/* $NetBSD: cdbw.c,v 1.9 2023/08/08 10:34:08 riastradh Exp $ */ /*- * Copyright (c) 2009, 2010, 2015 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Joerg Sonnenberger and Alexander Nasonov. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #if HAVE_NBTOOL_CONFIG_H #include "nbtool_config.h" #endif #include __RCSID("$NetBSD: cdbw.c,v 1.9 2023/08/08 10:34:08 riastradh Exp $"); #include "namespace.h" #if !HAVE_NBTOOL_CONFIG_H || HAVE_SYS_ENDIAN_H #include #endif #include #include #include #include #include #if !HAVE_NBTOOL_CONFIG_H #include #else static inline int my_fls32(uint32_t n) { int v; if (!n) return 0; v = 32; if ((n & 0xFFFF0000U) == 0) { n <<= 16; v -= 16; } if ((n & 0xFF000000U) == 0) { n <<= 8; v -= 8; } if ((n & 0xF0000000U) == 0) { n <<= 4; v -= 4; } if ((n & 0xC0000000U) == 0) { n <<= 2; v -= 2; } if ((n & 0x80000000U) == 0) { n <<= 1; v -= 1; } return v; } static inline void fast_divide32_prepare(uint32_t div, uint32_t * m, uint8_t *s1, uint8_t *s2) { uint64_t mt; int l; l = my_fls32(div - 1); mt = (uint64_t)(0x100000000ULL * ((1ULL << l) - div)); *m = (uint32_t)(mt / div + 1); *s1 = (l > 1) ? 1U : (uint8_t)l; *s2 = (l == 0) ? 0 : (uint8_t)(l - 1); } static inline uint32_t fast_divide32(uint32_t v, uint32_t div, uint32_t m, uint8_t s1, uint8_t s2) { uint32_t t; t = (uint32_t)(((uint64_t)v * m) >> 32); return (t + ((v - t) >> s1)) >> s2; } static inline uint32_t fast_remainder32(uint32_t v, uint32_t div, uint32_t m, uint8_t s1, uint8_t s2) { return v - div * fast_divide32(v, div, m, s1, s2); } #endif #ifdef __weak_alias __weak_alias(cdbw_close,_cdbw_close) __weak_alias(cdbw_open,_cdbw_open) __weak_alias(cdbw_output,_cdbw_output) __weak_alias(cdbw_put,_cdbw_put) __weak_alias(cdbw_put_data,_cdbw_put_data) __weak_alias(cdbw_put_key,_cdbw_put_key) #endif struct key_hash { SLIST_ENTRY(key_hash) link; uint32_t hashes[3]; uint32_t idx; void *key; size_t keylen; }; SLIST_HEAD(key_hash_head, key_hash); struct cdbw { size_t data_counter; size_t data_allocated; size_t data_size; size_t *data_len; void **data_ptr; size_t hash_size; struct key_hash_head *hash; size_t key_counter; }; /* Max. data counter that allows the index size to be 32bit. */ static const uint32_t max_data_counter = 0xccccccccU; struct cdbw * cdbw_open(void) { struct cdbw *cdbw; size_t i; cdbw = calloc(sizeof(*cdbw), 1); if (cdbw == NULL) return NULL; cdbw->hash_size = 1024; cdbw->hash = calloc(cdbw->hash_size, sizeof(*cdbw->hash)); if (cdbw->hash == NULL) { free(cdbw); return NULL; } for (i = 0; i < cdbw->hash_size; ++i) SLIST_INIT(cdbw->hash + i); return cdbw; } int cdbw_put(struct cdbw *cdbw, const void *key, size_t keylen, const void *data, size_t datalen) { uint32_t idx; int rv; rv = cdbw_put_data(cdbw, data, datalen, &idx); if (rv) return rv; rv = cdbw_put_key(cdbw, key, keylen, idx); if (rv) { --cdbw->data_counter; free(cdbw->data_ptr[cdbw->data_counter]); cdbw->data_size -= datalen; return rv; } return 0; } int cdbw_put_data(struct cdbw *cdbw, const void *data, size_t datalen, uint32_t *idx) { if (cdbw->data_counter == max_data_counter) return -1; if (cdbw->data_size + datalen < cdbw->data_size || cdbw->data_size + datalen > 0xffffffffU) return -1; /* Overflow */ if (cdbw->data_allocated == cdbw->data_counter) { void **new_data_ptr; size_t *new_data_len; size_t new_allocated; if (cdbw->data_allocated == 0) new_allocated = 256; else new_allocated = cdbw->data_allocated * 2; new_data_ptr = realloc(cdbw->data_ptr, sizeof(*cdbw->data_ptr) * new_allocated); if (new_data_ptr == NULL) return -1; cdbw->data_ptr = new_data_ptr; new_data_len = realloc(cdbw->data_len, sizeof(*cdbw->data_len) * new_allocated); if (new_data_len == NULL) return -1; cdbw->data_len = new_data_len; cdbw->data_allocated = new_allocated; } cdbw->data_ptr[cdbw->data_counter] = malloc(datalen); if (cdbw->data_ptr[cdbw->data_counter] == NULL) return -1; memcpy(cdbw->data_ptr[cdbw->data_counter], data, datalen); cdbw->data_len[cdbw->data_counter] = datalen; cdbw->data_size += datalen; *idx = cdbw->data_counter++; return 0; } int cdbw_put_key(struct cdbw *cdbw, const void *key, size_t keylen, uint32_t idx) { uint32_t hashes[3]; struct key_hash_head *head, *head2, *new_head; struct key_hash *key_hash; size_t new_hash_size, i; if (idx >= cdbw->data_counter || cdbw->key_counter == max_data_counter) return -1; mi_vector_hash(key, keylen, 0, hashes); head = cdbw->hash + (hashes[0] & (cdbw->hash_size - 1)); SLIST_FOREACH(key_hash, head, link) { if (key_hash->keylen != keylen) continue; if (key_hash->hashes[0] != hashes[0]) continue; if (key_hash->hashes[1] != hashes[1]) continue; if (key_hash->hashes[2] != hashes[2]) continue; if (memcmp(key, key_hash->key, keylen)) continue; return -1; } key_hash = malloc(sizeof(*key_hash)); if (key_hash == NULL) return -1; key_hash->key = malloc(keylen); if (key_hash->key == NULL) { free(key_hash); return -1; } memcpy(key_hash->key, key, keylen); key_hash->hashes[0] = hashes[0]; key_hash->hashes[1] = hashes[1]; key_hash->hashes[2] = hashes[2]; key_hash->keylen = keylen; key_hash->idx = idx; SLIST_INSERT_HEAD(head, key_hash, link); ++cdbw->key_counter; if (cdbw->key_counter <= cdbw->hash_size) return 0; /* Try to resize the hash table, but ignore errors. */ new_hash_size = cdbw->hash_size * 2; new_head = calloc(sizeof(*new_head), new_hash_size); if (new_head == NULL) return 0; head = &cdbw->hash[hashes[0] & (cdbw->hash_size - 1)]; for (i = 0; i < new_hash_size; ++i) SLIST_INIT(new_head + i); for (i = 0; i < cdbw->hash_size; ++i) { head = cdbw->hash + i; while ((key_hash = SLIST_FIRST(head)) != NULL) { SLIST_REMOVE_HEAD(head, link); head2 = new_head + (key_hash->hashes[0] & (new_hash_size - 1)); SLIST_INSERT_HEAD(head2, key_hash, link); } } free(cdbw->hash); cdbw->hash_size = new_hash_size; cdbw->hash = new_head; return 0; } void cdbw_close(struct cdbw *cdbw) { struct key_hash_head *head; struct key_hash *key_hash; size_t i; for (i = 0; i < cdbw->hash_size; ++i) { head = cdbw->hash + i; while ((key_hash = SLIST_FIRST(head)) != NULL) { SLIST_REMOVE_HEAD(head, link); free(key_hash->key); free(key_hash); } } for (i = 0; i < cdbw->data_counter; ++i) free(cdbw->data_ptr[i]); free(cdbw->data_ptr); free(cdbw->data_len); free(cdbw->hash); free(cdbw); } uint32_t cdbw_stable_seeder(void) { return 0; } /* * For each vertex in the 3-graph, the incidence lists needs to be kept. * Avoid storing the full list by just XORing the indices of the still * incident edges and remember the number of such edges as that's all * the peeling computation needs. This is inspired by: * Cache-Oblivious Peeling of Random Hypergraphs by Djamal Belazzougui, * Paolo Boldi, Giuseppe Ottaviano, Rossano Venturini, and Sebastiano * Vigna. https://arxiv.org/abs/1312.0526 * * Unlike in the paper, we don't care about external storage and have * the edge list at hand all the time. As such, no ordering is necessary * and the vertices of the edge don't have to be copied. * * The core observation of the paper above is that for a degree of one, * the incident edge can be obtained directly. */ struct vertex { uint32_t degree; uint32_t edges; }; struct edge { uint32_t vertices[3]; uint32_t idx; }; struct state { uint32_t data_entries; uint32_t entries; uint32_t keys; uint32_t seed; uint32_t *g; char *visited; struct vertex *vertices; struct edge *edges; uint32_t output_index; uint32_t *output_order; }; /* * Add (delta == 1) or remove (delta == -1) the edge e * from the incidence lists. */ static inline void change_edge(struct state *state, int delta, uint32_t e) { int i; struct vertex *v; struct edge *e_ = &state->edges[e]; for (i = 0; i < 3; ++i) { v = &state->vertices[e_->vertices[i]]; v->edges ^= e; v->degree += delta; } } static inline void remove_vertex(struct state *state, uint32_t v) { struct vertex *v_ = &state->vertices[v]; uint32_t e; if (v_->degree == 1) { e = v_->edges; state->output_order[--state->output_index] = e; change_edge(state, -1, e); } } static int build_graph(struct cdbw *cdbw, struct state *state) { struct key_hash_head *head; struct key_hash *key_hash; struct edge *e; uint32_t entries_m; uint8_t entries_s1, entries_s2; uint32_t hashes[3]; size_t i; int j; memset(state->vertices, 0, sizeof(*state->vertices) * state->entries); e = state->edges; fast_divide32_prepare(state->entries, &entries_m, &entries_s1, &entries_s2); for (i = 0; i < cdbw->hash_size; ++i) { head = &cdbw->hash[i]; SLIST_FOREACH(key_hash, head, link) { mi_vector_hash(key_hash->key, key_hash->keylen, state->seed, hashes); for (j = 0; j < 3; ++j) { e->vertices[j] = fast_remainder32(hashes[j], state->entries, entries_m, entries_s1, entries_s2); } if (e->vertices[0] == e->vertices[1]) return -1; if (e->vertices[0] == e->vertices[2]) return -1; if (e->vertices[1] == e->vertices[2]) return -1; e->idx = key_hash->idx; ++e; } } /* * Do the edge processing separately as there is a good chance * the degraded edge case above will happen; this avoid *unnecessary work. */ for (i = 0; i < state->keys; ++i) change_edge(state, 1, i); state->output_index = state->keys; for (i = 0; i < state->entries; ++i) remove_vertex(state, i); i = state->keys; while (i > 0 && i > state->output_index) { --i; e = state->edges + state->output_order[i]; for (j = 0; j < 3; ++j) remove_vertex(state, e->vertices[j]); } return state->output_index == 0 ? 0 : -1; } static void assign_nodes(struct state *state) { struct edge *e; size_t i; uint32_t v0, v1, v2, entries_m; uint8_t entries_s1, entries_s2; fast_divide32_prepare(state->data_entries, &entries_m, &entries_s1, &entries_s2); for (i = 0; i < state->keys; ++i) { e = state->edges + state->output_order[i]; if (!state->visited[e->vertices[0]]) { v0 = e->vertices[0]; v1 = e->vertices[1]; v2 = e->vertices[2]; } else if (!state->visited[e->vertices[1]]) { v0 = e->vertices[1]; v1 = e->vertices[0]; v2 = e->vertices[2]; } else { v0 = e->vertices[2]; v1 = e->vertices[0]; v2 = e->vertices[1]; } state->g[v0] = fast_remainder32((2 * state->data_entries + e->idx - state->g[v1] - state->g[v2]), state->data_entries, entries_m, entries_s1, entries_s2); state->visited[v0] = 1; state->visited[v1] = 1; state->visited[v2] = 1; } } static size_t compute_size(uint32_t size) { if (size < 0x100) return 1; else if (size < 0x10000) return 2; else return 4; } #define COND_FLUSH_BUFFER(n) do { \ if (__predict_false(cur_pos + (n) >= sizeof(buf))) { \ ret = write(fd, buf, cur_pos); \ if (ret == -1 || (size_t)ret != cur_pos) \ return -1; \ cur_pos = 0; \ } \ } while (0) static int print_hash(struct cdbw *cdbw, struct state *state, int fd, const char *descr) { uint32_t data_size; uint8_t buf[90000]; size_t i, size, size2, cur_pos; ssize_t ret; memcpy(buf, "NBCDB\n\0", 7); buf[7] = 1; strncpy((char *)buf + 8, descr, 16); le32enc(buf + 24, cdbw->data_size); le32enc(buf + 28, cdbw->data_counter); le32enc(buf + 32, state->entries); le32enc(buf + 36, state->seed); cur_pos = 40; size = compute_size(state->entries); for (i = 0; i < state->entries; ++i) { COND_FLUSH_BUFFER(4); le32enc(buf + cur_pos, state->g[i]); cur_pos += size; } size2 = compute_size(cdbw->data_size); size = size * state->entries % size2; if (size != 0) { size = size2 - size; COND_FLUSH_BUFFER(4); le32enc(buf + cur_pos, 0); cur_pos += size; } for (data_size = 0, i = 0; i < cdbw->data_counter; ++i) { COND_FLUSH_BUFFER(4); le32enc(buf + cur_pos, data_size); cur_pos += size2; data_size += cdbw->data_len[i]; } COND_FLUSH_BUFFER(4); le32enc(buf + cur_pos, data_size); cur_pos += size2; for (i = 0; i < cdbw->data_counter; ++i) { COND_FLUSH_BUFFER(cdbw->data_len[i]); if (cdbw->data_len[i] < sizeof(buf)) { memcpy(buf + cur_pos, cdbw->data_ptr[i], cdbw->data_len[i]); cur_pos += cdbw->data_len[i]; } else { ret = write(fd, cdbw->data_ptr[i], cdbw->data_len[i]); if (ret == -1 || (size_t)ret != cdbw->data_len[i]) return -1; } } if (cur_pos != 0) { ret = write(fd, buf, cur_pos); if (ret == -1 || (size_t)ret != cur_pos) return -1; } return 0; } int cdbw_output(struct cdbw *cdbw, int fd, const char *descr, uint32_t (*seedgen)(void)) { struct state state; int rv; if (cdbw->data_counter == 0 || cdbw->key_counter == 0) { state.entries = 0; state.seed = 0; print_hash(cdbw, &state, fd, descr); return 0; } #if HAVE_NBTOOL_CONFIG_H if (seedgen == NULL) seedgen = cdbw_stable_seeder; #else if (seedgen == NULL) seedgen = arc4random; #endif rv = 0; state.keys = cdbw->key_counter; state.data_entries = cdbw->data_counter; state.entries = state.keys + (state.keys + 3) / 4; if (state.entries < 10) state.entries = 10; #define NALLOC(var, n) var = calloc(sizeof(*var), n) NALLOC(state.g, state.entries); NALLOC(state.visited, state.entries); NALLOC(state.vertices, state.entries); NALLOC(state.edges, state.keys); NALLOC(state.output_order, state.keys); #undef NALLOC if (state.g == NULL || state.visited == NULL || state.edges == NULL || state.vertices == NULL || state.output_order == NULL) { rv = -1; goto release; } state.seed = 0; do { if (seedgen == cdbw_stable_seeder) ++state.seed; else state.seed = (*seedgen)(); } while (build_graph(cdbw, &state)); assign_nodes(&state); rv = print_hash(cdbw, &state, fd, descr); release: free(state.g); free(state.visited); free(state.vertices); free(state.edges); free(state.output_order); return rv; }