/* $NetBSD: gmon.c,v 1.37 2022/05/06 04:49:13 rin Exp $ */ /* * Copyright (c) 2003, 2004 Wasabi Systems, Inc. * All rights reserved. * * Written by Nathan J. Williams for Wasabi Systems, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed for the NetBSD Project by * Wasabi Systems, Inc. * 4. The name of Wasabi Systems, Inc. may not be used to endorse * or promote products derived from this software without specific prior * written permission. * * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /*- * Copyright (c) 1983, 1992, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include #if !defined(lint) && defined(LIBC_SCCS) #if 0 static char sccsid[] = "@(#)gmon.c 8.1 (Berkeley) 6/4/93"; #else __RCSID("$NetBSD: gmon.c,v 1.37 2022/05/06 04:49:13 rin Exp $"); #endif #endif #include "namespace.h" #include #include #include #include #include #include #include #include #include #include #include #include #include "extern.h" #include "reentrant.h" struct gmonparam _gmonparam = { .state = GMON_PROF_OFF }; #ifdef _REENTRANT struct gmonparam *_gmonfree; struct gmonparam *_gmoninuse; mutex_t _gmonlock = MUTEX_INITIALIZER; thread_key_t _gmonkey; struct gmonparam _gmondummy; #endif static u_int s_scale; /* see profil(2) where this is describe (incorrectly) */ #define SCALE_1_TO_1 0x10000L void moncontrol(int); void monstartup(u_long, u_long); void _mcleanup(void); static int hertz(void); #ifdef _REENTRANT static void _m_gmon_destructor(void *); struct gmonparam *_m_gmon_alloc(void) __attribute__((__no_instrument_function__)); static void _m_gmon_merge(void); static void _m_gmon_merge_two(struct gmonparam *, struct gmonparam *); #endif void monstartup(u_long lowpc, u_long highpc) { u_long o; char *cp; struct gmonparam *p = &_gmonparam; /* * round lowpc and highpc to multiples of the density we're using * so the rest of the scaling (here and in gprof) stays in ints. */ p->lowpc = rounddown(lowpc, HISTFRACTION * sizeof(HISTCOUNTER)); p->highpc = roundup(highpc, HISTFRACTION * sizeof(HISTCOUNTER)); p->textsize = p->highpc - p->lowpc; p->kcountsize = p->textsize / HISTFRACTION; p->hashfraction = HASHFRACTION; p->fromssize = p->textsize / p->hashfraction; p->tolimit = p->textsize * ARCDENSITY / 100; if (p->tolimit < MINARCS) p->tolimit = MINARCS; else if (p->tolimit > MAXARCS) p->tolimit = MAXARCS; p->tossize = p->tolimit * sizeof(struct tostruct); cp = sbrk((intptr_t)0); #define GMON_ALLOC(buf, ptr, size) \ do { \ (buf) = (void *)roundup((uintptr_t)(buf), __alignof(*(ptr))); \ (ptr) = (void *)(buf); \ (buf) += (size); \ } while (0) GMON_ALLOC(cp, p->kcount, p->kcountsize); GMON_ALLOC(cp, p->froms, p->fromssize); GMON_ALLOC(cp, p->tos, p->tossize); if (brk(cp)) { warnx("%s: out of memory", __func__); return; } __minbrk = cp; p->tos[0].link = 0; o = p->highpc - p->lowpc; if (p->kcountsize < o) { #ifndef notdef s_scale = ((float)p->kcountsize / o ) * SCALE_1_TO_1; #else /* avoid floating point */ u_long quot = o / p->kcountsize; if (quot >= 0x10000) s_scale = 1; else if (quot >= 0x100) s_scale = 0x10000 / quot; else if (o >= 0x800000) s_scale = 0x1000000 / (o / (p->kcountsize >> 8)); else s_scale = 0x1000000 / ((o << 8) / p->kcountsize); #endif } else s_scale = SCALE_1_TO_1; #ifdef _REENTRANT _gmondummy.state = GMON_PROF_BUSY; thr_keycreate(&_gmonkey, _m_gmon_destructor); #endif moncontrol(1); } #ifdef _REENTRANT static void _m_gmon_destructor(void *arg) { struct gmonparam *p = arg, *q, **prev; if (p == &_gmondummy) return; thr_setspecific(_gmonkey, &_gmondummy); mutex_lock(&_gmonlock); /* XXX eww, linear list traversal. */ for (q = _gmoninuse, prev = &_gmoninuse; q != NULL; prev = (struct gmonparam **)(void *)&q->kcount, /* XXX */ q = (struct gmonparam *)(void *)q->kcount) { if (q == p) *prev = (struct gmonparam *)(void *)q->kcount; } p->kcount = (u_short *)(void *)_gmonfree; _gmonfree = p; mutex_unlock(&_gmonlock); thr_setspecific(_gmonkey, NULL); } struct gmonparam * _m_gmon_alloc(void) { struct gmonparam *p; char *cp; mutex_lock(&_gmonlock); if (_gmonfree != NULL) { p = _gmonfree; _gmonfree = (struct gmonparam *)(void *)p->kcount; p->kcount = (u_short *)(void *)_gmoninuse; _gmoninuse = p; } else { mutex_unlock(&_gmonlock); cp = mmap(NULL, (size_t)(__alignof(*p) + sizeof(*p) + __alignof(*_gmonparam.froms) + _gmonparam.fromssize + __alignof(*_gmonparam.tos) + _gmonparam.tossize), PROT_READ|PROT_WRITE, MAP_ANON|MAP_PRIVATE, -1, (off_t)0); GMON_ALLOC(cp, p, sizeof(*p)); *p = _gmonparam; p->state = GMON_PROF_ON; p->kcount = NULL; GMON_ALLOC(cp, p->froms, p->fromssize); memset(p->froms, 0, p->fromssize); GMON_ALLOC(cp, p->tos, p->tossize); memset(p->tos, 0, p->tossize); mutex_lock(&_gmonlock); p->kcount = (u_short *)(void *)_gmoninuse; _gmoninuse = p; } mutex_unlock(&_gmonlock); thr_setspecific(_gmonkey, p); return p; } static void _m_gmon_merge_two(struct gmonparam *p, struct gmonparam *q) { u_long fromindex; u_short *frompcindex, qtoindex, toindex; u_long selfpc; u_long endfrom; long count; struct tostruct *top; endfrom = (q->fromssize / sizeof(*q->froms)); for (fromindex = 0; fromindex < endfrom; fromindex++) { if (q->froms[fromindex] == 0) continue; for (qtoindex = q->froms[fromindex]; qtoindex != 0; qtoindex = q->tos[qtoindex].link) { selfpc = q->tos[qtoindex].selfpc; count = q->tos[qtoindex].count; /* cribbed from mcount */ frompcindex = &p->froms[fromindex]; toindex = *frompcindex; if (toindex == 0) { /* * first time traversing this arc */ toindex = ++p->tos[0].link; if (toindex >= p->tolimit) /* halt further profiling */ goto overflow; *frompcindex = (u_short)toindex; top = &p->tos[(size_t)toindex]; top->selfpc = selfpc; top->count = count; top->link = 0; goto done; } top = &p->tos[(size_t)toindex]; if (top->selfpc == selfpc) { /* * arc at front of chain; usual case. */ top->count+= count; goto done; } /* * have to go looking down chain for it. * top points to what we are looking at, * we know it is not at the head of the chain. */ for (; /* goto done */; ) { if (top->link == 0) { /* * top is end of the chain and * none of the chain had * top->selfpc == selfpc. so * we allocate a new tostruct * and link it to the head of * the chain. */ toindex = ++p->tos[0].link; if (toindex >= p->tolimit) goto overflow; top = &p->tos[(size_t)toindex]; top->selfpc = selfpc; top->count = count; top->link = *frompcindex; *frompcindex = (u_short)toindex; goto done; } /* * otherwise, check the next arc on the chain. */ top = &p->tos[top->link]; if (top->selfpc == selfpc) { /* * there it is. * add to its count. */ top->count += count; goto done; } } done: ; } } overflow: ; } static void _m_gmon_merge(void) { struct gmonparam *q; mutex_lock(&_gmonlock); for (q = _gmonfree; q != NULL; q = (struct gmonparam *)(void *)q->kcount) _m_gmon_merge_two(&_gmonparam, q); for (q = _gmoninuse; q != NULL; q = (struct gmonparam *)(void *)q->kcount) { q->state = GMON_PROF_OFF; _m_gmon_merge_two(&_gmonparam, q); } mutex_unlock(&_gmonlock); } #endif void _mcleanup(void) { int fd; int fromindex; int endfrom; u_long frompc; int toindex; struct rawarc rawarc; struct gmonparam *p = &_gmonparam; struct gmonhdr gmonhdr, *hdr; struct clockinfo clockinfo; int mib[2]; size_t size; char *profdir; const char *proffile; char buf[PATH_MAX]; #ifdef DEBUG int logfd, len; char buf2[200]; #endif /* * We disallow writing to the profiling file, if we are a * set{u,g}id program and our effective {u,g}id does not match * our real one. */ if (issetugid() && (geteuid() != getuid() || getegid() != getgid())) { warnx("%s: Profiling of set{u,g}id binaries is not" " allowed", __func__); return; } if (p->state == GMON_PROF_ERROR) warnx("%s: tos overflow", __func__); size = sizeof(clockinfo); mib[0] = CTL_KERN; mib[1] = KERN_CLOCKRATE; if (sysctl(mib, 2, &clockinfo, &size, NULL, 0) < 0) { /* * Best guess */ clockinfo.profhz = hertz(); } else if (clockinfo.profhz == 0) { if (clockinfo.hz != 0) clockinfo.profhz = clockinfo.hz; else clockinfo.profhz = hertz(); } moncontrol(0); if ((profdir = getenv("PROFDIR")) != NULL) { /* If PROFDIR contains a null value, no profiling output is produced */ if (*profdir == '\0') return; if (snprintf(buf, sizeof buf, "%s/%d.%s", profdir, getpid(), getprogname()) >= (int)(sizeof buf)) { warnx("%s: internal buffer overflow, PROFDIR too long", __func__); return; } proffile = buf; } else { proffile = "gmon.out"; } #define OPEN_FLAGS (O_CREAT | O_TRUNC | O_WRONLY | O_CLOEXEC) fd = open(proffile, OPEN_FLAGS, 0666); if (fd < 0) { warn("%s: Cannot open `%s'", __func__, proffile); return; } #ifdef DEBUG logfd = open("gmon.log", OPEN_FLAGS, 0664); if (logfd < 0) { warn("%s: Cannot open `%s'", __func__, "gmon.log"); (void)close(fd); return; } len = snprintf(buf2, sizeof buf2, "[mcleanup1] kcount %p ssiz %lu\n", p->kcount, p->kcountsize); (void)write(logfd, buf2, (size_t)len); #endif #ifdef _REENTRANT _m_gmon_merge(); #endif hdr = (struct gmonhdr *)&gmonhdr; hdr->lpc = p->lowpc; hdr->hpc = p->highpc; hdr->ncnt = (int)(p->kcountsize + sizeof(gmonhdr)); hdr->version = GMONVERSION; hdr->profrate = clockinfo.profhz; (void)write(fd, hdr, sizeof *hdr); (void)write(fd, p->kcount, (size_t)p->kcountsize); endfrom = (int)(p->fromssize / sizeof(*p->froms)); for (fromindex = 0; fromindex < endfrom; fromindex++) { if (p->froms[fromindex] == 0) continue; frompc = p->lowpc; frompc += fromindex * p->hashfraction * sizeof(*p->froms); for (toindex = p->froms[fromindex]; toindex != 0; toindex = p->tos[toindex].link) { #ifdef DEBUG len = snprintf(buf2, sizeof buf2, "[mcleanup2] frompc 0x%lx selfpc 0x%lx count %lu\n" , (u_long)frompc, (u_long)p->tos[toindex].selfpc, (u_long)p->tos[toindex].count); (void)write(logfd, buf2, (size_t)len); #endif rawarc.raw_frompc = frompc; rawarc.raw_selfpc = p->tos[toindex].selfpc; rawarc.raw_count = p->tos[toindex].count; (void)write(fd, &rawarc, sizeof rawarc); } } (void)close(fd); #ifdef DEBUG (void)close(logfd); #endif } /* * Control profiling * profiling is what mcount checks to see if * all the data structures are ready. */ void moncontrol(int mode) { struct gmonparam *p = &_gmonparam; if (mode) { /* start */ profil((char *)(void *)p->kcount, (size_t)p->kcountsize, p->lowpc, s_scale); p->state = GMON_PROF_ON; } else { /* stop */ profil(NULL, 0, (u_long)0, 0); p->state = GMON_PROF_OFF; } } /* * discover the tick frequency of the machine * if something goes wrong, we return 0, an impossible hertz. */ static int hertz(void) { struct itimerspec tim; timer_t t; int rv = 0; tim.it_interval.tv_sec = 0; tim.it_interval.tv_nsec = 1; tim.it_value.tv_sec = 0; tim.it_value.tv_nsec = 0; if (timer_create(CLOCK_REALTIME, NULL, &t) == -1) return 0; if (timer_settime(t, 0, &tim, NULL) == -1) goto out; if (timer_gettime(t, &tim) == -1) goto out; if (tim.it_interval.tv_nsec < 2) goto out; rv = (int)(1000000000LL / tim.it_interval.tv_nsec); out: (void)timer_delete(t); return rv; }