/*- * Copyright (c) 2014 The FreeBSD Foundation * * This software was developed by Edward Tomasz Napierala under sponsorship * from the FreeBSD Foundation. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * */ /*- * Copyright (c) 1989, 1991, 1993, 1995 * The Regents of the University of California. All rights reserved. * * This code is derived from software contributed to Berkeley by * Rick Macklem at The University of Guelph. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include MALLOC_DEFINE(M_AUTOFS, "autofs", "Automounter filesystem"); uma_zone_t autofs_request_zone; uma_zone_t autofs_node_zone; static int autofs_open(struct cdev *dev, int flags, int fmt, struct thread *td); static int autofs_close(struct cdev *dev, int flag, int fmt, struct thread *td); static int autofs_ioctl(struct cdev *dev, u_long cmd, caddr_t arg, int mode, struct thread *td); static struct cdevsw autofs_cdevsw = { .d_version = D_VERSION, .d_open = autofs_open, .d_close = autofs_close, .d_ioctl = autofs_ioctl, .d_name = "autofs", }; /* * List of signals that can interrupt an autofs trigger. Might be a good * idea to keep it synchronised with list in sys/fs/nfs/nfs_commonkrpc.c. */ int autofs_sig_set[] = { SIGINT, SIGTERM, SIGHUP, SIGKILL, SIGQUIT }; struct autofs_softc *autofs_softc; SYSCTL_NODE(_vfs, OID_AUTO, autofs, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "Automounter filesystem"); int autofs_debug = 1; TUNABLE_INT("vfs.autofs.debug", &autofs_debug); SYSCTL_INT(_vfs_autofs, OID_AUTO, debug, CTLFLAG_RWTUN, &autofs_debug, 1, "Enable debug messages"); int autofs_mount_on_stat = 0; TUNABLE_INT("vfs.autofs.mount_on_stat", &autofs_mount_on_stat); SYSCTL_INT(_vfs_autofs, OID_AUTO, mount_on_stat, CTLFLAG_RWTUN, &autofs_mount_on_stat, 0, "Trigger mount on stat(2) on mountpoint"); int autofs_timeout = 30; TUNABLE_INT("vfs.autofs.timeout", &autofs_timeout); SYSCTL_INT(_vfs_autofs, OID_AUTO, timeout, CTLFLAG_RWTUN, &autofs_timeout, 30, "Number of seconds to wait for automountd(8)"); int autofs_cache = 600; TUNABLE_INT("vfs.autofs.cache", &autofs_cache); SYSCTL_INT(_vfs_autofs, OID_AUTO, cache, CTLFLAG_RWTUN, &autofs_cache, 600, "Number of seconds to wait before reinvoking " "automountd(8) for any given file or directory"); int autofs_retry_attempts = 3; TUNABLE_INT("vfs.autofs.retry_attempts", &autofs_retry_attempts); SYSCTL_INT(_vfs_autofs, OID_AUTO, retry_attempts, CTLFLAG_RWTUN, &autofs_retry_attempts, 3, "Number of attempts before failing mount"); int autofs_retry_delay = 1; TUNABLE_INT("vfs.autofs.retry_delay", &autofs_retry_delay); SYSCTL_INT(_vfs_autofs, OID_AUTO, retry_delay, CTLFLAG_RWTUN, &autofs_retry_delay, 1, "Number of seconds before retrying"); int autofs_interruptible = 1; TUNABLE_INT("vfs.autofs.interruptible", &autofs_interruptible); SYSCTL_INT(_vfs_autofs, OID_AUTO, interruptible, CTLFLAG_RWTUN, &autofs_interruptible, 1, "Allow requests to be interrupted by signal"); static int autofs_node_cmp(const struct autofs_node *a, const struct autofs_node *b) { return (strcmp(a->an_name, b->an_name)); } RB_GENERATE(autofs_node_tree, autofs_node, an_link, autofs_node_cmp); int autofs_init(struct vfsconf *vfsp) { int error; KASSERT(autofs_softc == NULL, ("softc %p, should be NULL", autofs_softc)); autofs_softc = malloc(sizeof(*autofs_softc), M_AUTOFS, M_WAITOK | M_ZERO); autofs_request_zone = uma_zcreate("autofs_request", sizeof(struct autofs_request), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); autofs_node_zone = uma_zcreate("autofs_node", sizeof(struct autofs_node), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); TAILQ_INIT(&autofs_softc->sc_requests); cv_init(&autofs_softc->sc_cv, "autofscv"); sx_init(&autofs_softc->sc_lock, "autofslk"); error = make_dev_p(MAKEDEV_CHECKNAME, &autofs_softc->sc_cdev, &autofs_cdevsw, NULL, UID_ROOT, GID_WHEEL, 0600, "autofs"); if (error != 0) { AUTOFS_WARN("failed to create device node, error %d", error); uma_zdestroy(autofs_request_zone); uma_zdestroy(autofs_node_zone); free(autofs_softc, M_AUTOFS); return (error); } autofs_softc->sc_cdev->si_drv1 = autofs_softc; return (0); } int autofs_uninit(struct vfsconf *vfsp) { sx_xlock(&autofs_softc->sc_lock); if (autofs_softc->sc_dev_opened) { sx_xunlock(&autofs_softc->sc_lock); return (EBUSY); } if (autofs_softc->sc_cdev != NULL) destroy_dev(autofs_softc->sc_cdev); uma_zdestroy(autofs_request_zone); uma_zdestroy(autofs_node_zone); sx_xunlock(&autofs_softc->sc_lock); /* * XXX: Race with open? */ free(autofs_softc, M_AUTOFS); return (0); } bool autofs_ignore_thread(const struct thread *td) { struct proc *p; p = td->td_proc; if (autofs_softc->sc_dev_opened == false) return (false); PROC_LOCK(p); if (p->p_session->s_sid == autofs_softc->sc_dev_sid) { PROC_UNLOCK(p); return (true); } PROC_UNLOCK(p); return (false); } static char * autofs_path(struct autofs_node *anp) { struct autofs_mount *amp; char *path, *tmp; amp = anp->an_mount; path = strdup("", M_AUTOFS); for (; anp->an_parent != NULL; anp = anp->an_parent) { tmp = malloc(strlen(anp->an_name) + strlen(path) + 2, M_AUTOFS, M_WAITOK); strcpy(tmp, anp->an_name); strcat(tmp, "/"); strcat(tmp, path); free(path, M_AUTOFS); path = tmp; } tmp = malloc(strlen(amp->am_mountpoint) + strlen(path) + 2, M_AUTOFS, M_WAITOK); strcpy(tmp, amp->am_mountpoint); strcat(tmp, "/"); strcat(tmp, path); free(path, M_AUTOFS); path = tmp; return (path); } static void autofs_task(void *context, int pending) { struct autofs_request *ar; ar = context; sx_xlock(&autofs_softc->sc_lock); AUTOFS_WARN("request %d for %s timed out after %d seconds", ar->ar_id, ar->ar_path, autofs_timeout); /* * XXX: EIO perhaps? */ ar->ar_error = ETIMEDOUT; ar->ar_wildcards = true; ar->ar_done = true; ar->ar_in_progress = false; cv_broadcast(&autofs_softc->sc_cv); sx_xunlock(&autofs_softc->sc_lock); } bool autofs_cached(struct autofs_node *anp, const char *component, int componentlen) { int error; struct autofs_mount *amp; amp = anp->an_mount; AUTOFS_ASSERT_UNLOCKED(amp); /* * For root node we need to request automountd(8) assistance even * if the node is marked as cached, but the requested top-level * directory does not exist. This is necessary for wildcard indirect * map keys to work. We don't do this if we know that there are * no wildcards. */ if (anp->an_parent == NULL && componentlen != 0 && anp->an_wildcards) { AUTOFS_SLOCK(amp); error = autofs_node_find(anp, component, componentlen, NULL); AUTOFS_SUNLOCK(amp); if (error != 0) return (false); } return (anp->an_cached); } static void autofs_cache_callout(void *context) { struct autofs_node *anp; anp = context; anp->an_cached = false; } void autofs_flush(struct autofs_mount *amp) { /* * XXX: This will do for now, but ideally we should iterate * over all the nodes. */ amp->am_root->an_cached = false; AUTOFS_DEBUG("%s flushed", amp->am_mountpoint); } /* * The set/restore sigmask functions are used to (temporarily) overwrite * the thread td_sigmask during triggering. */ static void autofs_set_sigmask(sigset_t *oldset) { sigset_t newset; int i; SIGFILLSET(newset); /* Remove the autofs set of signals from newset */ PROC_LOCK(curproc); mtx_lock(&curproc->p_sigacts->ps_mtx); for (i = 0 ; i < nitems(autofs_sig_set); i++) { /* * But make sure we leave the ones already masked * by the process, i.e. remove the signal from the * temporary signalmask only if it wasn't already * in p_sigmask. */ if (!SIGISMEMBER(curthread->td_sigmask, autofs_sig_set[i]) && !SIGISMEMBER(curproc->p_sigacts->ps_sigignore, autofs_sig_set[i])) { SIGDELSET(newset, autofs_sig_set[i]); } } mtx_unlock(&curproc->p_sigacts->ps_mtx); kern_sigprocmask(curthread, SIG_SETMASK, &newset, oldset, SIGPROCMASK_PROC_LOCKED); PROC_UNLOCK(curproc); } static void autofs_restore_sigmask(sigset_t *set) { kern_sigprocmask(curthread, SIG_SETMASK, set, NULL, 0); } static int autofs_trigger_one(struct autofs_node *anp, const char *component, int componentlen) { sigset_t oldset; struct autofs_mount *amp; struct autofs_node *firstanp; struct autofs_request *ar; char *key, *path; int error = 0, request_error, last; bool wildcards; amp = anp->an_mount; sx_assert(&autofs_softc->sc_lock, SA_XLOCKED); if (anp->an_parent == NULL) { key = strndup(component, componentlen, M_AUTOFS); } else { for (firstanp = anp; firstanp->an_parent->an_parent != NULL; firstanp = firstanp->an_parent) continue; key = strdup(firstanp->an_name, M_AUTOFS); } path = autofs_path(anp); TAILQ_FOREACH(ar, &autofs_softc->sc_requests, ar_next) { if (strcmp(ar->ar_path, path) != 0) continue; if (strcmp(ar->ar_key, key) != 0) continue; KASSERT(strcmp(ar->ar_from, amp->am_from) == 0, ("from changed; %s != %s", ar->ar_from, amp->am_from)); KASSERT(strcmp(ar->ar_prefix, amp->am_prefix) == 0, ("prefix changed; %s != %s", ar->ar_prefix, amp->am_prefix)); KASSERT(strcmp(ar->ar_options, amp->am_options) == 0, ("options changed; %s != %s", ar->ar_options, amp->am_options)); break; } if (ar != NULL) { refcount_acquire(&ar->ar_refcount); } else { ar = uma_zalloc(autofs_request_zone, M_WAITOK | M_ZERO); ar->ar_mount = amp; ar->ar_id = atomic_fetchadd_int(&autofs_softc->sc_last_request_id, 1); strlcpy(ar->ar_from, amp->am_from, sizeof(ar->ar_from)); strlcpy(ar->ar_path, path, sizeof(ar->ar_path)); strlcpy(ar->ar_prefix, amp->am_prefix, sizeof(ar->ar_prefix)); strlcpy(ar->ar_key, key, sizeof(ar->ar_key)); strlcpy(ar->ar_options, amp->am_options, sizeof(ar->ar_options)); TIMEOUT_TASK_INIT(taskqueue_thread, &ar->ar_task, 0, autofs_task, ar); taskqueue_enqueue_timeout(taskqueue_thread, &ar->ar_task, autofs_timeout * hz); refcount_init(&ar->ar_refcount, 1); TAILQ_INSERT_TAIL(&autofs_softc->sc_requests, ar, ar_next); } cv_broadcast(&autofs_softc->sc_cv); while (ar->ar_done == false) { if (autofs_interruptible != 0) { autofs_set_sigmask(&oldset); error = cv_wait_sig(&autofs_softc->sc_cv, &autofs_softc->sc_lock); autofs_restore_sigmask(&oldset); if (error != 0) { AUTOFS_WARN("cv_wait_sig for %s failed " "with error %d", ar->ar_path, error); break; } } else { cv_wait(&autofs_softc->sc_cv, &autofs_softc->sc_lock); } } request_error = ar->ar_error; if (request_error != 0) { AUTOFS_WARN("request for %s completed with error %d, " "pid %d (%s)", ar->ar_path, request_error, curproc->p_pid, curproc->p_comm); } wildcards = ar->ar_wildcards; last = refcount_release(&ar->ar_refcount); if (last) { TAILQ_REMOVE(&autofs_softc->sc_requests, ar, ar_next); /* * Unlock the sc_lock, so that autofs_task() can complete. */ sx_xunlock(&autofs_softc->sc_lock); taskqueue_cancel_timeout(taskqueue_thread, &ar->ar_task, NULL); taskqueue_drain_timeout(taskqueue_thread, &ar->ar_task); uma_zfree(autofs_request_zone, ar); sx_xlock(&autofs_softc->sc_lock); } /* * Note that we do not do negative caching on purpose. This * way the user can retry access at any time, e.g. after fixing * the failure reason, without waiting for cache timer to expire. */ if (error == 0 && request_error == 0 && autofs_cache > 0) { anp->an_cached = true; anp->an_wildcards = wildcards; callout_reset(&anp->an_callout, autofs_cache * hz, autofs_cache_callout, anp); } free(key, M_AUTOFS); free(path, M_AUTOFS); if (error != 0) return (error); return (request_error); } /* * Send request to automountd(8) and wait for completion. */ int autofs_trigger(struct autofs_node *anp, const char *component, int componentlen) { int error; for (;;) { error = autofs_trigger_one(anp, component, componentlen); if (error == 0) { anp->an_retries = 0; return (0); } if (error == EINTR || error == ERESTART) { AUTOFS_DEBUG("trigger interrupted by signal, " "not retrying"); anp->an_retries = 0; return (error); } anp->an_retries++; if (anp->an_retries >= autofs_retry_attempts) { AUTOFS_DEBUG("trigger failed %d times; returning " "error %d", anp->an_retries, error); anp->an_retries = 0; return (error); } AUTOFS_DEBUG("trigger failed with error %d; will retry in " "%d seconds, %d attempts left", error, autofs_retry_delay, autofs_retry_attempts - anp->an_retries); sx_xunlock(&autofs_softc->sc_lock); pause("autofs_retry", autofs_retry_delay * hz); sx_xlock(&autofs_softc->sc_lock); } } static int autofs_ioctl_request(struct autofs_daemon_request *adr) { struct autofs_request *ar; int error; sx_xlock(&autofs_softc->sc_lock); for (;;) { TAILQ_FOREACH(ar, &autofs_softc->sc_requests, ar_next) { if (ar->ar_done) continue; if (ar->ar_in_progress) continue; break; } if (ar != NULL) break; error = cv_wait_sig(&autofs_softc->sc_cv, &autofs_softc->sc_lock); if (error != 0) { sx_xunlock(&autofs_softc->sc_lock); return (error); } } ar->ar_in_progress = true; sx_xunlock(&autofs_softc->sc_lock); adr->adr_id = ar->ar_id; strlcpy(adr->adr_from, ar->ar_from, sizeof(adr->adr_from)); strlcpy(adr->adr_path, ar->ar_path, sizeof(adr->adr_path)); strlcpy(adr->adr_prefix, ar->ar_prefix, sizeof(adr->adr_prefix)); strlcpy(adr->adr_key, ar->ar_key, sizeof(adr->adr_key)); strlcpy(adr->adr_options, ar->ar_options, sizeof(adr->adr_options)); PROC_LOCK(curproc); autofs_softc->sc_dev_sid = curproc->p_session->s_sid; PROC_UNLOCK(curproc); return (0); } static int autofs_ioctl_done_101(struct autofs_daemon_done_101 *add) { struct autofs_request *ar; sx_xlock(&autofs_softc->sc_lock); TAILQ_FOREACH(ar, &autofs_softc->sc_requests, ar_next) { if (ar->ar_id == add->add_id) break; } if (ar == NULL) { sx_xunlock(&autofs_softc->sc_lock); AUTOFS_DEBUG("id %d not found", add->add_id); return (ESRCH); } ar->ar_error = add->add_error; ar->ar_wildcards = true; ar->ar_done = true; ar->ar_in_progress = false; cv_broadcast(&autofs_softc->sc_cv); sx_xunlock(&autofs_softc->sc_lock); return (0); } static int autofs_ioctl_done(struct autofs_daemon_done *add) { struct autofs_request *ar; sx_xlock(&autofs_softc->sc_lock); TAILQ_FOREACH(ar, &autofs_softc->sc_requests, ar_next) { if (ar->ar_id == add->add_id) break; } if (ar == NULL) { sx_xunlock(&autofs_softc->sc_lock); AUTOFS_DEBUG("id %d not found", add->add_id); return (ESRCH); } ar->ar_error = add->add_error; ar->ar_wildcards = add->add_wildcards; ar->ar_done = true; ar->ar_in_progress = false; cv_broadcast(&autofs_softc->sc_cv); sx_xunlock(&autofs_softc->sc_lock); return (0); } static int autofs_open(struct cdev *dev, int flags, int fmt, struct thread *td) { sx_xlock(&autofs_softc->sc_lock); /* * We must never block automountd(8) and its descendants, and we use * session ID to determine that: we store session id of the process * that opened the device, and then compare it with session ids * of triggering processes. This means running a second automountd(8) * instance would break the previous one. The check below prevents * it from happening. */ if (autofs_softc->sc_dev_opened) { sx_xunlock(&autofs_softc->sc_lock); return (EBUSY); } autofs_softc->sc_dev_opened = true; sx_xunlock(&autofs_softc->sc_lock); return (0); } static int autofs_close(struct cdev *dev, int flag, int fmt, struct thread *td) { sx_xlock(&autofs_softc->sc_lock); KASSERT(autofs_softc->sc_dev_opened, ("not opened?")); autofs_softc->sc_dev_opened = false; sx_xunlock(&autofs_softc->sc_lock); return (0); } static int autofs_ioctl(struct cdev *dev, u_long cmd, caddr_t arg, int mode, struct thread *td) { KASSERT(autofs_softc->sc_dev_opened, ("not opened?")); switch (cmd) { case AUTOFSREQUEST: return (autofs_ioctl_request( (struct autofs_daemon_request *)arg)); case AUTOFSDONE101: return (autofs_ioctl_done_101( (struct autofs_daemon_done_101 *)arg)); case AUTOFSDONE: return (autofs_ioctl_done( (struct autofs_daemon_done *)arg)); default: AUTOFS_DEBUG("invalid cmd %lx", cmd); return (EINVAL); } }