struct axidma_desc));
if (ret != 0) {
device_printf(sc->dev,
"%s: Can't allocate descriptors.\n", __func__);
return (-1);
}
for (i = 0; i < chan->descs_num; i++) {
desc = chan->descs[i];
bzero(desc, sizeof(struct axidma_desc));
if (i == (chan->descs_num - 1))
desc->next = chan->descs_phys[0];
else
desc->next = chan->descs_phys[i + 1];
desc->status = 0;
desc->control = 0;
dprintf("%s(%d): desc %d vaddr %lx next paddr %x\n", __func__,
data->id, i, (uint64_t)desc, le32toh(desc->next));
}
addr = chan->descs_phys[0];
WRITE8(sc, AXI_CURDESC(data->id), addr);
reg = READ4(sc, AXI_DMACR(data->id));
reg |= DMACR_IOC_IRQEN | DMACR_DLY_IRQEN | DMACR_ERR_IRQEN;
WRITE4(sc, AXI_DMACR(data->id), reg);
reg |= DMACR_RS;
WRITE4(sc, AXI_DMACR(data->id), reg);
return (0);
}
static int
axidma_channel_control(device_t dev, xdma_channel_t *xchan, int cmd)
{
struct axidma_channel *chan;
struct axidma_softc *sc;
sc = device_get_softc(dev);
chan = (struct axidma_channel *)xchan->chan;
switch (cmd) {
case XDMA_CMD_BEGIN:
case XDMA_CMD_TERMINATE:
case XDMA_CMD_PAUSE:
/* TODO: implement me */
return (-1);
}
return (0);
}
#ifdef FDT
static int
axidma_ofw_md_data(device_t dev, pcell_t *cells, int ncells, void **ptr)
{
struct axidma_fdt_data *data;
if (ncells != 1)
return (-1);
data = malloc(sizeof(struct axidma_fdt_data),
M_DEVBUF, (M_WAITOK | M_ZERO));
data->id = cells[0];
*ptr = data;
return (0);
}
#endif
static device_method_t axidma_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, axidma_probe),
DEVMETHOD(device_attach, axidma_attach),
DEVMETHOD(device_detach, axidma_detach),
/* xDMA Interface */
DEVMETHOD(xdma_channel_alloc, axidma_channel_alloc),
DEVMETHOD(xdma_channel_free, axidma_channel_free),
DEVMETHOD(xdma_channel_control, axidma_channel_control),
/* xDMA SG Interface */
DEVMETHOD(xdma_channel_capacity, axidma_channel_capacity),
DEVMETHOD(xdma_channel_prep_sg, axidma_channel_prep_sg),
DEVMETHOD(xdma_channel_submit_sg, axidma_channel_submit_sg),
#ifdef FDT
DEVMETHOD(xdma_ofw_md_data, axidma_ofw_md_data),
#endif
DEVMETHOD_END
};
static driver_t axidma_driver = {
"axidma",
axidma_methods,
sizeof(struct axidma_softc),
};
static devclass_t axidma_devclass;
EARLY_DRIVER_MODULE(axidma, simplebus, axidma_driver, axidma_devclass, 0, 0,
BUS_PASS_INTERRUPT + BUS_PASS_ORDER_LATE);