/* $NetBSD: axppmic.c,v 1.37 2022/10/30 11:51:19 jmcneill Exp $ */ /*- * Copyright (c) 2014-2018 Jared McNeill * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include __KERNEL_RCSID(0, "$NetBSD: axppmic.c,v 1.37 2022/10/30 11:51:19 jmcneill Exp $"); #include #include #include #include #include #include #include #include #include #include #include #include #define AXP_POWER_SOURCE_REG 0x00 #define AXP_POWER_SOURCE_ACIN_PRESENT __BIT(7) #define AXP_POWER_SOURCE_VBUS_PRESENT __BIT(5) #define AXP_POWER_SOURCE_CHARGE_DIRECTION __BIT(2) #define AXP_POWER_MODE_REG 0x01 #define AXP_POWER_MODE_BATT_VALID __BIT(4) #define AXP_POWER_MODE_BATT_PRESENT __BIT(5) #define AXP_POWER_MODE_BATT_CHARGING __BIT(6) #define AXP_CHIP_ID_REG 0x03 #define AXP_POWER_DISABLE_REG 0x32 #define AXP_POWER_DISABLE_CTRL __BIT(7) #define AXP_IRQ_ENABLE_REG(n) (0x40 + (n) - 1) #define AXP_IRQ1_ACIN_RAISE __BIT(6) #define AXP_IRQ1_ACIN_LOWER __BIT(5) #define AXP_IRQ1_VBUS_RAISE __BIT(3) #define AXP_IRQ1_VBUS_LOWER __BIT(2) #define AXP_IRQ_STATUS_REG(n) (0x48 + (n) - 1) #define AXP_BATSENSE_HI_REG 0x78 #define AXP_BATSENSE_LO_REG 0x79 #define AXP_BATTCHG_HI_REG 0x7a #define AXP_BATTCHG_LO_REG 0x7b #define AXP_BATTDISCHG_HI_REG 0x7c #define AXP_BATTDISCHG_LO_REG 0x7d #define AXP_ADC_RAW(_hi, _lo) \ (((u_int)(_hi) << 4) | ((_lo) & 0xf)) #define AXP_GPIO_CTRL_REG(pin) (0x90 + (pin) * 2) #define AXP_GPIO_CTRL_FUNC_MASK __BITS(2,0) #define AXP_GPIO_CTRL_FUNC_LOW 0 #define AXP_GPIO_CTRL_FUNC_HIGH 1 #define AXP_GPIO_CTRL_FUNC_INPUT 2 #define AXP_GPIO_SIGNAL_REG 0x94 #define AXP_FUEL_GAUGE_CTRL_REG 0xb8 #define AXP_FUEL_GAUGE_CTRL_EN __BIT(7) #define AXP_BATT_CAP_REG 0xb9 #define AXP_BATT_CAP_VALID __BIT(7) #define AXP_BATT_CAP_PERCENT __BITS(6,0) #define AXP_BATT_MAX_CAP_HI_REG 0xe0 #define AXP_BATT_MAX_CAP_VALID __BIT(7) #define AXP_BATT_MAX_CAP_LO_REG 0xe1 #define AXP_BATT_COULOMB_HI_REG 0xe2 #define AXP_BATT_COULOMB_VALID __BIT(7) #define AXP_BATT_COULOMB_LO_REG 0xe3 #define AXP_COULOMB_RAW(_hi, _lo) \ (((u_int)(_hi & ~__BIT(7)) << 8) | (_lo)) #define AXP_BATT_CAP_WARN_REG 0xe6 #define AXP_BATT_CAP_WARN_LV1 __BITS(7,4) #define AXP_BATT_CAP_WARN_LV2 __BITS(3,0) #define AXP_ADDR_EXT_REG 0xff /* AXP806 */ #define AXP_ADDR_EXT_MASTER 0 #define AXP_ADDR_EXT_SLAVE __BIT(4) struct axppmic_ctrl { device_t c_dev; const char * c_name; u_int c_min; u_int c_max; u_int c_step1; u_int c_step1cnt; u_int c_step2; u_int c_step2cnt; u_int c_step2start; uint8_t c_enable_reg; uint8_t c_enable_mask; uint8_t c_enable_val; uint8_t c_disable_val; uint8_t c_voltage_reg; uint8_t c_voltage_mask; }; #define AXP_CTRL(name, min, max, step, ereg, emask, vreg, vmask) \ { .c_name = (name), .c_min = (min), .c_max = (max), \ .c_step1 = (step), .c_step1cnt = (((max) - (min)) / (step)) + 1, \ .c_step2 = 0, .c_step2cnt = 0, \ .c_enable_reg = (ereg), .c_enable_mask = (emask), \ .c_enable_val = (emask), .c_disable_val = 0, \ .c_voltage_reg = (vreg), .c_voltage_mask = (vmask) } #define AXP_CTRL2(name, min, max, step1, step1cnt, step2, step2cnt, ereg, emask, vreg, vmask) \ { .c_name = (name), .c_min = (min), .c_max = (max), \ .c_step1 = (step1), .c_step1cnt = (step1cnt), \ .c_step2 = (step2), .c_step2cnt = (step2cnt), \ .c_enable_reg = (ereg), .c_enable_mask = (emask), \ .c_enable_val = (emask), .c_disable_val = 0, \ .c_voltage_reg = (vreg), .c_voltage_mask = (vmask) } #define AXP_CTRL2_RANGE(name, min, max, step1, step1cnt, step2start, step2, step2cnt, ereg, emask, vreg, vmask) \ { .c_name = (name), .c_min = (min), .c_max = (max), \ .c_step1 = (step1), .c_step1cnt = (step1cnt), \ .c_step2start = (step2start), \ .c_step2 = (step2), .c_step2cnt = (step2cnt), \ .c_enable_reg = (ereg), .c_enable_mask = (emask), \ .c_enable_val = (emask), .c_disable_val = 0, \ .c_voltage_reg = (vreg), .c_voltage_mask = (vmask) } #define AXP_CTRL_IO(name, min, max, step, ereg, emask, eval, dval, vreg, vmask) \ { .c_name = (name), .c_min = (min), .c_max = (max), \ .c_step1 = (step), .c_step1cnt = (((max) - (min)) / (step)) + 1, \ .c_step2 = 0, .c_step2cnt = 0, \ .c_enable_reg = (ereg), .c_enable_mask = (emask), \ .c_enable_val = (eval), .c_disable_val = (dval), \ .c_voltage_reg = (vreg), .c_voltage_mask = (vmask) } #define AXP_CTRL_SW(name, ereg, emask) \ { .c_name = (name), \ .c_enable_reg = (ereg), .c_enable_mask = (emask), \ .c_enable_val = (emask), .c_disable_val = 0 } static const struct axppmic_ctrl axp803_ctrls[] = { AXP_CTRL("dldo1", 700, 3300, 100, 0x12, __BIT(3), 0x15, __BITS(4,0)), AXP_CTRL2("dldo2", 700, 4200, 100, 28, 200, 4, 0x12, __BIT(4), 0x16, __BITS(4,0)), AXP_CTRL("dldo3", 700, 3300, 100, 0x12, __BIT(5), 0x17, __BITS(4,0)), AXP_CTRL("dldo4", 700, 3300, 100, 0x12, __BIT(6), 0x18, __BITS(4,0)), AXP_CTRL("eldo1", 700, 1900, 50, 0x12, __BIT(0), 0x19, __BITS(4,0)), AXP_CTRL("eldo2", 700, 1900, 50, 0x12, __BIT(1), 0x1a, __BITS(4,0)), AXP_CTRL("eldo3", 700, 1900, 50, 0x12, __BIT(2), 0x1b, __BITS(4,0)), AXP_CTRL("fldo1", 700, 1450, 50, 0x13, __BIT(2), 0x1c, __BITS(3,0)), AXP_CTRL("fldo2", 700, 1450, 50, 0x13, __BIT(3), 0x1d, __BITS(3,0)), AXP_CTRL("dcdc1", 1600, 3400, 100, 0x10, __BIT(0), 0x20, __BITS(4,0)), AXP_CTRL2("dcdc2", 500, 1300, 10, 70, 20, 5, 0x10, __BIT(1), 0x21, __BITS(6,0)), AXP_CTRL2("dcdc3", 500, 1300, 10, 70, 20, 5, 0x10, __BIT(2), 0x22, __BITS(6,0)), AXP_CTRL2("dcdc4", 500, 1300, 10, 70, 20, 5, 0x10, __BIT(3), 0x23, __BITS(6,0)), AXP_CTRL2("dcdc5", 800, 1840, 10, 33, 20, 36, 0x10, __BIT(4), 0x24, __BITS(6,0)), AXP_CTRL2("dcdc6", 600, 1520, 10, 51, 20, 21, 0x10, __BIT(5), 0x25, __BITS(6,0)), AXP_CTRL("aldo1", 700, 3300, 100, 0x13, __BIT(5), 0x28, __BITS(4,0)), AXP_CTRL("aldo2", 700, 3300, 100, 0x13, __BIT(6), 0x29, __BITS(4,0)), AXP_CTRL("aldo3", 700, 3300, 100, 0x13, __BIT(7), 0x2a, __BITS(4,0)), }; static const struct axppmic_ctrl axp805_ctrls[] = { AXP_CTRL2("dcdca", 600, 1520, 10, 51, 20, 21, 0x10, __BIT(0), 0x12, __BITS(6,0)), AXP_CTRL("dcdcb", 1000, 2550, 50, 0x10, __BIT(1), 0x13, __BITS(4,0)), AXP_CTRL2("dcdcc", 600, 1520, 10, 51, 20, 21, 0x10, __BIT(2), 0x14, __BITS(6,0)), AXP_CTRL2("dcdcd", 600, 3300, 20, 46, 100, 18, 0x10, __BIT(3), 0x15, __BITS(5,0)), AXP_CTRL("dcdce", 1100, 3400, 100, 0x10, __BIT(4), 0x16, __BITS(4,0)), AXP_CTRL("aldo1", 700, 3300, 100, 0x10, __BIT(5), 0x17, __BITS(4,0)), AXP_CTRL("aldo2", 700, 3400, 100, 0x10, __BIT(6), 0x18, __BITS(4,0)), AXP_CTRL("aldo3", 700, 3300, 100, 0x10, __BIT(7), 0x19, __BITS(4,0)), AXP_CTRL("bldo1", 700, 1900, 100, 0x11, __BIT(0), 0x20, __BITS(3,0)), AXP_CTRL("bldo2", 700, 1900, 100, 0x11, __BIT(1), 0x21, __BITS(3,0)), AXP_CTRL("bldo3", 700, 1900, 100, 0x11, __BIT(2), 0x22, __BITS(3,0)), AXP_CTRL("bldo4", 700, 1900, 100, 0x11, __BIT(3), 0x23, __BITS(3,0)), AXP_CTRL("cldo1", 700, 3300, 100, 0x11, __BIT(4), 0x24, __BITS(4,0)), AXP_CTRL2("cldo2", 700, 4200, 100, 28, 200, 4, 0x11, __BIT(5), 0x25, __BITS(4,0)), AXP_CTRL("cldo3", 700, 3300, 100, 0x11, __BIT(6), 0x26, __BITS(4,0)), }; static const struct axppmic_ctrl axp809_ctrls[] = { AXP_CTRL("dc5ldo", 700, 1400, 100, 0x10, __BIT(0), 0x1c, __BITS(2,0)), AXP_CTRL("dcdc1", 1600, 3400, 100, 0x10, __BIT(1), 0x21, __BITS(4,0)), AXP_CTRL("dcdc2", 600, 1540, 20, 0x10, __BIT(2), 0x22, __BITS(5,0)), AXP_CTRL("dcdc3", 600, 1860, 20, 0x10, __BIT(3), 0x23, __BITS(5,0)), AXP_CTRL2_RANGE("dcdc4", 600, 2600, 20, 47, 1800, 100, 9, 0x10, __BIT(4), 0x24, __BITS(5,0)), AXP_CTRL("dcdc5", 1000, 2550, 50, 0x10, __BIT(5), 0x25, __BITS(4,0)), AXP_CTRL("aldo1", 700, 3300, 100, 0x10, __BIT(6), 0x28, __BITS(4,0)), AXP_CTRL("aldo2", 700, 3300, 100, 0x10, __BIT(7), 0x29, __BITS(4,0)), AXP_CTRL("eldo1", 700, 3300, 100, 0x12, __BIT(0), 0x19, __BITS(4,0)), AXP_CTRL("eldo2", 700, 3300, 100, 0x12, __BIT(1), 0x1a, __BITS(4,0)), AXP_CTRL("eldo3", 700, 3300, 100, 0x12, __BIT(2), 0x1b, __BITS(4,0)), AXP_CTRL2_RANGE("dldo1", 700, 4000, 100, 26, 3400, 200, 4, 0x12, __BIT(3), 0x15, __BITS(4,0)), AXP_CTRL("dldo2", 700, 3300, 100, 0x12, __BIT(4), 0x16, __BITS(4,0)), AXP_CTRL("aldo3", 700, 3300, 100, 0x12, __BIT(5), 0x2a, __BITS(4,0)), AXP_CTRL_SW("sw", 0x12, __BIT(6)), /* dc1sw is another switch for dcdc1 */ AXP_CTRL("dc1sw", 1600, 3400, 100, 0x12, __BIT(7), 0x21, __BITS(4,0)), AXP_CTRL_IO("ldo_io0", 700, 3300, 100, 0x90, __BITS(3,0), 0x3, 0x7, 0x91, __BITS(4,0)), AXP_CTRL_IO("ldo_io1", 700, 3300, 100, 0x92, __BITS(3,0), 0x3, 0x7, 0x93, __BITS(4,0)), }; static const struct axppmic_ctrl axp813_ctrls[] = { AXP_CTRL("dldo1", 700, 3300, 100, 0x12, __BIT(3), 0x15, __BITS(4,0)), AXP_CTRL2("dldo2", 700, 4200, 100, 28, 200, 4, 0x12, __BIT(4), 0x16, __BITS(4,0)), AXP_CTRL("dldo3", 700, 3300, 100, 0x12, __BIT(5), 0x17, __BITS(4,0)), AXP_CTRL("dldo4", 700, 3300, 100, 0x12, __BIT(6), 0x18, __BITS(4,0)), AXP_CTRL("eldo1", 700, 1900, 50, 0x12, __BIT(0), 0x19, __BITS(4,0)), AXP_CTRL("eldo2", 700, 1900, 50, 0x12, __BIT(1), 0x1a, __BITS(4,0)), AXP_CTRL("eldo3", 700, 1900, 50, 0x12, __BIT(2), 0x1b, __BITS(4,0)), AXP_CTRL("fldo1", 700, 1450, 50, 0x13, __BIT(2), 0x1c, __BITS(3,0)), AXP_CTRL("fldo2", 700, 1450, 50, 0x13, __BIT(3), 0x1d, __BITS(3,0)), AXP_CTRL("dcdc1", 1600, 3400, 100, 0x10, __BIT(0), 0x20, __BITS(4,0)), AXP_CTRL2("dcdc2", 500, 1300, 10, 70, 20, 5, 0x10, __BIT(1), 0x21, __BITS(6,0)), AXP_CTRL2("dcdc3", 500, 1300, 10, 70, 20, 5, 0x10, __BIT(2), 0x22, __BITS(6,0)), AXP_CTRL2("dcdc4", 500, 1300, 10, 70, 20, 5, 0x10, __BIT(3), 0x23, __BITS(6,0)), AXP_CTRL2("dcdc5", 800, 1840, 10, 33, 20, 36, 0x10, __BIT(4), 0x24, __BITS(6,0)), AXP_CTRL2("dcdc6", 600, 1520, 10, 51, 20, 21, 0x10, __BIT(5), 0x25, __BITS(6,0)), AXP_CTRL2("dcdc7", 600, 1520, 10, 51, 20, 21, 0x10, __BIT(6), 0x26, __BITS(6,0)), AXP_CTRL("aldo1", 700, 3300, 100, 0x13, __BIT(5), 0x28, __BITS(4,0)), AXP_CTRL("aldo2", 700, 3300, 100, 0x13, __BIT(6), 0x29, __BITS(4,0)), AXP_CTRL("aldo3", 700, 3300, 100, 0x13, __BIT(7), 0x2a, __BITS(4,0)), }; struct axppmic_irq { u_int reg; uint8_t mask; }; #define AXPPMIC_IRQ(_reg, _mask) \ { .reg = (_reg), .mask = (_mask) } struct axppmic_config { const char *name; const char *gpio_compat; u_int gpio_npins; const struct axppmic_ctrl *controls; u_int ncontrols; u_int irq_regs; bool has_battery; bool has_fuel_gauge; bool has_mode_set; struct axppmic_irq poklirq; struct axppmic_irq acinirq; struct axppmic_irq vbusirq; struct axppmic_irq battirq; struct axppmic_irq chargeirq; struct axppmic_irq chargestirq; u_int batsense_step; /* uV */ u_int charge_step; /* uA */ u_int discharge_step; /* uA */ u_int maxcap_step; /* uAh */ u_int coulomb_step; /* uAh */ }; enum axppmic_sensor { AXP_SENSOR_ACIN_PRESENT, AXP_SENSOR_VBUS_PRESENT, AXP_SENSOR_BATT_PRESENT, AXP_SENSOR_BATT_CHARGING, AXP_SENSOR_BATT_CHARGE_STATE, AXP_SENSOR_BATT_VOLTAGE, AXP_SENSOR_BATT_CHARGE_CURRENT, AXP_SENSOR_BATT_DISCHARGE_CURRENT, AXP_SENSOR_BATT_CAPACITY_PERCENT, AXP_SENSOR_BATT_MAXIMUM_CAPACITY, AXP_SENSOR_BATT_CURRENT_CAPACITY, AXP_NSENSORS }; struct axppmic_softc { device_t sc_dev; i2c_tag_t sc_i2c; i2c_addr_t sc_addr; int sc_phandle; void *sc_ih; struct workqueue *sc_wq; kmutex_t sc_intr_lock; struct work sc_work; bool sc_work_scheduled; const struct axppmic_config *sc_conf; struct sysmon_pswitch sc_smpsw; struct sysmon_envsys *sc_sme; envsys_data_t sc_sensor[AXP_NSENSORS]; u_int sc_warn_thres; u_int sc_shut_thres; }; struct axppmic_gpio_pin { struct axppmic_softc *pin_sc; u_int pin_nr; int pin_flags; bool pin_actlo; }; struct axpreg_softc { device_t sc_dev; i2c_tag_t sc_i2c; i2c_addr_t sc_addr; const struct axppmic_ctrl *sc_ctrl; }; struct axpreg_attach_args { const struct axppmic_ctrl *reg_ctrl; int reg_phandle; i2c_tag_t reg_i2c; i2c_addr_t reg_addr; }; static const struct axppmic_config axp803_config = { .name = "AXP803", .gpio_compat = "x-powers,axp803-gpio", .gpio_npins = 2, .controls = axp803_ctrls, .ncontrols = __arraycount(axp803_ctrls), .irq_regs = 6, .has_battery = true, .has_fuel_gauge = true, .batsense_step = 1100, .charge_step = 1000, .discharge_step = 1000, .maxcap_step = 1456, .coulomb_step = 1456, .poklirq = AXPPMIC_IRQ(5, __BIT(3)), .acinirq = AXPPMIC_IRQ(1, __BITS(6,5)), .vbusirq = AXPPMIC_IRQ(1, __BITS(3,2)), .battirq = AXPPMIC_IRQ(2, __BITS(7,6)), .chargeirq = AXPPMIC_IRQ(2, __BITS(3,2)), .chargestirq = AXPPMIC_IRQ(4, __BITS(1,0)), }; static const struct axppmic_config axp805_config = { .name = "AXP805", .controls = axp805_ctrls, .ncontrols = __arraycount(axp805_ctrls), .irq_regs = 2, .poklirq = AXPPMIC_IRQ(2, __BIT(0)), }; static const struct axppmic_config axp806_config = { .name = "AXP806", .controls = axp805_ctrls, .ncontrols = __arraycount(axp805_ctrls), #if notyet .irq_regs = 2, .poklirq = AXPPMIC_IRQ(2, __BIT(0)), #endif .has_mode_set = true, }; static const struct axppmic_config axp809_config = { .name = "AXP809", .controls = axp809_ctrls, .ncontrols = __arraycount(axp809_ctrls), }; static const struct axppmic_config axp813_config = { .name = "AXP813", .gpio_compat = "x-powers,axp813-gpio", .gpio_npins = 2, .controls = axp813_ctrls, .ncontrols = __arraycount(axp813_ctrls), .irq_regs = 6, .has_battery = true, .has_fuel_gauge = true, .batsense_step = 1100, .charge_step = 1000, .discharge_step = 1000, .maxcap_step = 1456, .coulomb_step = 1456, .poklirq = AXPPMIC_IRQ(5, __BIT(3)), .acinirq = AXPPMIC_IRQ(1, __BITS(6,5)), .vbusirq = AXPPMIC_IRQ(1, __BITS(3,2)), .battirq = AXPPMIC_IRQ(2, __BITS(7,6)), .chargeirq = AXPPMIC_IRQ(2, __BITS(3,2)), .chargestirq = AXPPMIC_IRQ(4, __BITS(1,0)), }; static const struct device_compatible_entry compat_data[] = { { .compat = "x-powers,axp803", .data = &axp803_config }, { .compat = "x-powers,axp805", .data = &axp805_config }, { .compat = "x-powers,axp806", .data = &axp806_config }, { .compat = "x-powers,axp809", .data = &axp809_config }, { .compat = "x-powers,axp813", .data = &axp813_config }, DEVICE_COMPAT_EOL }; static int axppmic_read(i2c_tag_t tag, i2c_addr_t addr, uint8_t reg, uint8_t *val, int flags) { return iic_smbus_read_byte(tag, addr, reg, val, flags); } static int axppmic_write(i2c_tag_t tag, i2c_addr_t addr, uint8_t reg, uint8_t val, int flags) { return iic_smbus_write_byte(tag, addr, reg, val, flags); } static int axppmic_set_voltage(i2c_tag_t tag, i2c_addr_t addr, const struct axppmic_ctrl *c, u_int min, u_int max) { u_int vol, reg_val; int nstep, error; uint8_t val; if (!c->c_voltage_mask) return EINVAL; if (min < c->c_min || min > c->c_max) return EINVAL; reg_val = 0; nstep = 1; vol = c->c_min; for (nstep = 0; nstep < c->c_step1cnt && vol < min; nstep++) { ++reg_val; vol += c->c_step1; } if (c->c_step2start) vol = c->c_step2start; for (nstep = 0; nstep < c->c_step2cnt && vol < min; nstep++) { ++reg_val; vol += c->c_step2; } if (vol > max) return EINVAL; iic_acquire_bus(tag, 0); if ((error = axppmic_read(tag, addr, c->c_voltage_reg, &val, 0)) == 0) { val &= ~c->c_voltage_mask; val |= __SHIFTIN(reg_val, c->c_voltage_mask); error = axppmic_write(tag, addr, c->c_voltage_reg, val, 0); } iic_release_bus(tag, 0); return error; } static int axppmic_get_voltage(i2c_tag_t tag, i2c_addr_t addr, const struct axppmic_ctrl *c, u_int *pvol) { int reg_val, error; uint8_t val; if (!c->c_voltage_mask) return EINVAL; iic_acquire_bus(tag, 0); error = axppmic_read(tag, addr, c->c_voltage_reg, &val, 0); iic_release_bus(tag, 0); if (error) return error; reg_val = __SHIFTOUT(val, c->c_voltage_mask); if (reg_val < c->c_step1cnt) { *pvol = c->c_min + reg_val * c->c_step1; } else if (c->c_step2start) { *pvol = c->c_step2start + ((reg_val - c->c_step1cnt) * c->c_step2); } else { *pvol = c->c_min + (c->c_step1cnt * c->c_step1) + ((reg_val - c->c_step1cnt) * c->c_step2); } return 0; } static void axppmic_power_poweroff(device_t dev) { struct axppmic_softc *sc = device_private(dev); int error; delay(1000000); error = iic_acquire_bus(sc->sc_i2c, 0); if (error == 0) { error = axppmic_write(sc->sc_i2c, sc->sc_addr, AXP_POWER_DISABLE_REG, AXP_POWER_DISABLE_CTRL, 0); iic_release_bus(sc->sc_i2c, 0); } if (error) { device_printf(dev, "WARNING: unable to power off, error %d\n", error); } } static struct fdtbus_power_controller_func axppmic_power_funcs = { .poweroff = axppmic_power_poweroff, }; static int axppmic_gpio_ctl(struct axppmic_softc *sc, uint8_t pin, uint8_t func) { uint8_t val; int error; KASSERT(pin < sc->sc_conf->gpio_npins); KASSERT((func & ~AXP_GPIO_CTRL_FUNC_MASK) == 0); iic_acquire_bus(sc->sc_i2c, 0); error = axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_GPIO_CTRL_REG(pin), &val, 0); if (error == 0) { val &= ~AXP_GPIO_CTRL_FUNC_MASK; val |= func; error = axppmic_write(sc->sc_i2c, sc->sc_addr, AXP_GPIO_CTRL_REG(pin), val, 0); } iic_release_bus(sc->sc_i2c, 0); return error; } static void * axppmic_gpio_acquire(device_t dev, const void *data, size_t len, int flags) { struct axppmic_softc *sc = device_private(dev); struct axppmic_gpio_pin *gpin; const u_int *gpio = data; int error; if (len != 12) { return NULL; } const uint8_t pin = be32toh(gpio[1]) & 0xff; const bool actlo = be32toh(gpio[2]) & 1; if (pin >= sc->sc_conf->gpio_npins) { return NULL; } if ((flags & GPIO_PIN_INPUT) != 0) { error = axppmic_gpio_ctl(sc, pin, AXP_GPIO_CTRL_FUNC_INPUT); if (error != 0) { return NULL; } } gpin = kmem_zalloc(sizeof(*gpin), KM_SLEEP); gpin->pin_sc = sc; gpin->pin_nr = pin; gpin->pin_flags = flags; gpin->pin_actlo = actlo; return gpin; } static void axppmic_gpio_release(device_t dev, void *priv) { struct axppmic_softc *sc = device_private(dev); struct axppmic_gpio_pin *gpin = priv; axppmic_gpio_ctl(sc, gpin->pin_nr, AXP_GPIO_CTRL_FUNC_INPUT); kmem_free(gpin, sizeof(*gpin)); } static int axppmic_gpio_read(device_t dev, void *priv, bool raw) { struct axppmic_softc *sc = device_private(dev); struct axppmic_gpio_pin *gpin = priv; uint8_t data; int error, val; KASSERT(sc == gpin->pin_sc); const uint8_t data_mask = __BIT(gpin->pin_nr); iic_acquire_bus(sc->sc_i2c, 0); error = axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_GPIO_SIGNAL_REG, &data, 0); iic_release_bus(sc->sc_i2c, 0); if (error != 0) { device_printf(dev, "WARNING: failed to read pin %d: %d\n", gpin->pin_nr, error); val = 0; } else { val = __SHIFTOUT(data, data_mask); } if (!raw && gpin->pin_actlo) { val = !val; } return val; } static void axppmic_gpio_write(device_t dev, void *priv, int val, bool raw) { struct axppmic_softc *sc = device_private(dev); struct axppmic_gpio_pin *gpin = priv; int error; if (!raw && gpin->pin_actlo) { val = !val; } error = axppmic_gpio_ctl(sc, gpin->pin_nr, val == 0 ? AXP_GPIO_CTRL_FUNC_LOW : AXP_GPIO_CTRL_FUNC_HIGH); if (error != 0) { device_printf(dev, "WARNING: failed to write pin %d: %d\n", gpin->pin_nr, error); } } static struct fdtbus_gpio_controller_func axppmic_gpio_funcs = { .acquire = axppmic_gpio_acquire, .release = axppmic_gpio_release, .read = axppmic_gpio_read, .write = axppmic_gpio_write, }; static void axppmic_task_shut(void *priv) { struct axppmic_softc *sc = priv; sysmon_pswitch_event(&sc->sc_smpsw, PSWITCH_EVENT_PRESSED); } static void axppmic_sensor_update(struct sysmon_envsys *sme, envsys_data_t *e) { struct axppmic_softc *sc = sme->sme_cookie; const struct axppmic_config *c = sc->sc_conf; uint8_t val, lo, hi; e->state = ENVSYS_SINVALID; const bool battery_present = sc->sc_sensor[AXP_SENSOR_BATT_PRESENT].state == ENVSYS_SVALID && sc->sc_sensor[AXP_SENSOR_BATT_PRESENT].value_cur == 1; switch (e->private) { case AXP_SENSOR_ACIN_PRESENT: if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_SOURCE_REG, &val, 0) == 0) { e->state = ENVSYS_SVALID; e->value_cur = !!(val & AXP_POWER_SOURCE_ACIN_PRESENT); } break; case AXP_SENSOR_VBUS_PRESENT: if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_SOURCE_REG, &val, 0) == 0) { e->state = ENVSYS_SVALID; e->value_cur = !!(val & AXP_POWER_SOURCE_VBUS_PRESENT); } break; case AXP_SENSOR_BATT_PRESENT: if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_MODE_REG, &val, 0) == 0) { if (val & AXP_POWER_MODE_BATT_VALID) { e->state = ENVSYS_SVALID; e->value_cur = !!(val & AXP_POWER_MODE_BATT_PRESENT); } } break; case AXP_SENSOR_BATT_CHARGING: if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_MODE_REG, &val, 0) == 0) { e->state = ENVSYS_SVALID; e->value_cur = !!(val & AXP_POWER_MODE_BATT_CHARGING); } break; case AXP_SENSOR_BATT_CHARGE_STATE: if (battery_present && axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_CAP_REG, &val, 0) == 0 && (val & AXP_BATT_CAP_VALID) != 0) { const u_int batt_val = __SHIFTOUT(val, AXP_BATT_CAP_PERCENT); if (batt_val <= sc->sc_shut_thres) { e->state = ENVSYS_SCRITICAL; e->value_cur = ENVSYS_BATTERY_CAPACITY_CRITICAL; } else if (batt_val <= sc->sc_warn_thres) { e->state = ENVSYS_SWARNUNDER; e->value_cur = ENVSYS_BATTERY_CAPACITY_WARNING; } else { e->state = ENVSYS_SVALID; e->value_cur = ENVSYS_BATTERY_CAPACITY_NORMAL; } } break; case AXP_SENSOR_BATT_CAPACITY_PERCENT: if (battery_present && axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_CAP_REG, &val, 0) == 0 && (val & AXP_BATT_CAP_VALID) != 0) { e->state = ENVSYS_SVALID; e->value_cur = __SHIFTOUT(val, AXP_BATT_CAP_PERCENT); } break; case AXP_SENSOR_BATT_VOLTAGE: if (battery_present && axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATSENSE_HI_REG, &hi, 0) == 0 && axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATSENSE_LO_REG, &lo, 0) == 0) { e->state = ENVSYS_SVALID; e->value_cur = AXP_ADC_RAW(hi, lo) * c->batsense_step; } break; case AXP_SENSOR_BATT_CHARGE_CURRENT: if (battery_present && axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_SOURCE_REG, &val, 0) == 0 && (val & AXP_POWER_SOURCE_CHARGE_DIRECTION) != 0 && axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATTCHG_HI_REG, &hi, 0) == 0 && axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATTCHG_LO_REG, &lo, 0) == 0) { e->state = ENVSYS_SVALID; e->value_cur = AXP_ADC_RAW(hi, lo) * c->charge_step; } break; case AXP_SENSOR_BATT_DISCHARGE_CURRENT: if (battery_present && axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_SOURCE_REG, &val, 0) == 0 && (val & AXP_POWER_SOURCE_CHARGE_DIRECTION) == 0 && axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATTDISCHG_HI_REG, &hi, 0) == 0 && axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATTDISCHG_LO_REG, &lo, 0) == 0) { e->state = ENVSYS_SVALID; e->value_cur = AXP_ADC_RAW(hi, lo) * c->discharge_step; } break; case AXP_SENSOR_BATT_MAXIMUM_CAPACITY: if (battery_present && axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_MAX_CAP_HI_REG, &hi, 0) == 0 && axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_MAX_CAP_LO_REG, &lo, 0) == 0) { e->state = (hi & AXP_BATT_MAX_CAP_VALID) ? ENVSYS_SVALID : ENVSYS_SINVALID; e->value_cur = AXP_COULOMB_RAW(hi, lo) * c->maxcap_step; } break; case AXP_SENSOR_BATT_CURRENT_CAPACITY: if (battery_present && axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_COULOMB_HI_REG, &hi, 0) == 0 && axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_COULOMB_LO_REG, &lo, 0) == 0) { e->state = (hi & AXP_BATT_COULOMB_VALID) ? ENVSYS_SVALID : ENVSYS_SINVALID; e->value_cur = AXP_COULOMB_RAW(hi, lo) * c->coulomb_step; } break; } } static void axppmic_sensor_refresh(struct sysmon_envsys *sme, envsys_data_t *e) { struct axppmic_softc *sc = sme->sme_cookie; switch (e->private) { case AXP_SENSOR_BATT_CAPACITY_PERCENT: case AXP_SENSOR_BATT_VOLTAGE: case AXP_SENSOR_BATT_CHARGE_CURRENT: case AXP_SENSOR_BATT_DISCHARGE_CURRENT: /* Always update battery capacity and ADCs */ iic_acquire_bus(sc->sc_i2c, 0); axppmic_sensor_update(sme, e); iic_release_bus(sc->sc_i2c, 0); break; default: /* Refresh if the sensor is not in valid state */ if (e->state != ENVSYS_SVALID) { iic_acquire_bus(sc->sc_i2c, 0); axppmic_sensor_update(sme, e); iic_release_bus(sc->sc_i2c, 0); } break; } } static int axppmic_intr(void *priv) { struct axppmic_softc * const sc = priv; mutex_enter(&sc->sc_intr_lock); fdtbus_intr_mask(sc->sc_phandle, sc->sc_ih); /* Interrupt is always masked when work is scheduled! */ KASSERT(!sc->sc_work_scheduled); sc->sc_work_scheduled = true; workqueue_enqueue(sc->sc_wq, &sc->sc_work, NULL); mutex_exit(&sc->sc_intr_lock); return 1; } static void axppmic_work(struct work *work, void *arg) { struct axppmic_softc * const sc = container_of(work, struct axppmic_softc, sc_work); const struct axppmic_config * const c = sc->sc_conf; const int flags = 0; uint8_t stat; u_int n; KASSERT(sc->sc_work_scheduled); iic_acquire_bus(sc->sc_i2c, flags); for (n = 1; n <= c->irq_regs; n++) { if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_IRQ_STATUS_REG(n), &stat, flags) == 0) { if (stat != 0) { axppmic_write(sc->sc_i2c, sc->sc_addr, AXP_IRQ_STATUS_REG(n), stat, flags); } if (n == c->poklirq.reg && (stat & c->poklirq.mask) != 0) sysmon_task_queue_sched(0, axppmic_task_shut, sc); if (n == c->acinirq.reg && (stat & c->acinirq.mask) != 0) axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_ACIN_PRESENT]); if (n == c->vbusirq.reg && (stat & c->vbusirq.mask) != 0) axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_VBUS_PRESENT]); if (n == c->battirq.reg && (stat & c->battirq.mask) != 0) axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_BATT_PRESENT]); if (n == c->chargeirq.reg && (stat & c->chargeirq.mask) != 0) axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_BATT_CHARGING]); if (n == c->chargestirq.reg && (stat & c->chargestirq.mask) != 0) axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_BATT_CHARGE_STATE]); } } iic_release_bus(sc->sc_i2c, flags); mutex_enter(&sc->sc_intr_lock); sc->sc_work_scheduled = false; fdtbus_intr_unmask(sc->sc_phandle, sc->sc_ih); mutex_exit(&sc->sc_intr_lock); } static void axppmic_attach_acadapter(struct axppmic_softc *sc) { envsys_data_t *e; e = &sc->sc_sensor[AXP_SENSOR_ACIN_PRESENT]; e->private = AXP_SENSOR_ACIN_PRESENT; e->units = ENVSYS_INDICATOR; e->state = ENVSYS_SINVALID; strlcpy(e->desc, "ACIN present", sizeof(e->desc)); sysmon_envsys_sensor_attach(sc->sc_sme, e); e = &sc->sc_sensor[AXP_SENSOR_VBUS_PRESENT]; e->private = AXP_SENSOR_VBUS_PRESENT; e->units = ENVSYS_INDICATOR; e->state = ENVSYS_SINVALID; strlcpy(e->desc, "VBUS present", sizeof(e->desc)); sysmon_envsys_sensor_attach(sc->sc_sme, e); } static void axppmic_attach_battery(struct axppmic_softc *sc) { const struct axppmic_config *c = sc->sc_conf; envsys_data_t *e; uint8_t val; iic_acquire_bus(sc->sc_i2c, 0); if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_CAP_WARN_REG, &val, 0) == 0) { sc->sc_warn_thres = __SHIFTOUT(val, AXP_BATT_CAP_WARN_LV1) + 5; sc->sc_shut_thres = __SHIFTOUT(val, AXP_BATT_CAP_WARN_LV2); } iic_release_bus(sc->sc_i2c, 0); e = &sc->sc_sensor[AXP_SENSOR_BATT_PRESENT]; e->private = AXP_SENSOR_BATT_PRESENT; e->units = ENVSYS_INDICATOR; e->state = ENVSYS_SINVALID; strlcpy(e->desc, "battery present", sizeof(e->desc)); sysmon_envsys_sensor_attach(sc->sc_sme, e); e = &sc->sc_sensor[AXP_SENSOR_BATT_CHARGING]; e->private = AXP_SENSOR_BATT_CHARGING; e->units = ENVSYS_BATTERY_CHARGE; e->state = ENVSYS_SINVALID; strlcpy(e->desc, "charging", sizeof(e->desc)); sysmon_envsys_sensor_attach(sc->sc_sme, e); e = &sc->sc_sensor[AXP_SENSOR_BATT_CHARGE_STATE]; e->private = AXP_SENSOR_BATT_CHARGE_STATE; e->units = ENVSYS_BATTERY_CAPACITY; e->flags = ENVSYS_FMONSTCHANGED; e->state = ENVSYS_SINVALID; e->value_cur = ENVSYS_BATTERY_CAPACITY_NORMAL; strlcpy(e->desc, "charge state", sizeof(e->desc)); sysmon_envsys_sensor_attach(sc->sc_sme, e); if (c->batsense_step) { e = &sc->sc_sensor[AXP_SENSOR_BATT_VOLTAGE]; e->private = AXP_SENSOR_BATT_VOLTAGE; e->units = ENVSYS_SVOLTS_DC; e->state = ENVSYS_SINVALID; strlcpy(e->desc, "battery voltage", sizeof(e->desc)); sysmon_envsys_sensor_attach(sc->sc_sme, e); } if (c->charge_step) { e = &sc->sc_sensor[AXP_SENSOR_BATT_CHARGE_CURRENT]; e->private = AXP_SENSOR_BATT_CHARGE_CURRENT; e->units = ENVSYS_SAMPS; e->state = ENVSYS_SINVALID; strlcpy(e->desc, "battery charge current", sizeof(e->desc)); sysmon_envsys_sensor_attach(sc->sc_sme, e); } if (c->discharge_step) { e = &sc->sc_sensor[AXP_SENSOR_BATT_DISCHARGE_CURRENT]; e->private = AXP_SENSOR_BATT_DISCHARGE_CURRENT; e->units = ENVSYS_SAMPS; e->state = ENVSYS_SINVALID; strlcpy(e->desc, "battery discharge current", sizeof(e->desc)); sysmon_envsys_sensor_attach(sc->sc_sme, e); } if (c->has_fuel_gauge) { e = &sc->sc_sensor[AXP_SENSOR_BATT_CAPACITY_PERCENT]; e->private = AXP_SENSOR_BATT_CAPACITY_PERCENT; e->units = ENVSYS_INTEGER; e->state = ENVSYS_SINVALID; e->flags = ENVSYS_FPERCENT; strlcpy(e->desc, "battery percent", sizeof(e->desc)); sysmon_envsys_sensor_attach(sc->sc_sme, e); } if (c->maxcap_step) { e = &sc->sc_sensor[AXP_SENSOR_BATT_MAXIMUM_CAPACITY]; e->private = AXP_SENSOR_BATT_MAXIMUM_CAPACITY; e->units = ENVSYS_SAMPHOUR; e->state = ENVSYS_SINVALID; strlcpy(e->desc, "battery maximum capacity", sizeof(e->desc)); sysmon_envsys_sensor_attach(sc->sc_sme, e); } if (c->coulomb_step) { e = &sc->sc_sensor[AXP_SENSOR_BATT_CURRENT_CAPACITY]; e->private = AXP_SENSOR_BATT_CURRENT_CAPACITY; e->units = ENVSYS_SAMPHOUR; e->state = ENVSYS_SINVALID; strlcpy(e->desc, "battery current capacity", sizeof(e->desc)); sysmon_envsys_sensor_attach(sc->sc_sme, e); } } static void axppmic_attach_sensors(struct axppmic_softc *sc) { if (sc->sc_conf->has_battery) { sc->sc_sme = sysmon_envsys_create(); sc->sc_sme->sme_name = device_xname(sc->sc_dev); sc->sc_sme->sme_cookie = sc; sc->sc_sme->sme_refresh = axppmic_sensor_refresh; sc->sc_sme->sme_class = SME_CLASS_BATTERY; sc->sc_sme->sme_flags = SME_INIT_REFRESH; axppmic_attach_acadapter(sc); axppmic_attach_battery(sc); sysmon_envsys_register(sc->sc_sme); } } static int axppmic_match(device_t parent, cfdata_t match, void *aux) { struct i2c_attach_args *ia = aux; int match_result; if (iic_use_direct_match(ia, match, compat_data, &match_result)) return match_result; /* This device is direct-config only. */ return 0; } static void axppmic_attach(device_t parent, device_t self, void *aux) { struct axppmic_softc *sc = device_private(self); const struct device_compatible_entry *dce = NULL; const struct axppmic_config *c; struct axpreg_attach_args aaa; struct i2c_attach_args *ia = aux; int phandle, child, i; uint8_t irq_mask, val; int error; dce = iic_compatible_lookup(ia, compat_data); KASSERT(dce != NULL); c = dce->data; sc->sc_dev = self; sc->sc_i2c = ia->ia_tag; sc->sc_addr = ia->ia_addr; sc->sc_phandle = ia->ia_cookie; sc->sc_conf = c; aprint_naive("\n"); aprint_normal(": %s\n", c->name); if (c->has_mode_set) { const bool master_mode = of_hasprop(sc->sc_phandle, "x-powers,self-working-mode") || of_hasprop(sc->sc_phandle, "x-powers,master-mode"); iic_acquire_bus(sc->sc_i2c, 0); axppmic_write(sc->sc_i2c, sc->sc_addr, AXP_ADDR_EXT_REG, master_mode ? AXP_ADDR_EXT_MASTER : AXP_ADDR_EXT_SLAVE, 0); iic_release_bus(sc->sc_i2c, 0); } iic_acquire_bus(sc->sc_i2c, 0); error = axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_CHIP_ID_REG, &val, 0); iic_release_bus(sc->sc_i2c, 0); if (error != 0) { aprint_error_dev(self, "couldn't read chipid\n"); return; } aprint_debug_dev(self, "chipid %#x\n", val); sc->sc_smpsw.smpsw_name = device_xname(self); sc->sc_smpsw.smpsw_type = PSWITCH_TYPE_POWER; sysmon_pswitch_register(&sc->sc_smpsw); mutex_init(&sc->sc_intr_lock, MUTEX_DEFAULT, IPL_VM); if (c->irq_regs > 0) { char intrstr[128]; if (!fdtbus_intr_str(sc->sc_phandle, 0, intrstr, sizeof(intrstr))) { aprint_error_dev(self, "WARNING: failed to decode interrupt\n"); } sc->sc_ih = fdtbus_intr_establish(sc->sc_phandle, 0, IPL_VM, FDT_INTR_MPSAFE, axppmic_intr, sc); if (sc->sc_ih == NULL) { aprint_error_dev(self, "WARNING: couldn't establish interrupt handler\n"); } error = workqueue_create(&sc->sc_wq, device_xname(self), axppmic_work, NULL, PRI_SOFTSERIAL, IPL_VM, WQ_MPSAFE); if (error) { sc->sc_wq = NULL; aprint_error_dev(self, "WARNING: couldn't create work queue: error %d\n", error); } if (sc->sc_ih != NULL && sc->sc_wq != NULL) { iic_acquire_bus(sc->sc_i2c, 0); for (i = 1; i <= c->irq_regs; i++) { irq_mask = 0; if (i == c->poklirq.reg) irq_mask |= c->poklirq.mask; if (i == c->acinirq.reg) irq_mask |= c->acinirq.mask; if (i == c->vbusirq.reg) irq_mask |= c->vbusirq.mask; if (i == c->battirq.reg) irq_mask |= c->battirq.mask; if (i == c->chargeirq.reg) irq_mask |= c->chargeirq.mask; if (i == c->chargestirq.reg) irq_mask |= c->chargestirq.mask; axppmic_write(sc->sc_i2c, sc->sc_addr, AXP_IRQ_ENABLE_REG(i), irq_mask, 0); } iic_release_bus(sc->sc_i2c, 0); } } fdtbus_register_power_controller(sc->sc_dev, sc->sc_phandle, &axppmic_power_funcs); if (c->gpio_compat != NULL) { phandle = of_find_bycompat(sc->sc_phandle, c->gpio_compat); if (phandle > 0) { fdtbus_register_gpio_controller(self, phandle, &axppmic_gpio_funcs); } } phandle = of_find_firstchild_byname(sc->sc_phandle, "regulators"); if (phandle > 0) { aaa.reg_i2c = sc->sc_i2c; aaa.reg_addr = sc->sc_addr; for (i = 0; i < c->ncontrols; i++) { const struct axppmic_ctrl *ctrl = &c->controls[i]; child = of_find_firstchild_byname(phandle, ctrl->c_name); if (child <= 0) continue; aaa.reg_ctrl = ctrl; aaa.reg_phandle = child; config_found(sc->sc_dev, &aaa, NULL, CFARGS_NONE); } } if (c->has_battery) axppmic_attach_sensors(sc); } static int axpreg_acquire(device_t dev) { return 0; } static void axpreg_release(device_t dev) { } static int axpreg_enable(device_t dev, bool enable) { struct axpreg_softc *sc = device_private(dev); const struct axppmic_ctrl *c = sc->sc_ctrl; const int flags = 0; uint8_t val; int error; if (!c->c_enable_mask) return EINVAL; iic_acquire_bus(sc->sc_i2c, flags); if ((error = axppmic_read(sc->sc_i2c, sc->sc_addr, c->c_enable_reg, &val, flags)) == 0) { val &= ~c->c_enable_mask; if (enable) val |= c->c_enable_val; else val |= c->c_disable_val; error = axppmic_write(sc->sc_i2c, sc->sc_addr, c->c_enable_reg, val, flags); } iic_release_bus(sc->sc_i2c, flags); return error; } static int axpreg_set_voltage(device_t dev, u_int min_uvol, u_int max_uvol) { struct axpreg_softc *sc = device_private(dev); const struct axppmic_ctrl *c = sc->sc_ctrl; return axppmic_set_voltage(sc->sc_i2c, sc->sc_addr, c, min_uvol / 1000, max_uvol / 1000); } static int axpreg_get_voltage(device_t dev, u_int *puvol) { struct axpreg_softc *sc = device_private(dev); const struct axppmic_ctrl *c = sc->sc_ctrl; int error; u_int vol; error = axppmic_get_voltage(sc->sc_i2c, sc->sc_addr, c, &vol); if (error) return error; *puvol = vol * 1000; return 0; } static struct fdtbus_regulator_controller_func axpreg_funcs = { .acquire = axpreg_acquire, .release = axpreg_release, .enable = axpreg_enable, .set_voltage = axpreg_set_voltage, .get_voltage = axpreg_get_voltage, }; static int axpreg_match(device_t parent, cfdata_t match, void *aux) { return 1; } static void axpreg_attach(device_t parent, device_t self, void *aux) { struct axpreg_softc *sc = device_private(self); struct axpreg_attach_args *aaa = aux; const int phandle = aaa->reg_phandle; const char *name; u_int uvol, min_uvol, max_uvol; sc->sc_dev = self; sc->sc_i2c = aaa->reg_i2c; sc->sc_addr = aaa->reg_addr; sc->sc_ctrl = aaa->reg_ctrl; fdtbus_register_regulator_controller(self, phandle, &axpreg_funcs); aprint_naive("\n"); name = fdtbus_get_string(phandle, "regulator-name"); if (name) aprint_normal(": %s\n", name); else aprint_normal("\n"); int error = axpreg_get_voltage(self, &uvol); if (error) return; if (of_getprop_uint32(phandle, "regulator-min-microvolt", &min_uvol) == 0 && of_getprop_uint32(phandle, "regulator-max-microvolt", &max_uvol) == 0) { if (uvol < min_uvol || uvol > max_uvol) { aprint_debug_dev(self, "fix voltage %u uV -> %u/%u uV\n", uvol, min_uvol, max_uvol); axpreg_set_voltage(self, min_uvol, max_uvol); } } if (of_hasprop(phandle, "regulator-always-on") || of_hasprop(phandle, "regulator-boot-on")) { axpreg_enable(self, true); } } CFATTACH_DECL_NEW(axppmic, sizeof(struct axppmic_softc), axppmic_match, axppmic_attach, NULL, NULL); CFATTACH_DECL_NEW(axpreg, sizeof(struct axpreg_softc), axpreg_match, axpreg_attach, NULL, NULL);