/* $NetBSD: lm87.c,v 1.16 2022/07/02 16:28:39 andvar Exp $ */ /* $OpenBSD: lm87.c,v 1.20 2008/11/10 05:19:48 cnst Exp $ */ /* * Copyright (c) 2005 Mark Kettenis * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include __KERNEL_RCSID(0, "$NetBSD: lm87.c,v 1.16 2022/07/02 16:28:39 andvar Exp $"); #include #include #include #include #include /* LM87 registers */ #define LM87_INT_HHIGH_L 0x13 /* Hardware int high limit (lockable) */ #define LM87_EXT_HHIGH_L 0x14 /* Hardware ext high limit (lockable) */ #define LM87_TEST 0x15 #define LM87_CHANNEL 0x16 /* Dual purpose pin and scaling */ #define LM87_INT_HHIGH 0x17 /* Hardware int temp high limit */ #define LM87_EXT_HHIGH 0x18 /* Hardware ext temp high limit */ #define LM87_DAC_DATA 0x19 /* DAC output scaling */ #define LM87_AIN1_LOW 0x1a /* Analog in 1 low limit */ #define LM87_AIN2_LOW 0x1b /* Analog in 2 low limit */ #define LM87_2_5V 0x20 /* +2.5V or ext temp 2 reading */ #define LM87_VCCP1 0x21 /* Vccp1 reading */ #define LM87_VCC 0x22 /* +Vcc reading */ #define LM87_5V 0x23 /* +5V reading */ #define LM87_12V 0x24 /* +12V reading */ #define LM87_VCCP2 0x25 /* Vccp2 reading */ #define LM87_EXT_TEMP 0x26 /* External temperature 1 reading */ #define LM87_INT_TEMP 0x27 /* Internal temperature reading */ #define LM87_FAN1 0x28 /* Fan1 or AIN1 reading */ #define LM87_FAN2 0x29 /* Fan2 or AIN2 reading */ #define LM87_2_5V_HIGH 0x2b /* +2.5V or ext temp 2 high limit */ #define LM87_2_5V_LOW 0x2c /* +2.5V or ext temp 2 low limit */ #define LM87_VCCP1_HIGH 0x2d /* Vccp1 high limit */ #define LM87_VCCP1_LOW 0x2e /* Vccp1 low limit */ #define LM87_VCC_HIGH 0x2f /* +3.3V (Vcc) high limit */ #define LM87_VCC_LOW 0x30 /* +3.3V (Vcc) low limit */ #define LM87_5V_HIGH 0x31 /* +5V high limit */ #define LM87_5V_LOW 0x32 /* +5V low limit */ #define LM87_12V_HIGH 0x33 /* +12V high limit */ #define LM87_12V_LOW 0x34 /* +12V low limit */ #define LM87_VCCP2_HIGH 0x35 /* Vccp2 high limit */ #define LM87_VCCP2_LOW 0x36 /* Vccp2 low limit */ #define LM87_EXT_HIGH 0x37 /* External temperature 1 high limit */ #define LM87_EXT_LOW 0x38 /* External temperature low limit */ #define LM87_INT_HIGH 0x39 /* Internal temperature 1 high limit */ #define LM87_INT_LOW 0x3a /* Internal temperature low limit */ #define LM87_FAN1_HIGH 0x3b /* Fan 1 count or AIN1 high limit */ #define LM87_FAN2_HIGH 0x3c /* Fan 2 count or AIN2 high limit */ #define LM87_COMPANY_ID 0x3e /* Company ID */ #define LM87_REVISION 0x3f /* Revision */ #define LM87_CONFIG1 0x40 /* Configuration 1 */ #define LM87_INT_STAT1 0x41 /* Interrupt status 1 */ #define LM87_INT_STAT2 0x42 /* Interrupt status 2 */ #define LM87_INT_MASK1 0x43 /* Interrupt mask 1 */ #define LM87_INT_MASK2 0x44 /* Interrupt mask 2 */ #define LM87_CI_CLEAR 0x46 /* Chassis intrusion */ #define LM87_FANDIV 0x47 /* Fan divisor + VID 0-3 */ #define LM87_VID4 0x48 /* VID4 */ #define LM87_CONFIG2 0x4a /* Configuration 2 */ #define LM87_INT_MIRR1 0x4c /* Interrupt status 1 mirror */ #define LM87_INT_MIRR2 0x4d /* Interrupt status 2 mirror */ #define LM87_ALERT 0x80 /* SMB Alert enable */ /* Register contents */ #define LM87_CONFIG1_START 0x01 #define LM87_CONFIG1_INTCLR 0x08 #define LM87_CHANNEL_AIN1 0x01 #define LM87_CHANNEL_AIN2 0x02 #define LM87_CHANNEL_TEMP2 0x04 #define LM87_CHANNEL_VCC5 0x08 struct lmenv_id { u_int8_t id, family; const char *name; }; static const struct lmenv_id lmenv_ids[] = { { 0x01, 81, "LM81" }, { 0x02, 87, "LM87" }, /* LM87 or LM87CIMT */ { 0x23, 81, "ADM9240" }, { 0xda, 81, "DSL780" }, { 0x00, 0, NULL } }; /* Sensors */ #define LMENV_2_5V 0 #define LMENV_VCCP1 1 #define LMENV_VCC 2 #define LMENV_5V 3 #define LMENV_12V 4 #define LMENV_VCCP2 5 #define LMENV_EXT_TEMP 6 #define LMENV_INT_TEMP 7 #define LMENV_FAN1 8 #define LMENV_FAN2 9 #define LMENV_NUM_SENSORS 10 struct lmenv_softc { i2c_tag_t sc_tag; i2c_addr_t sc_addr; int sc_fan1_div, sc_fan2_div; int sc_family; uint8_t sc_channel; struct sysmon_envsys *sc_sme; envsys_data_t sc_sensor[LMENV_NUM_SENSORS]; }; int lmenv_match(device_t, cfdata_t, void *); void lmenv_attach(device_t, device_t, void *); void lmenv_refresh(struct sysmon_envsys *, envsys_data_t *); CFATTACH_DECL_NEW(lmenv, sizeof(struct lmenv_softc), lmenv_match, lmenv_attach, NULL, NULL); static const struct device_compatible_entry compat_data[] = { { .compat = "lm87" }, { .compat = "lm87cimt" }, { .compat = "adm9240" }, { .compat = "lm81" }, { .compat = "ds1780" }, DEVICE_COMPAT_EOL }; int lmenv_match(device_t parent, cfdata_t match, void *aux) { struct i2c_attach_args *ia = aux; u_int8_t cmd, val; int error, i, match_result; if (iic_use_direct_match(ia, match, compat_data, &match_result)) return match_result; /* * Indirect config - not much we can do! * Check typical addresses and read the Company ID register */ if ((ia->ia_addr < 0x2c) || (ia->ia_addr > 0x2f)) return 0; cmd = LM87_COMPANY_ID; if (iic_acquire_bus(ia->ia_tag, 0)) return 0; error = iic_exec(ia->ia_tag, I2C_OP_READ_WITH_STOP, ia->ia_addr, &cmd, 1, &val, 1, 0); iic_release_bus(ia->ia_tag, 0); if (error) return 0; for (i = 0; lmenv_ids[i].id != 0; i++) if (lmenv_ids[i].id == val) return I2C_MATCH_ADDRESS_AND_PROBE; return 0; } void lmenv_attach(device_t parent, device_t self, void *aux) { struct lmenv_softc *sc = device_private(self); struct i2c_attach_args *ia = aux; u_int8_t cmd, data, data2; int i; sc->sc_tag = ia->ia_tag; sc->sc_addr = ia->ia_addr; iic_acquire_bus(sc->sc_tag, 0); cmd = LM87_COMPANY_ID; if (iic_exec(sc->sc_tag, I2C_OP_READ_WITH_STOP, sc->sc_addr, &cmd, sizeof cmd, &data, sizeof data, 0)) { iic_release_bus(sc->sc_tag, 0); printf(": cannot read ID register\n"); return; } for (i = 0; lmenv_ids[i].id != 0; i++) if (lmenv_ids[i].id == data) break; cmd = LM87_REVISION; if (iic_exec(sc->sc_tag, I2C_OP_READ_WITH_STOP, sc->sc_addr, &cmd, sizeof cmd, &data2, sizeof data, 0)) { iic_release_bus(sc->sc_tag, 0); printf(": cannot read revision register\n"); return; } printf(": %s rev %x\n", lmenv_ids[i].name, data2); sc->sc_family = lmenv_ids[i].family; cmd = LM87_FANDIV; if (iic_exec(sc->sc_tag, I2C_OP_READ_WITH_STOP, sc->sc_addr, &cmd, sizeof cmd, &data, sizeof data, 0)) { iic_release_bus(sc->sc_tag, 0); printf(", cannot read Fan Divisor register\n"); return; } sc->sc_fan1_div = 1 << ((data >> 4) & 0x03); sc->sc_fan2_div = 1 << ((data >> 6) & 0x03); if (sc->sc_family == 87) { cmd = LM87_CHANNEL; if (iic_exec(sc->sc_tag, I2C_OP_READ_WITH_STOP, sc->sc_addr, &cmd, sizeof cmd, &sc->sc_channel, sizeof sc->sc_channel, 0)) { iic_release_bus(sc->sc_tag, 0); printf(", cannot read Channel register\n"); return; } } else sc->sc_channel = 0; cmd = LM87_CONFIG1; if (iic_exec(sc->sc_tag, I2C_OP_READ_WITH_STOP, sc->sc_addr, &cmd, sizeof cmd, &data, sizeof data, 0)) { iic_release_bus(sc->sc_tag, 0); printf(", cannot read Configuration Register 1\n"); return; } /* * if chip is not running, try to start it. * if it is stalled doing an interrupt, unstall it */ data2 = (data | LM87_CONFIG1_START); data2 = data2 & ~LM87_CONFIG1_INTCLR; if (data != data2) { if (iic_exec(sc->sc_tag, I2C_OP_WRITE_WITH_STOP, sc->sc_addr, &cmd, sizeof cmd, &data2, sizeof data2, 0)) { iic_release_bus(sc->sc_tag, 0); printf(", cannot write Configuration Register 1\n"); return; } } iic_release_bus(sc->sc_tag, 0); /* Initialize sensor data. */ sc->sc_sensor[LMENV_2_5V].state = ENVSYS_SINVALID; if (sc->sc_channel & LM87_CHANNEL_TEMP2) { sc->sc_sensor[LMENV_INT_TEMP].units = ENVSYS_STEMP; strlcpy(sc->sc_sensor[LMENV_2_5V].desc, "External 2", sizeof(sc->sc_sensor[LMENV_2_5V].desc)); } else { sc->sc_sensor[LMENV_2_5V].units = ENVSYS_SVOLTS_DC; strlcpy(sc->sc_sensor[LMENV_2_5V].desc, "+2.5Vin", sizeof(sc->sc_sensor[LMENV_2_5V].desc)); } sc->sc_sensor[LMENV_VCCP1].state = ENVSYS_SINVALID; sc->sc_sensor[LMENV_VCCP1].units = ENVSYS_SVOLTS_DC; strlcpy(sc->sc_sensor[LMENV_VCCP1].desc, "Vccp1", sizeof(sc->sc_sensor[LMENV_VCCP1].desc)); sc->sc_sensor[LMENV_VCC].state = ENVSYS_SINVALID; sc->sc_sensor[LMENV_VCC].units = ENVSYS_SVOLTS_DC; strlcpy(sc->sc_sensor[LMENV_VCC].desc, "+Vcc", sizeof(sc->sc_sensor[LMENV_VCC].desc)); sc->sc_sensor[LMENV_5V].state = ENVSYS_SINVALID; sc->sc_sensor[LMENV_5V].units = ENVSYS_SVOLTS_DC; strlcpy(sc->sc_sensor[LMENV_5V].desc, "+5Vin/Vcc", sizeof(sc->sc_sensor[LMENV_5V].desc)); sc->sc_sensor[LMENV_12V].state = ENVSYS_SINVALID; sc->sc_sensor[LMENV_12V].units = ENVSYS_SVOLTS_DC; strlcpy(sc->sc_sensor[LMENV_12V].desc, "+12Vin", sizeof(sc->sc_sensor[LMENV_12V].desc)); sc->sc_sensor[LMENV_VCCP2].state = ENVSYS_SINVALID; if (!(sc->sc_channel & LM87_CHANNEL_TEMP2)) { sc->sc_sensor[LMENV_VCCP2].units = ENVSYS_SVOLTS_DC; strlcpy(sc->sc_sensor[LMENV_VCCP2].desc, "Vccp2", sizeof(sc->sc_sensor[LMENV_VCCP2].desc)); } sc->sc_sensor[LMENV_EXT_TEMP].state = ENVSYS_SINVALID; sc->sc_sensor[LMENV_EXT_TEMP].units = ENVSYS_STEMP; if (sc->sc_channel & LM87_CHANNEL_TEMP2) strlcpy(sc->sc_sensor[LMENV_EXT_TEMP].desc, "External 1", sizeof(sc->sc_sensor[LMENV_EXT_TEMP].desc)); else strlcpy(sc->sc_sensor[LMENV_EXT_TEMP].desc, "External", sizeof(sc->sc_sensor[LMENV_EXT_TEMP].desc)); sc->sc_sensor[LMENV_INT_TEMP].state = ENVSYS_SINVALID; sc->sc_sensor[LMENV_INT_TEMP].units = ENVSYS_STEMP; strlcpy(sc->sc_sensor[LMENV_INT_TEMP].desc, "Internal", sizeof(sc->sc_sensor[LMENV_INT_TEMP].desc)); sc->sc_sensor[LMENV_FAN1].state = ENVSYS_SINVALID; if (sc->sc_channel & LM87_CHANNEL_AIN1) { sc->sc_sensor[LMENV_FAN1].units = ENVSYS_SVOLTS_DC; strlcpy(sc->sc_sensor[LMENV_FAN1].desc, "AIN1", sizeof(sc->sc_sensor[LMENV_FAN1].desc)); } else { sc->sc_sensor[LMENV_FAN1].units = ENVSYS_SFANRPM; strlcpy(sc->sc_sensor[LMENV_FAN1].desc, "FAN1", sizeof(sc->sc_sensor[LMENV_FAN1].desc)); } sc->sc_sensor[LMENV_FAN2].state = ENVSYS_SINVALID; if (sc->sc_channel & LM87_CHANNEL_AIN2) { sc->sc_sensor[LMENV_FAN2].units = ENVSYS_SVOLTS_DC; strlcpy(sc->sc_sensor[LMENV_FAN2].desc, "AIN2", sizeof(sc->sc_sensor[LMENV_FAN2].desc)); } else { sc->sc_sensor[LMENV_FAN2].units = ENVSYS_SFANRPM; strlcpy(sc->sc_sensor[LMENV_FAN2].desc, "FAN2", sizeof(sc->sc_sensor[LMENV_FAN2].desc)); } sc->sc_sme = sysmon_envsys_create(); for (i = 0; i < LMENV_NUM_SENSORS; i++) if (sysmon_envsys_sensor_attach(sc->sc_sme, &sc->sc_sensor[i])) { sysmon_envsys_destroy(sc->sc_sme); aprint_error_dev(self, "unable to attach sensor %d at sysmon\n", i); return; } sc->sc_sme->sme_name = device_xname(self); sc->sc_sme->sme_cookie = sc; sc->sc_sme->sme_refresh = lmenv_refresh; if (sysmon_envsys_register(sc->sc_sme)) { aprint_error_dev(self, "unable to register with sysmon\n"); sysmon_envsys_destroy(sc->sc_sme); return; } } void lmenv_refresh(struct sysmon_envsys *sme, envsys_data_t *edata) { struct lmenv_softc *sc = sme->sme_cookie; u_int8_t cmd, data; u_int tmp; iic_acquire_bus(sc->sc_tag, 0); cmd = LM87_2_5V + edata->sensor; if (iic_exec(sc->sc_tag, I2C_OP_READ_WITH_STOP, sc->sc_addr, &cmd, sizeof cmd, &data, sizeof data, 0)) { edata->state = ENVSYS_SINVALID; return; } switch (edata->sensor) { case LMENV_2_5V: /* Might be external temperature 2 */ if (sc->sc_channel & LM87_CHANNEL_TEMP2) { if (data == 0x80) edata->state = ENVSYS_SINVALID; else { edata->value_cur = (int8_t)data * 1000000 + 273150000; edata->state = ENVSYS_SVALID; } break; } edata->value_cur = 2500000 * data / 192; edata->state = ENVSYS_SVALID; break; case LMENV_5V: edata->value_cur = 5000000 * data / 192; edata->state = ENVSYS_SVALID; break; case LMENV_12V: edata->value_cur = 12000000 * data / 192; edata->state = ENVSYS_SVALID; break; case LMENV_VCCP1: edata->value_cur = 2700000 * data / 192; edata->state = ENVSYS_SVALID; break; case LMENV_VCCP2: /* If monitoring external temperature 2, this isn't monitored */ if (sc->sc_channel & LM87_CHANNEL_TEMP2) { edata->state = ENVSYS_SINVALID; break; } edata->value_cur = 2700000 * data / 192; edata->state = ENVSYS_SVALID; break; case LMENV_VCC: /* Voltage scale selectable (5V or 3.3V) */ edata->value_cur = (LM87_CHANNEL_VCC5 ? 5000000 : 3300000) * data / 192; edata->state = ENVSYS_SVALID; break; case LMENV_EXT_TEMP: if (sc->sc_family == 81) { edata->state = ENVSYS_SINVALID; break; /* missing on LM81 */ } /* FALLTHROUGH */ case LMENV_INT_TEMP: if (data == 0x80) edata->state = ENVSYS_SINVALID; else { edata->value_cur = (int8_t)data * 1000000 + 273150000; edata->state = ENVSYS_SVALID; } break; case LMENV_FAN1: /* Might be analogue input 1 */ if (sc->sc_channel & LM87_CHANNEL_AIN1) { edata->value_cur = 1870000 * data / 192; edata->state = ENVSYS_SVALID; break; } if (data == 0xff) { edata->state = ENVSYS_SINVALID; break; } tmp = data * sc->sc_fan1_div; if (tmp == 0) edata->state = ENVSYS_SINVALID; else { edata->value_cur = 1350000 / tmp; edata->state = ENVSYS_SVALID; } break; case LMENV_FAN2: /* Might be analogue input 2 */ if (sc->sc_channel & LM87_CHANNEL_AIN2) { edata->value_cur = 1870000 * data / 192; edata->state = ENVSYS_SVALID; break; } if (data == 0xff) { edata->state = ENVSYS_SINVALID; break; } tmp = data * sc->sc_fan2_div; if (tmp == 0) edata->state = ENVSYS_SINVALID; else { edata->value_cur = 1350000 / tmp; edata->state = ENVSYS_SVALID; } break; default: edata->state = ENVSYS_SINVALID; break; } iic_release_bus(sc->sc_tag, 0); }