/*- * Copyright (c) 2015 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Julian Coleman. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include __KERNEL_RCSID(0, "$NetBSD: adm1026.c,v 1.13 2021/06/14 13:52:11 jdc Exp $"); #include #include #include #include #include #include #include #include /* Voltage/analog sensors descriptions and registers */ struct adm1026_volts_info { const char* desc; int incr; uint8_t reg, check_tdm2; }; /* Voltage maximums (in mV) from datasheet table 7 divided by 255 increments */ static struct adm1026_volts_info adm1026_volts_table[] = { { "Vbatt", 15624, ADM1026_VBAT_VAL, 0 }, { "V3.3 standby", 17345, ADM1026_33VSTBY_VAL, 0 }, { "V3.3 main", 17345, ADM1026_33VMAIN_VAL, 0 }, { "V5.0", 26016, ADM1026_50V_VAL, 0 }, { "Vccp", 11718, ADM1026_VCCP_VAL, 0 }, { "V+12", 62502, ADM1026_12V_VAL, 0 }, { "V-12", -62502, ADM1026_N12V_VAL, 0 }, { "V3.0 0", 11718, ADM1026_AIN_VAL(0), 0 }, { "V3.0 1", 11718, ADM1026_AIN_VAL(1), 0 }, { "V3.0 2", 11718, ADM1026_AIN_VAL(2), 0 }, { "V3.0 3", 11718, ADM1026_AIN_VAL(3), 0 }, { "V3.0 4", 11718, ADM1026_AIN_VAL(4), 0 }, { "V3.0 5", 11718, ADM1026_AIN_VAL(5), 0 }, { "V2.5 0", 9765, ADM1026_AIN_VAL(6), 0 }, { "V2.5 1", 9765, ADM1026_AIN_VAL(7), 0 }, { "V2.5 2", 9765, ADM1026_AIN8_VAL, 1 }, { "V2.5 3", 9765, ADM1026_TDM2_AIN9_VAL, 1 } }; /* Maximum number of each type of sensor */ #define ADM1026_MAX_FANS 8 #define ADM1026_MAX_TEMPS 3 #define ADM1026_MAX_VOLTS (sizeof(adm1026_volts_table) / \ sizeof (adm1026_volts_table[0])) /* Map sensor to/from sysmon numbers */ #define ADM1026_FAN_NUM(x) (x) #define ADM1026_TEMP_NUM(x) (x + sc->sc_nfans) #define ADM1026_VOLT_NUM(x) (x + sc->sc_nfans + sc->sc_ntemps) #define ADM1026_NUM_FAN(x) (x) #define ADM1026_NUM_TEMP(x) (x - sc->sc_nfans) #define ADM1026_NUM_VOLT(x) (x - sc->sc_nfans - sc->sc_ntemps) struct adm1026_softc { device_t sc_dev; i2c_tag_t sc_tag; int sc_address; bool sc_multi_read; uint8_t sc_rev, sc_cfg[2]; int sc_nfans, sc_ntemps; /* Map sysmon numbers to sensors */ int sc_fandiv[ADM1026_MAX_FANS], sc_temp_off[ADM1026_MAX_TEMPS]; struct sysmon_envsys *sc_sme; envsys_data_t sc_sensor[ADM1026_MAX_FANS + ADM1026_MAX_TEMPS + ADM1026_MAX_VOLTS]; }; static int adm1026_match(device_t, cfdata_t, void *); static int adm1026_ident(i2c_tag_t, i2c_addr_t, int, uint8_t*); static void adm1026_attach(device_t, device_t, void *); static int adm1026_detach(device_t, int); bool adm1026_pmf_suspend(device_t, const pmf_qual_t *); bool adm1026_pmf_resume(device_t, const pmf_qual_t *); static int adm1026_setup_fans(struct adm1026_softc *sc, int div2_val); static int adm1026_setup_temps(struct adm1026_softc *sc); static int adm1026_setup_volts(struct adm1026_softc *sc); void adm1026_refresh(struct sysmon_envsys *sme, envsys_data_t *edata); static void adm1026_read_fan(struct adm1026_softc *sc, envsys_data_t *edata); static void adm1026_read_temp(struct adm1026_softc *sc, envsys_data_t *edata); static void adm1026_read_volt(struct adm1026_softc *sc, envsys_data_t *edata); static int adm1026_read_reg_int(i2c_tag_t, i2c_addr_t, uint8_t reg, bool multi_read, uint8_t *val); static int adm1026_write_reg(struct adm1026_softc *sc, uint8_t reg, uint8_t val); static inline int adm1026_read_reg(struct adm1026_softc *sc, uint8_t reg, uint8_t *val) { return adm1026_read_reg_int(sc->sc_tag, sc->sc_address, reg, sc->sc_multi_read, val); } CFATTACH_DECL_NEW(adm1026hm, sizeof(struct adm1026_softc), adm1026_match, adm1026_attach, adm1026_detach, NULL); static const struct device_compatible_entry compat_data[] = { { .compat = "i2c-adm1026" }, DEVICE_COMPAT_EOL }; static int adm1026_match(device_t parent, cfdata_t cf, void *aux) { struct i2c_attach_args *ia = aux; int match_result; uint8_t rev; if (iic_use_direct_match(ia, cf, compat_data, &match_result)) return match_result; if (ia->ia_addr == ADM1026_ADDR1 && adm1026_ident(ia->ia_tag, ia->ia_addr, 1, &rev)) return I2C_MATCH_ADDRESS_AND_PROBE; return 0; } static int adm1026_ident(i2c_tag_t tag, i2c_addr_t addr, int probe_only, uint8_t *rev) { uint8_t val; int err; /* Manufacturer ID and revision/stepping */ err = adm1026_read_reg_int(tag, addr, ADM1026_ID, false, &val); if (err || val != ADM1026_MANF_ID) { if (!probe_only) aprint_verbose("adm1026_ident: " "manufacturer ID invalid or missing\n"); return 0; } err = adm1026_read_reg_int(tag, addr, ADM1026_REV, false, rev); if (err || ADM1026_REVISION(*rev) != ADM1026_MANF_REV) { if (!probe_only) aprint_verbose("adm1026_ident: " "manufacturer revision invalid or missing\n"); return 0; } return 1; } static void adm1026_attach(device_t parent, device_t self, void *aux) { struct adm1026_softc *sc = device_private(self); struct i2c_attach_args *ia = aux; prop_dictionary_t props = device_properties(self); uint8_t val, fan_div2; int err, div2_val; sc->sc_tag = ia->ia_tag; sc->sc_address = ia->ia_addr; sc->sc_dev = self; sc->sc_multi_read = false; prop_dictionary_get_bool(props, "multi_read", &sc->sc_multi_read); if (prop_dictionary_get_uint8(props, "fan_div2", &fan_div2) != 0) div2_val = fan_div2; else div2_val = -1; (void) adm1026_ident(sc->sc_tag, sc->sc_address, 0, &sc->sc_rev); aprint_normal(": ADM1026 hardware monitor: rev. 0x%x, step. 0x%x\n", ADM1026_REVISION(sc->sc_rev), ADM1026_STEPPING(sc->sc_rev)); /* * Start monitoring if not already monitoring. * Wait 1.8s for the fan readings to stabilise. */ if ((err = adm1026_read_reg(sc, ADM1026_CONF1, &val)) != 0) { aprint_error_dev(sc->sc_dev, ": unable to read conf1\n"); return; } if (!(val & ADM1026_CONF1_MONITOR)) { aprint_normal_dev(sc->sc_dev, ": starting monitoring, waiting 1.8s for readings\n"); val |= ADM1026_CONF1_MONITOR; if ((err = adm1026_write_reg(sc, ADM1026_CONF1, val)) != 0) { aprint_error_dev(sc->sc_dev, ": unable to write conf1\n"); return; } delay(1800000); } sc->sc_cfg[0] = val; sc->sc_sme = sysmon_envsys_create(); sc->sc_nfans = 0; sc->sc_ntemps = 0; if (adm1026_setup_fans(sc, div2_val)) goto bad; if (adm1026_setup_temps(sc)) goto bad; if (adm1026_setup_volts(sc)) goto bad; aprint_normal_dev(self, "%d fans, %d temperatures, %d voltages\n", sc->sc_nfans, sc->sc_ntemps, sc->sc_ntemps == 3 ? 15 : 17); sc->sc_sme->sme_name = device_xname(self); sc->sc_sme->sme_cookie = sc; sc->sc_sme->sme_refresh = adm1026_refresh; if (sysmon_envsys_register(sc->sc_sme)) { aprint_error_dev(self, "unable to register with sysmon\n"); goto bad; } if (!pmf_device_register(self, adm1026_pmf_suspend, adm1026_pmf_resume)) aprint_error_dev(self, "couldn't establish power handler\n"); return; bad: sysmon_envsys_destroy(sc->sc_sme); sc->sc_sme = NULL; return; } /* * We could stop (suspend/detach) and restart (resume) monitoring, * but we don't do that because some machines have separate * management hardware which can read the sensors. */ bool adm1026_pmf_suspend(device_t dev, const pmf_qual_t *qual) { return true; } bool adm1026_pmf_resume(device_t dev, const pmf_qual_t *qual) { return true; } static int adm1026_detach(device_t self, int flags) { struct adm1026_softc *sc = device_private(self); pmf_device_deregister(self); if (sc->sc_sme != NULL) sysmon_envsys_unregister(sc->sc_sme); return 0; } static int adm1026_setup_fans(struct adm1026_softc *sc, int div2_val) { int i, err = 0; uint8_t div1, div2; /* Read fan-related registers (configuration and divisors) */ if ((err = adm1026_read_reg(sc, ADM1026_CONF2, &sc->sc_cfg[1])) != 0) { aprint_error_dev(sc->sc_dev, "unable to read conf2\n"); return 0; } if ((err = adm1026_read_reg(sc, ADM1026_FAN_DIV1, &div1)) != 0) { aprint_error_dev(sc->sc_dev, "unable to read fan_div1\n"); return 0; } sc->sc_fandiv[0] = 1 << ADM1026_FAN0_DIV(div1); sc->sc_fandiv[1] = 1 << ADM1026_FAN1_DIV(div1); sc->sc_fandiv[2] = 1 << ADM1026_FAN2_DIV(div1); sc->sc_fandiv[3] = 1 << ADM1026_FAN3_DIV(div1); if (div2_val < 0) { if ((err = adm1026_read_reg(sc, ADM1026_FAN_DIV2, &div2)) != 0) { aprint_error_dev(sc->sc_dev, "unable to read fan_div2\n"); return 0; } } else div2 = div2_val; sc->sc_fandiv[4] = 1 << ADM1026_FAN4_DIV(div2); sc->sc_fandiv[5] = 1 << ADM1026_FAN5_DIV(div2); sc->sc_fandiv[6] = 1 << ADM1026_FAN6_DIV(div2); sc->sc_fandiv[7] = 1 << ADM1026_FAN7_DIV(div2); for (i = 0; i < ADM1026_MAX_FANS; i++) { sc->sc_sensor[ADM1026_FAN_NUM(i)].state = ENVSYS_SINVALID; /* Check configuration2 register to see which pins are fans. */ if (ADM1026_PIN_IS_FAN(sc->sc_cfg[1], i)) { sc->sc_sensor[ADM1026_FAN_NUM(i)].units = ENVSYS_SFANRPM; snprintf(sc->sc_sensor[ADM1026_FAN_NUM(i)].desc, sizeof(sc->sc_sensor[ADM1026_FAN_NUM(i)].desc), "fan %d", ADM1026_FAN_NUM(i)); if (sysmon_envsys_sensor_attach( sc->sc_sme, &sc->sc_sensor[ADM1026_FAN_NUM(i)])) { aprint_error_dev(sc->sc_dev, "unable to attach fan %d at sysmon\n", i); return 1; } sc->sc_nfans++; } } return 0; } static int adm1026_setup_temps(struct adm1026_softc *sc) { int i; uint8_t val; /* Temperature offsets */ if (adm1026_read_reg(sc, ADM1026_INT_TEMP_OFF, &val) != 0) { aprint_error_dev(sc->sc_dev, "unable to read int temp. off.\n"); return 0; } if (val & 0x80) sc->sc_temp_off[0] = 0 - 1000000 * (val & 0x7f); else sc->sc_temp_off[0] = 1000000 * (val & 0x7f); if (adm1026_read_reg(sc, ADM1026_TDM1_OFF, &val) != 0) { aprint_error_dev(sc->sc_dev, "unable to read tdm1 off.\n"); return 0; } if (val & 0x80) sc->sc_temp_off[1] = 0 - 1000000 * (val & 0x7f); else sc->sc_temp_off[1] = 1000000 * (val & 0x7f); if (adm1026_read_reg(sc, ADM1026_TDM2_OFF, &val) != 0) { aprint_error_dev(sc->sc_dev, "unable to read tdm2 off.\n"); return 0; } if (val & 0x80) sc->sc_temp_off[2] = 0 - 1000000 * (val & 0x7f); else sc->sc_temp_off[2] = 1000000 * (val & 0x7f); strlcpy(sc->sc_sensor[ADM1026_TEMP_NUM(0)].desc, "internal", sizeof(sc->sc_sensor[ADM1026_TEMP_NUM(0)].desc)); strlcpy(sc->sc_sensor[ADM1026_TEMP_NUM(1)].desc, "external 1", sizeof(sc->sc_sensor[ADM1026_TEMP_NUM(1)].desc)); strlcpy(sc->sc_sensor[ADM1026_TEMP_NUM(2)].desc, "external 2", sizeof(sc->sc_sensor[ADM1026_TEMP_NUM(2)].desc)); for (i = 0; i < ADM1026_MAX_TEMPS; i++) { /* Check configuration1 register to see if TDM2 is configured */ if (i == 2 && !ADM1026_PIN_IS_TDM2(sc->sc_cfg[0])) continue; sc->sc_sensor[ADM1026_TEMP_NUM(i)].units = ENVSYS_STEMP; sc->sc_sensor[ADM1026_TEMP_NUM(i)].state = ENVSYS_SINVALID; if (sysmon_envsys_sensor_attach( sc->sc_sme, &sc->sc_sensor[ADM1026_TEMP_NUM(i)])) { aprint_error_dev(sc->sc_dev, "unable to attach temp %d at sysmon\n", i); return 1; } sc->sc_ntemps++; } return 0; } static int adm1026_setup_volts(struct adm1026_softc *sc) { int i; for (i = 0; i < ADM1026_MAX_VOLTS; i++) { /* Check configuration1 register to see if TDM2 is configured */ if (adm1026_volts_table[i].check_tdm2 && ADM1026_PIN_IS_TDM2(sc->sc_cfg[0])) continue; strlcpy(sc->sc_sensor[ADM1026_VOLT_NUM(i)].desc, adm1026_volts_table[i].desc, sizeof(sc->sc_sensor[ADM1026_VOLT_NUM(i)].desc)); sc->sc_sensor[ADM1026_VOLT_NUM(i)].units = ENVSYS_SVOLTS_DC; sc->sc_sensor[ADM1026_VOLT_NUM(i)].state = ENVSYS_SINVALID; if (sysmon_envsys_sensor_attach( sc->sc_sme, &sc->sc_sensor[ADM1026_VOLT_NUM(i)])) { aprint_error_dev(sc->sc_dev, "unable to attach volts %d at sysmon\n", i); return 1; } } return 0; } void adm1026_refresh(struct sysmon_envsys *sme, envsys_data_t *edata) { struct adm1026_softc *sc = sme->sme_cookie; if (edata->sensor < sc->sc_nfans) adm1026_read_fan(sc, edata); else if (edata->sensor < sc->sc_nfans + sc->sc_ntemps) adm1026_read_temp(sc, edata); else adm1026_read_volt(sc, edata); } static void adm1026_read_fan(struct adm1026_softc *sc, envsys_data_t *edata) { int fan = ADM1026_NUM_FAN(edata->sensor); int err; uint8_t val; if ((err = adm1026_read_reg(sc, ADM1026_FAN_VAL(fan), &val)) != 0) { edata->state = ENVSYS_SINVALID; return; } if (val == 0xff || val == 0x00) /* Fan missing or stopped */ edata->value_cur = 0; else edata->value_cur = 1350000 / (val * sc->sc_fandiv[fan]); edata->state = ENVSYS_SVALID; } static void adm1026_read_temp(struct adm1026_softc *sc, envsys_data_t *edata) { int temp = ADM1026_NUM_TEMP(edata->sensor); int err; uint8_t val; if (temp == 0) err = adm1026_read_reg(sc, ADM1026_INT_TEMP_VAL, &val); else if (temp == 1) err = adm1026_read_reg(sc, ADM1026_TDM1_VAL, &val); else err = adm1026_read_reg(sc, ADM1026_TDM2_AIN9_VAL, &val); if (err) { edata->state = ENVSYS_SINVALID; return; } if (val & 0x80) /* Negative temperature */ edata->value_cur = 273150000 - sc->sc_temp_off[temp] - 1000000 * (val & 0x7f); else /* Positive temperature */ edata->value_cur = 273150000 - sc->sc_temp_off[temp] + 1000000 * val; edata->state = ENVSYS_SVALID; } static void adm1026_read_volt(struct adm1026_softc *sc, envsys_data_t *edata) { int volt = ADM1026_NUM_VOLT(edata->sensor); int err; uint8_t val; err = adm1026_read_reg(sc, adm1026_volts_table[volt].reg, &val); if (err) { edata->state = ENVSYS_SINVALID; return; } /* Vbatt is not valid for < 1.5V */ if (volt == 0 && val < 0x60) edata->state = ENVSYS_SINVALID; edata->value_cur = (int) val * adm1026_volts_table[volt].incr; edata->state = ENVSYS_SVALID; } static int adm1026_read_reg_int(i2c_tag_t tag, i2c_addr_t addr, uint8_t reg, bool multi_read, uint8_t *val) { #define ADM1026_READ_RETRIES 5 int i, j, err = 0; uint8_t creg, cval, tmp[ADM1026_READ_RETRIES + 1]; if ((err = iic_acquire_bus(tag, 0)) != 0) return err; /* Standard ADM1026 */ if (multi_read == false) { err = iic_exec(tag, I2C_OP_READ_WITH_STOP, addr, ®, 1, val, 1, 0); /* * The ADM1026 found in some Sun machines sometimes reads bogus values. * We'll read at least twice and check that we get (nearly) the same * value. If not, we'll read another register and then re-read the * first. */ } else { if (reg == ADM1026_CONF1) creg = ADM1026_CONF2; else creg = ADM1026_CONF1; if ((err = iic_exec(tag, I2C_OP_READ_WITH_STOP, addr, ®, 1, &tmp[0], 1, 0)) != 0) { iic_release_bus(tag, 0); return err; } for (i = 1; i <= ADM1026_READ_RETRIES; i++) { if ((err = iic_exec(tag, I2C_OP_READ_WITH_STOP, addr, ®, 1, &tmp[i], 1, 0)) != 0) break; for (j = 0; j < i; j++) if (abs(tmp[j] - tmp[i]) < 3) { *val = tmp[i]; iic_release_bus(tag, 0); return 0; } if ((err = iic_exec(tag, I2C_OP_READ_WITH_STOP, addr, &creg, 1, &cval, 1, 0)) != 0) break; err = -1; /* Return error if we don't match. */ } } iic_release_bus(tag, 0); return err; } static int adm1026_write_reg(struct adm1026_softc *sc, uint8_t reg, uint8_t val) { int err = 0; if ((err = iic_acquire_bus(sc->sc_tag, 0)) != 0) return err; err = iic_exec(sc->sc_tag, I2C_OP_WRITE_WITH_STOP, sc->sc_address, ®, 1, &val, 1, 0); iic_release_bus(sc->sc_tag, 0); return err; }