/* $NetBSD: dwc_eqos.c,v 1.41 2024/10/06 19:30:29 skrll Exp $ */ /*- * Copyright (c) 2022 Jared McNeill * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * DesignWare Ethernet Quality-of-Service controller * * TODO: * Multiqueue support. * Add watchdog timer. * Add detach function. */ #include __KERNEL_RCSID(0, "$NetBSD: dwc_eqos.c,v 1.41 2024/10/06 19:30:29 skrll Exp $"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define EQOS_MAX_MTU 9000 /* up to 16364? but not tested */ #define EQOS_TXDMA_SIZE (EQOS_MAX_MTU + ETHER_HDR_LEN + ETHER_CRC_LEN) #define EQOS_RXDMA_SIZE 2048 /* Fixed value by hardware */ CTASSERT(MCLBYTES >= EQOS_RXDMA_SIZE); #ifdef EQOS_DEBUG #define EDEB_NOTE (1U << 0) #define EDEB_INTR (1U << 1) #define EDEB_RXRING (1U << 2) #define EDEB_TXRING (1U << 3) unsigned int eqos_debug; /* Default value */ #define DPRINTF(FLAG, FORMAT, ...) \ if (sc->sc_debug & FLAG) \ device_printf(sc->sc_dev, "%s: " FORMAT, \ __func__, ##__VA_ARGS__) #else #define DPRINTF(FLAG, FORMAT, ...) ((void)0) #endif #define CALLOUT_FLAGS CALLOUT_MPSAFE #define DESC_BOUNDARY ((sizeof(bus_size_t) > 4) ? (1ULL << 32) : 0) #define DESC_ALIGN sizeof(struct eqos_dma_desc) #define TX_DESC_COUNT EQOS_DMA_DESC_COUNT #define TX_DESC_SIZE (TX_DESC_COUNT * DESC_ALIGN) #define RX_DESC_COUNT EQOS_DMA_DESC_COUNT #define RX_DESC_SIZE (RX_DESC_COUNT * DESC_ALIGN) #define MII_BUSY_RETRY 1000 #define DESC_OFF(n) ((n) * sizeof(struct eqos_dma_desc)) #define TX_SKIP(n, o) (((n) + (o)) % TX_DESC_COUNT) #define TX_NEXT(n) TX_SKIP(n, 1) #define RX_NEXT(n) (((n) + 1) % RX_DESC_COUNT) #define TX_MAX_SEGS 128 #define EQOS_LOCK(sc) mutex_enter(&(sc)->sc_lock) #define EQOS_UNLOCK(sc) mutex_exit(&(sc)->sc_lock) #define EQOS_ASSERT_LOCKED(sc) KASSERT(mutex_owned(&(sc)->sc_lock)) #define EQOS_TXLOCK(sc) mutex_enter(&(sc)->sc_txlock) #define EQOS_TXUNLOCK(sc) mutex_exit(&(sc)->sc_txlock) #define EQOS_ASSERT_TXLOCKED(sc) KASSERT(mutex_owned(&(sc)->sc_txlock)) #define EQOS_HW_FEATURE_ADDR64_32BIT(sc) \ (((sc)->sc_hw_feature[1] & GMAC_MAC_HW_FEATURE1_ADDR64_MASK) == \ GMAC_MAC_HW_FEATURE1_ADDR64_32BIT) #define RD4(sc, reg) \ bus_space_read_4((sc)->sc_bst, (sc)->sc_bsh, (reg)) #define WR4(sc, reg, val) \ bus_space_write_4((sc)->sc_bst, (sc)->sc_bsh, (reg), (val)) static void eqos_init_sysctls(struct eqos_softc *); static int eqos_sysctl_tx_cur_handler(SYSCTLFN_PROTO); static int eqos_sysctl_tx_end_handler(SYSCTLFN_PROTO); static int eqos_sysctl_rx_cur_handler(SYSCTLFN_PROTO); static int eqos_sysctl_rx_end_handler(SYSCTLFN_PROTO); #ifdef EQOS_DEBUG static int eqos_sysctl_debug_handler(SYSCTLFN_PROTO); #endif static int eqos_mii_readreg(device_t dev, int phy, int reg, uint16_t *val) { struct eqos_softc * const sc = device_private(dev); uint32_t addr; int retry; addr = sc->sc_clock_range | (phy << GMAC_MAC_MDIO_ADDRESS_PA_SHIFT) | (reg << GMAC_MAC_MDIO_ADDRESS_RDA_SHIFT) | GMAC_MAC_MDIO_ADDRESS_GOC_READ | GMAC_MAC_MDIO_ADDRESS_GB; WR4(sc, GMAC_MAC_MDIO_ADDRESS, addr); delay(10000); for (retry = MII_BUSY_RETRY; retry > 0; retry--) { addr = RD4(sc, GMAC_MAC_MDIO_ADDRESS); if ((addr & GMAC_MAC_MDIO_ADDRESS_GB) == 0) { *val = RD4(sc, GMAC_MAC_MDIO_DATA) & 0xFFFF; break; } delay(10); } if (retry == 0) { device_printf(dev, "phy read timeout, phy=%d reg=%d\n", phy, reg); return ETIMEDOUT; } return 0; } static int eqos_mii_writereg(device_t dev, int phy, int reg, uint16_t val) { struct eqos_softc * const sc = device_private(dev); uint32_t addr; int retry; WR4(sc, GMAC_MAC_MDIO_DATA, val); addr = sc->sc_clock_range | (phy << GMAC_MAC_MDIO_ADDRESS_PA_SHIFT) | (reg << GMAC_MAC_MDIO_ADDRESS_RDA_SHIFT) | GMAC_MAC_MDIO_ADDRESS_GOC_WRITE | GMAC_MAC_MDIO_ADDRESS_GB; WR4(sc, GMAC_MAC_MDIO_ADDRESS, addr); delay(10000); for (retry = MII_BUSY_RETRY; retry > 0; retry--) { addr = RD4(sc, GMAC_MAC_MDIO_ADDRESS); if ((addr & GMAC_MAC_MDIO_ADDRESS_GB) == 0) { break; } delay(10); } if (retry == 0) { device_printf(dev, "phy write timeout, phy=%d reg=%d\n", phy, reg); return ETIMEDOUT; } return 0; } static void eqos_update_link(struct eqos_softc *sc) { struct mii_data * const mii = &sc->sc_mii; uint64_t baudrate; uint32_t conf, flow; baudrate = ifmedia_baudrate(mii->mii_media_active); conf = RD4(sc, GMAC_MAC_CONFIGURATION); switch (baudrate) { case IF_Mbps(10): conf |= GMAC_MAC_CONFIGURATION_PS; conf &= ~GMAC_MAC_CONFIGURATION_FES; break; case IF_Mbps(100): conf |= GMAC_MAC_CONFIGURATION_PS; conf |= GMAC_MAC_CONFIGURATION_FES; break; case IF_Gbps(1): conf &= ~GMAC_MAC_CONFIGURATION_PS; conf &= ~GMAC_MAC_CONFIGURATION_FES; break; case IF_Mbps(2500ULL): conf &= ~GMAC_MAC_CONFIGURATION_PS; conf |= GMAC_MAC_CONFIGURATION_FES; break; } /* Set duplex. */ if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) { conf |= GMAC_MAC_CONFIGURATION_DM; } else { conf &= ~GMAC_MAC_CONFIGURATION_DM; } WR4(sc, GMAC_MAC_CONFIGURATION, conf); /* Set TX flow control. */ if (mii->mii_media_active & IFM_ETH_TXPAUSE) { flow = GMAC_MAC_Q0_TX_FLOW_CTRL_TFE; flow |= 0xFFFFU << GMAC_MAC_Q0_TX_FLOW_CTRL_PT_SHIFT; } else flow = 0; WR4(sc, GMAC_MAC_Q0_TX_FLOW_CTRL, flow); /* Set RX flow control. */ if (mii->mii_media_active & IFM_ETH_RXPAUSE) flow = GMAC_MAC_RX_FLOW_CTRL_RFE; else flow = 0; WR4(sc, GMAC_MAC_RX_FLOW_CTRL, flow); } static void eqos_mii_statchg(struct ifnet *ifp) { struct eqos_softc * const sc = ifp->if_softc; eqos_update_link(sc); } static void eqos_dma_sync(struct eqos_softc *sc, bus_dmamap_t map, u_int start, u_int end, u_int total, int flags) { if (end > start) { bus_dmamap_sync(sc->sc_dmat, map, DESC_OFF(start), DESC_OFF(end) - DESC_OFF(start), flags); } else { bus_dmamap_sync(sc->sc_dmat, map, DESC_OFF(start), DESC_OFF(total) - DESC_OFF(start), flags); if (end > 0) { bus_dmamap_sync(sc->sc_dmat, map, DESC_OFF(0), DESC_OFF(end) - DESC_OFF(0), flags); } } } static void eqos_setup_txdesc(struct eqos_softc *sc, int index, int flags, bus_addr_t paddr, u_int len, u_int total_len) { uint32_t tdes2, tdes3; DPRINTF(EDEB_TXRING, "preparing desc %u\n", index); EQOS_ASSERT_TXLOCKED(sc); if (paddr == 0 || len == 0) { DPRINTF(EDEB_TXRING, "tx for desc %u done!\n", index); KASSERT(flags == 0); tdes2 = 0; tdes3 = 0; --sc->sc_tx.queued; } else { tdes2 = (flags & EQOS_TDES3_TX_LD) ? EQOS_TDES2_TX_IOC : 0; tdes3 = flags; ++sc->sc_tx.queued; } KASSERT(!EQOS_HW_FEATURE_ADDR64_32BIT(sc) || ((uint64_t)paddr >> 32) == 0); sc->sc_tx.desc_ring[index].tdes0 = htole32((uint32_t)paddr); sc->sc_tx.desc_ring[index].tdes1 = htole32((uint32_t)((uint64_t)paddr >> 32)); sc->sc_tx.desc_ring[index].tdes2 = htole32(tdes2 | len); sc->sc_tx.desc_ring[index].tdes3 = htole32(tdes3 | total_len); } static int eqos_setup_txbuf(struct eqos_softc *sc, int index, struct mbuf *m) { bus_dma_segment_t *segs; int error, nsegs, cur, i; uint32_t flags; bool nospace; DPRINTF(EDEB_TXRING, "preparing desc %u\n", index); /* at least one descriptor free ? */ if (sc->sc_tx.queued >= TX_DESC_COUNT - 1) return -1; error = bus_dmamap_load_mbuf(sc->sc_dmat, sc->sc_tx.buf_map[index].map, m, BUS_DMA_WRITE | BUS_DMA_NOWAIT); if (error == EFBIG) { device_printf(sc->sc_dev, "TX packet needs too many DMA segments, dropping...\n"); return -2; } if (error != 0) { device_printf(sc->sc_dev, "TX packet cannot be mapped, retried...\n"); return 0; } segs = sc->sc_tx.buf_map[index].map->dm_segs; nsegs = sc->sc_tx.buf_map[index].map->dm_nsegs; nospace = sc->sc_tx.queued >= TX_DESC_COUNT - nsegs; if (nospace) { bus_dmamap_unload(sc->sc_dmat, sc->sc_tx.buf_map[index].map); /* XXX coalesce and retry ? */ return -1; } bus_dmamap_sync(sc->sc_dmat, sc->sc_tx.buf_map[index].map, 0, sc->sc_tx.buf_map[index].map->dm_mapsize, BUS_DMASYNC_PREWRITE); /* stored in same index as loaded map */ sc->sc_tx.buf_map[index].mbuf = m; flags = EQOS_TDES3_TX_FD; for (cur = index, i = 0; i < nsegs; i++) { if (i == nsegs - 1) flags |= EQOS_TDES3_TX_LD; eqos_setup_txdesc(sc, cur, flags, segs[i].ds_addr, segs[i].ds_len, m->m_pkthdr.len); flags &= ~EQOS_TDES3_TX_FD; cur = TX_NEXT(cur); flags |= EQOS_TDES3_TX_OWN; } /* * Defer setting OWN bit on the first descriptor until all * descriptors have been updated. The hardware will not try to * process any descriptors past the first one still owned by * software (i.e., with the OWN bit clear). */ bus_dmamap_sync(sc->sc_dmat, sc->sc_tx.desc_map, DESC_OFF(index), offsetof(struct eqos_dma_desc, tdes3), BUS_DMASYNC_PREWRITE); DPRINTF(EDEB_TXRING, "passing tx desc %u to hardware, cur: %u, " "next: %u, queued: %u\n", index, sc->sc_tx.cur, sc->sc_tx.next, sc->sc_tx.queued); sc->sc_tx.desc_ring[index].tdes3 |= htole32(EQOS_TDES3_TX_OWN); return nsegs; } static void eqos_setup_rxdesc(struct eqos_softc *sc, int index, bus_addr_t paddr) { DPRINTF(EDEB_RXRING, "preparing desc %u\n", index); sc->sc_rx.desc_ring[index].tdes0 = htole32((uint32_t)paddr); sc->sc_rx.desc_ring[index].tdes1 = htole32((uint32_t)((uint64_t)paddr >> 32)); sc->sc_rx.desc_ring[index].tdes2 = htole32(0); bus_dmamap_sync(sc->sc_dmat, sc->sc_rx.desc_map, DESC_OFF(index), offsetof(struct eqos_dma_desc, tdes3), BUS_DMASYNC_PREWRITE); sc->sc_rx.desc_ring[index].tdes3 = htole32(EQOS_TDES3_RX_OWN | EQOS_TDES3_RX_IOC | EQOS_TDES3_RX_BUF1V); } static int eqos_setup_rxbuf(struct eqos_softc *sc, int index, struct mbuf *m) { int error; DPRINTF(EDEB_RXRING, "preparing desc %u\n", index); #if MCLBYTES >= (EQOS_RXDMA_SIZE + ETHER_ALIGN) m_adj(m, ETHER_ALIGN); #endif error = bus_dmamap_load_mbuf(sc->sc_dmat, sc->sc_rx.buf_map[index].map, m, BUS_DMA_READ | BUS_DMA_NOWAIT); if (error != 0) return error; bus_dmamap_sync(sc->sc_dmat, sc->sc_rx.buf_map[index].map, 0, sc->sc_rx.buf_map[index].map->dm_mapsize, BUS_DMASYNC_PREREAD); sc->sc_rx.buf_map[index].mbuf = m; return 0; } static struct mbuf * eqos_alloc_mbufcl(struct eqos_softc *sc) { struct mbuf *m; m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); if (m != NULL) m->m_pkthdr.len = m->m_len = m->m_ext.ext_size; return m; } static void eqos_enable_intr(struct eqos_softc *sc) { WR4(sc, GMAC_DMA_CHAN0_INTR_ENABLE, GMAC_DMA_CHAN0_INTR_ENABLE_NIE | GMAC_DMA_CHAN0_INTR_ENABLE_AIE | GMAC_DMA_CHAN0_INTR_ENABLE_FBE | GMAC_DMA_CHAN0_INTR_ENABLE_RIE | GMAC_DMA_CHAN0_INTR_ENABLE_TIE); } static void eqos_disable_intr(struct eqos_softc *sc) { WR4(sc, GMAC_DMA_CHAN0_INTR_ENABLE, 0); } static void eqos_tick(void *softc) { struct eqos_softc * const sc = softc; struct mii_data * const mii = &sc->sc_mii; EQOS_LOCK(sc); mii_tick(mii); if ((sc->sc_if_flags & IFF_RUNNING) != 0) callout_schedule(&sc->sc_stat_ch, hz); EQOS_UNLOCK(sc); } static uint32_t eqos_bitrev32(uint32_t x) { x = (((x & 0xaaaaaaaa) >> 1) | ((x & 0x55555555) << 1)); x = (((x & 0xcccccccc) >> 2) | ((x & 0x33333333) << 2)); x = (((x & 0xf0f0f0f0) >> 4) | ((x & 0x0f0f0f0f) << 4)); x = (((x & 0xff00ff00) >> 8) | ((x & 0x00ff00ff) << 8)); return (x >> 16) | (x << 16); } static void eqos_setup_rxfilter(struct eqos_softc *sc) { struct ethercom *ec = &sc->sc_ec; struct ifnet * const ifp = &ec->ec_if; uint32_t pfil, crc, hashreg, hashbit, hash[2]; struct ether_multi *enm; struct ether_multistep step; const uint8_t *eaddr; uint32_t val; EQOS_ASSERT_LOCKED(sc); pfil = RD4(sc, GMAC_MAC_PACKET_FILTER); pfil &= ~(GMAC_MAC_PACKET_FILTER_PR | GMAC_MAC_PACKET_FILTER_PM | GMAC_MAC_PACKET_FILTER_HMC | GMAC_MAC_PACKET_FILTER_PCF_MASK); hash[0] = hash[1] = ~0U; ETHER_LOCK(ec); if ((sc->sc_if_flags & IFF_PROMISC) != 0) { ec->ec_flags |= ETHER_F_ALLMULTI; pfil |= GMAC_MAC_PACKET_FILTER_PR | GMAC_MAC_PACKET_FILTER_PCF_ALL; } else { pfil |= GMAC_MAC_PACKET_FILTER_HMC; hash[0] = hash[1] = 0; ec->ec_flags &= ~ETHER_F_ALLMULTI; ETHER_FIRST_MULTI(step, ec, enm); while (enm != NULL) { if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN) != 0) { ec->ec_flags |= ETHER_F_ALLMULTI; pfil &= ~GMAC_MAC_PACKET_FILTER_HMC; pfil |= GMAC_MAC_PACKET_FILTER_PM; /* * Shouldn't matter if we clear HMC but * let's avoid using different values. */ hash[0] = hash[1] = 0xffffffff; break; } crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN); crc &= 0x7f; crc = eqos_bitrev32(~crc) >> 26; hashreg = (crc >> 5); hashbit = (crc & 0x1f); hash[hashreg] |= (1 << hashbit); ETHER_NEXT_MULTI(step, enm); } } ETHER_UNLOCK(ec); /* Write our unicast address */ eaddr = CLLADDR(ifp->if_sadl); val = eaddr[4] | (eaddr[5] << 8) | GMAC_MAC_ADDRESS0_HIGH_AE; WR4(sc, GMAC_MAC_ADDRESS0_HIGH, val); val = eaddr[0] | (eaddr[1] << 8) | (eaddr[2] << 16) | (eaddr[3] << 24); WR4(sc, GMAC_MAC_ADDRESS0_LOW, val); /* Multicast hash filters */ WR4(sc, GMAC_MAC_HASH_TABLE_REG0, hash[0]); WR4(sc, GMAC_MAC_HASH_TABLE_REG1, hash[1]); DPRINTF(EDEB_NOTE, "writing new packet filter config " "%08x, hash[1]=%08x, hash[0]=%08x\n", pfil, hash[1], hash[0]); /* Packet filter config */ WR4(sc, GMAC_MAC_PACKET_FILTER, pfil); } static int eqos_reset(struct eqos_softc *sc) { uint32_t val; int retry; WR4(sc, GMAC_DMA_MODE, GMAC_DMA_MODE_SWR); for (retry = 2000; retry > 0; retry--) { delay(1000); val = RD4(sc, GMAC_DMA_MODE); if ((val & GMAC_DMA_MODE_SWR) == 0) { return 0; } } device_printf(sc->sc_dev, "reset timeout!\n"); return ETIMEDOUT; } static void eqos_init_rings(struct eqos_softc *sc, int qid) { sc->sc_tx.cur = sc->sc_tx.next = sc->sc_tx.queued = 0; sc->sc_rx_discarding = false; m_freem(sc->sc_rx_receiving_m); sc->sc_rx_receiving_m = NULL; sc->sc_rx_receiving_m_last = NULL; WR4(sc, GMAC_DMA_CHAN0_TX_BASE_ADDR_HI, (uint32_t)((uint64_t)sc->sc_tx.desc_ring_paddr >> 32)); WR4(sc, GMAC_DMA_CHAN0_TX_BASE_ADDR, (uint32_t)sc->sc_tx.desc_ring_paddr); WR4(sc, GMAC_DMA_CHAN0_TX_RING_LEN, TX_DESC_COUNT - 1); DPRINTF(EDEB_TXRING, "tx ring paddr %lx with %u descriptors\n", sc->sc_tx.desc_ring_paddr, TX_DESC_COUNT); sc->sc_rx.cur = sc->sc_rx.next = sc->sc_rx.queued = 0; WR4(sc, GMAC_DMA_CHAN0_RX_BASE_ADDR_HI, (uint32_t)((uint64_t)sc->sc_rx.desc_ring_paddr >> 32)); WR4(sc, GMAC_DMA_CHAN0_RX_BASE_ADDR, (uint32_t)sc->sc_rx.desc_ring_paddr); WR4(sc, GMAC_DMA_CHAN0_RX_RING_LEN, RX_DESC_COUNT - 1); WR4(sc, GMAC_DMA_CHAN0_RX_END_ADDR, (uint32_t)sc->sc_rx.desc_ring_paddr + DESC_OFF((sc->sc_rx.cur - 1) % RX_DESC_COUNT)); DPRINTF(EDEB_RXRING, "rx ring paddr %lx with %u descriptors\n", sc->sc_rx.desc_ring_paddr, RX_DESC_COUNT); } static int eqos_init_locked(struct eqos_softc *sc) { struct ifnet * const ifp = &sc->sc_ec.ec_if; struct mii_data * const mii = &sc->sc_mii; uint32_t val, tqs, rqs; EQOS_ASSERT_LOCKED(sc); EQOS_ASSERT_TXLOCKED(sc); if ((ifp->if_flags & IFF_RUNNING) != 0) return 0; /* Setup TX/RX rings */ eqos_init_rings(sc, 0); /* Setup RX filter */ sc->sc_if_flags = ifp->if_flags; eqos_setup_rxfilter(sc); WR4(sc, GMAC_MAC_1US_TIC_COUNTER, (sc->sc_csr_clock / 1000000) - 1); /* Enable transmit and receive DMA */ val = RD4(sc, GMAC_DMA_CHAN0_CONTROL); val &= ~GMAC_DMA_CHAN0_CONTROL_DSL_MASK; val |= ((DESC_ALIGN - 16) / 8) << GMAC_DMA_CHAN0_CONTROL_DSL_SHIFT; val |= GMAC_DMA_CHAN0_CONTROL_PBLX8; WR4(sc, GMAC_DMA_CHAN0_CONTROL, val); val = RD4(sc, GMAC_DMA_CHAN0_TX_CONTROL); val &= ~GMAC_DMA_CHAN0_TX_CONTROL_TXPBL_MASK; val |= (sc->sc_dma_txpbl << GMAC_DMA_CHAN0_TX_CONTROL_TXPBL_SHIFT); val |= GMAC_DMA_CHAN0_TX_CONTROL_OSP; val |= GMAC_DMA_CHAN0_TX_CONTROL_START; WR4(sc, GMAC_DMA_CHAN0_TX_CONTROL, val); val = RD4(sc, GMAC_DMA_CHAN0_RX_CONTROL); val &= ~(GMAC_DMA_CHAN0_RX_CONTROL_RBSZ_MASK | GMAC_DMA_CHAN0_RX_CONTROL_RXPBL_MASK); val |= (MCLBYTES << GMAC_DMA_CHAN0_RX_CONTROL_RBSZ_SHIFT); val |= (sc->sc_dma_rxpbl << GMAC_DMA_CHAN0_RX_CONTROL_RXPBL_SHIFT); val |= GMAC_DMA_CHAN0_RX_CONTROL_START; WR4(sc, GMAC_DMA_CHAN0_RX_CONTROL, val); /* Disable counters */ WR4(sc, GMAC_MMC_CONTROL, GMAC_MMC_CONTROL_CNTFREEZ | GMAC_MMC_CONTROL_CNTPRST | GMAC_MMC_CONTROL_CNTPRSTLVL); /* Configure operation modes */ WR4(sc, GMAC_MTL_TXQ0_OPERATION_MODE, GMAC_MTL_TXQ0_OPERATION_MODE_TSF | GMAC_MTL_TXQ0_OPERATION_MODE_TXQEN_EN); WR4(sc, GMAC_MTL_RXQ0_OPERATION_MODE, GMAC_MTL_RXQ0_OPERATION_MODE_RSF | GMAC_MTL_RXQ0_OPERATION_MODE_FEP | GMAC_MTL_RXQ0_OPERATION_MODE_FUP); /* * TX/RX fifo size in hw_feature[1] are log2(n/128), and * TQS/RQS in TXQ0/RXQ0_OPERATION_MODE are n/256-1. */ tqs = (128 << __SHIFTOUT(sc->sc_hw_feature[1], GMAC_MAC_HW_FEATURE1_TXFIFOSIZE) / 256) - 1; val = RD4(sc, GMAC_MTL_TXQ0_OPERATION_MODE); val &= ~GMAC_MTL_TXQ0_OPERATION_MODE_TQS; val |= __SHIFTIN(tqs, GMAC_MTL_TXQ0_OPERATION_MODE_TQS); WR4(sc, GMAC_MTL_TXQ0_OPERATION_MODE, val); rqs = (128 << __SHIFTOUT(sc->sc_hw_feature[1], GMAC_MAC_HW_FEATURE1_RXFIFOSIZE) / 256) - 1; val = RD4(sc, GMAC_MTL_RXQ0_OPERATION_MODE); val &= ~GMAC_MTL_RXQ0_OPERATION_MODE_RQS; val |= __SHIFTIN(rqs, GMAC_MTL_RXQ0_OPERATION_MODE_RQS); WR4(sc, GMAC_MTL_RXQ0_OPERATION_MODE, val); /* * Disable flow control. * It'll be configured later from the negotiated result. */ WR4(sc, GMAC_MAC_Q0_TX_FLOW_CTRL, 0); WR4(sc, GMAC_MAC_RX_FLOW_CTRL, 0); /* set RX queue mode. must be in DCB mode. */ val = __SHIFTIN(GMAC_RXQ_CTRL0_EN_DCB, GMAC_RXQ_CTRL0_EN_MASK); WR4(sc, GMAC_RXQ_CTRL0, val); /* Enable transmitter and receiver */ val = RD4(sc, GMAC_MAC_CONFIGURATION); val |= GMAC_MAC_CONFIGURATION_BE; val |= GMAC_MAC_CONFIGURATION_JD; val |= GMAC_MAC_CONFIGURATION_JE; val |= GMAC_MAC_CONFIGURATION_DCRS; val |= GMAC_MAC_CONFIGURATION_TE; val |= GMAC_MAC_CONFIGURATION_RE; WR4(sc, GMAC_MAC_CONFIGURATION, val); /* Enable interrupts */ eqos_enable_intr(sc); EQOS_ASSERT_TXLOCKED(sc); sc->sc_txrunning = true; ifp->if_flags |= IFF_RUNNING; sc->sc_if_flags |= IFF_RUNNING; mii_mediachg(mii); callout_schedule(&sc->sc_stat_ch, hz); return 0; } static int eqos_init(struct ifnet *ifp) { struct eqos_softc * const sc = ifp->if_softc; int error; EQOS_LOCK(sc); EQOS_TXLOCK(sc); error = eqos_init_locked(sc); EQOS_TXUNLOCK(sc); EQOS_UNLOCK(sc); return error; } static void eqos_stop_locked(struct eqos_softc *sc, int disable) { struct ifnet * const ifp = &sc->sc_ec.ec_if; uint32_t val; int retry; EQOS_ASSERT_LOCKED(sc); EQOS_TXLOCK(sc); sc->sc_txrunning = false; EQOS_TXUNLOCK(sc); callout_halt(&sc->sc_stat_ch, &sc->sc_lock); mii_down(&sc->sc_mii); /* Disable receiver */ val = RD4(sc, GMAC_MAC_CONFIGURATION); val &= ~GMAC_MAC_CONFIGURATION_RE; WR4(sc, GMAC_MAC_CONFIGURATION, val); /* Stop receive DMA */ val = RD4(sc, GMAC_DMA_CHAN0_RX_CONTROL); val &= ~GMAC_DMA_CHAN0_RX_CONTROL_START; WR4(sc, GMAC_DMA_CHAN0_RX_CONTROL, val); /* Stop transmit DMA */ val = RD4(sc, GMAC_DMA_CHAN0_TX_CONTROL); val &= ~GMAC_DMA_CHAN0_TX_CONTROL_START; WR4(sc, GMAC_DMA_CHAN0_TX_CONTROL, val); if (disable) { /* Flush data in the TX FIFO */ val = RD4(sc, GMAC_MTL_TXQ0_OPERATION_MODE); val |= GMAC_MTL_TXQ0_OPERATION_MODE_FTQ; WR4(sc, GMAC_MTL_TXQ0_OPERATION_MODE, val); /* Wait for flush to complete */ for (retry = 10000; retry > 0; retry--) { val = RD4(sc, GMAC_MTL_TXQ0_OPERATION_MODE); if ((val & GMAC_MTL_TXQ0_OPERATION_MODE_FTQ) == 0) { break; } delay(1); } if (retry == 0) { device_printf(sc->sc_dev, "timeout flushing TX queue\n"); } } /* Disable transmitter */ val = RD4(sc, GMAC_MAC_CONFIGURATION); val &= ~GMAC_MAC_CONFIGURATION_TE; WR4(sc, GMAC_MAC_CONFIGURATION, val); /* Disable interrupts */ eqos_disable_intr(sc); sc->sc_if_flags &= ~IFF_RUNNING; ifp->if_flags &= ~IFF_RUNNING; } static void eqos_stop(struct ifnet *ifp, int disable) { struct eqos_softc * const sc = ifp->if_softc; EQOS_LOCK(sc); eqos_stop_locked(sc, disable); EQOS_UNLOCK(sc); } static void eqos_rxintr(struct eqos_softc *sc, int qid) { struct ifnet * const ifp = &sc->sc_ec.ec_if; int error, index, pkts = 0; struct mbuf *m, *m0, *new_m, *mprev; uint32_t tdes3; bool discarding; /* restore jumboframe context */ discarding = sc->sc_rx_discarding; m0 = sc->sc_rx_receiving_m; mprev = sc->sc_rx_receiving_m_last; for (index = sc->sc_rx.cur; ; index = RX_NEXT(index)) { eqos_dma_sync(sc, sc->sc_rx.desc_map, index, index + 1, RX_DESC_COUNT, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); tdes3 = le32toh(sc->sc_rx.desc_ring[index].tdes3); if ((tdes3 & EQOS_TDES3_RX_OWN) != 0) { break; } /* now discarding untill the last packet */ if (discarding) goto rx_next; if ((tdes3 & EQOS_TDES3_RX_CTXT) != 0) goto rx_next; /* ignore receive context descriptor */ /* error packet? */ if ((tdes3 & (EQOS_TDES3_RX_CE | EQOS_TDES3_RX_RWT | EQOS_TDES3_RX_OE | EQOS_TDES3_RX_RE | EQOS_TDES3_RX_DE)) != 0) { #ifdef EQOS_DEBUG char buf[128]; snprintb(buf, sizeof(buf), "\177\020" "b\x1e" "CTXT\0" /* 30 */ "b\x18" "CE\0" /* 24 */ "b\x17" "GP\0" /* 23 */ "b\x16" "WDT\0" /* 22 */ "b\x15" "OE\0" /* 21 */ "b\x14" "RE\0" /* 20 */ "b\x13" "DE\0" /* 19 */ "b\x0f" "ES\0" /* 15 */ "\0", tdes3); DPRINTF(EDEB_NOTE, "rxdesc[%d].tdes3=%s\n", index, buf); #endif if_statinc(ifp, if_ierrors); if (m0 != NULL) { m_freem(m0); m0 = mprev = NULL; } discarding = true; goto rx_next; } bus_dmamap_sync(sc->sc_dmat, sc->sc_rx.buf_map[index].map, 0, sc->sc_rx.buf_map[index].map->dm_mapsize, BUS_DMASYNC_POSTREAD); m = sc->sc_rx.buf_map[index].mbuf; new_m = eqos_alloc_mbufcl(sc); if (new_m == NULL) { /* * cannot allocate new mbuf. discard this received * packet, and reuse the mbuf for next. */ if_statinc(ifp, if_ierrors); if (m0 != NULL) { /* also discard the halfway jumbo packet */ m_freem(m0); m0 = mprev = NULL; } discarding = true; goto rx_next; } bus_dmamap_unload(sc->sc_dmat, sc->sc_rx.buf_map[index].map); error = eqos_setup_rxbuf(sc, index, new_m); if (error) panic("%s: %s: unable to load RX mbuf. error=%d", device_xname(sc->sc_dev), __func__, error); if (m0 == NULL) { m0 = m; } else { if (m->m_flags & M_PKTHDR) m_remove_pkthdr(m); mprev->m_next = m; } mprev = m; if ((tdes3 & EQOS_TDES3_RX_LD) == 0) { /* to be continued in the next segment */ m->m_len = EQOS_RXDMA_SIZE; } else { /* last segment */ uint32_t totallen = tdes3 & EQOS_TDES3_RX_LENGTH_MASK; uint32_t mlen = totallen % EQOS_RXDMA_SIZE; if (mlen == 0) mlen = EQOS_RXDMA_SIZE; m->m_len = mlen; m0->m_pkthdr.len = totallen; m_set_rcvif(m0, ifp); m0->m_flags |= M_HASFCS; m0->m_nextpkt = NULL; if_percpuq_enqueue(ifp->if_percpuq, m0); m0 = mprev = NULL; ++pkts; } rx_next: if (discarding && (tdes3 & EQOS_TDES3_RX_LD) != 0) discarding = false; eqos_setup_rxdesc(sc, index, sc->sc_rx.buf_map[index].map->dm_segs[0].ds_addr); eqos_dma_sync(sc, sc->sc_rx.desc_map, index, index + 1, RX_DESC_COUNT, BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD); WR4(sc, GMAC_DMA_CHAN0_RX_END_ADDR, (uint32_t)sc->sc_rx.desc_ring_paddr + DESC_OFF(sc->sc_rx.cur)); } /* save jumboframe context */ sc->sc_rx_discarding = discarding; sc->sc_rx_receiving_m = m0; sc->sc_rx_receiving_m_last = mprev; DPRINTF(EDEB_RXRING, "sc_rx.cur %u -> %u\n", sc->sc_rx.cur, index); sc->sc_rx.cur = index; if (pkts != 0) { rnd_add_uint32(&sc->sc_rndsource, pkts); } } static void eqos_txintr(struct eqos_softc *sc, int qid) { struct ifnet * const ifp = &sc->sc_ec.ec_if; struct eqos_bufmap *bmap; struct eqos_dma_desc *desc; uint32_t tdes3; int i, pkts = 0; DPRINTF(EDEB_INTR, "qid: %u\n", qid); EQOS_ASSERT_LOCKED(sc); EQOS_ASSERT_TXLOCKED(sc); for (i = sc->sc_tx.next; sc->sc_tx.queued > 0; i = TX_NEXT(i)) { KASSERT(sc->sc_tx.queued > 0); KASSERT(sc->sc_tx.queued <= TX_DESC_COUNT); eqos_dma_sync(sc, sc->sc_tx.desc_map, i, i + 1, TX_DESC_COUNT, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); desc = &sc->sc_tx.desc_ring[i]; tdes3 = le32toh(desc->tdes3); if ((tdes3 & EQOS_TDES3_TX_OWN) != 0) { break; } bmap = &sc->sc_tx.buf_map[i]; if (bmap->mbuf != NULL) { bus_dmamap_sync(sc->sc_dmat, bmap->map, 0, bmap->map->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, bmap->map); m_freem(bmap->mbuf); bmap->mbuf = NULL; ++pkts; } eqos_setup_txdesc(sc, i, 0, 0, 0, 0); eqos_dma_sync(sc, sc->sc_tx.desc_map, i, i + 1, TX_DESC_COUNT, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); /* Last descriptor in a packet contains DMA status */ if ((tdes3 & EQOS_TDES3_TX_LD) != 0) { if ((tdes3 & EQOS_TDES3_TX_DE) != 0) { device_printf(sc->sc_dev, "TX [%u] desc error: 0x%08x\n", i, tdes3); if_statinc(ifp, if_oerrors); } else if ((tdes3 & EQOS_TDES3_TX_ES) != 0) { device_printf(sc->sc_dev, "TX [%u] tx error: 0x%08x\n", i, tdes3); if_statinc(ifp, if_oerrors); } else { if_statinc(ifp, if_opackets); } } } sc->sc_tx.next = i; if (pkts != 0) { rnd_add_uint32(&sc->sc_rndsource, pkts); } } static void eqos_start_locked(struct eqos_softc *sc) { struct ifnet * const ifp = &sc->sc_ec.ec_if; struct mbuf *m; int cnt, nsegs, start; EQOS_ASSERT_TXLOCKED(sc); if (!sc->sc_txrunning) return; for (cnt = 0, start = sc->sc_tx.cur; ; cnt++) { if (sc->sc_tx.queued >= TX_DESC_COUNT - TX_MAX_SEGS) { DPRINTF(EDEB_TXRING, "%u sc_tx.queued, ring full\n", sc->sc_tx.queued); break; } IFQ_POLL(&ifp->if_snd, m); if (m == NULL) break; nsegs = eqos_setup_txbuf(sc, sc->sc_tx.cur, m); if (nsegs <= 0) { DPRINTF(EDEB_TXRING, "eqos_setup_txbuf failed " "with %d\n", nsegs); if (nsegs == -2) { IFQ_DEQUEUE(&ifp->if_snd, m); m_freem(m); continue; } break; } IFQ_DEQUEUE(&ifp->if_snd, m); bpf_mtap(ifp, m, BPF_D_OUT); sc->sc_tx.cur = TX_SKIP(sc->sc_tx.cur, nsegs); } DPRINTF(EDEB_TXRING, "tx loop -> cnt = %u, cur: %u, next: %u, " "queued: %u\n", cnt, sc->sc_tx.cur, sc->sc_tx.next, sc->sc_tx.queued); if (cnt != 0) { eqos_dma_sync(sc, sc->sc_tx.desc_map, start, sc->sc_tx.cur, TX_DESC_COUNT, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); /* Start and run TX DMA */ DPRINTF(EDEB_TXRING, "sending desc %u at %lx upto " "%u-1 at %lx cur tx desc: %x cur tx buf: %x\n", start, (uint32_t)sc->sc_tx.desc_ring_paddr + DESC_OFF(start), sc->sc_tx.cur, (uint32_t)sc->sc_tx.desc_ring_paddr + DESC_OFF(sc->sc_tx.cur), RD4(sc, GMAC_DMA_CHAN0_CUR_TX_DESC), RD4(sc, GMAC_DMA_CHAN0_CUR_TX_BUF_ADDR)); WR4(sc, GMAC_DMA_CHAN0_TX_END_ADDR, (uint32_t)sc->sc_tx.desc_ring_paddr + DESC_OFF(sc->sc_tx.cur)); } } static void eqos_start(struct ifnet *ifp) { struct eqos_softc * const sc = ifp->if_softc; EQOS_TXLOCK(sc); eqos_start_locked(sc); EQOS_TXUNLOCK(sc); } static void eqos_intr_mtl(struct eqos_softc *sc, uint32_t mtl_status) { uint32_t debug_data __unused = 0, ictrl = 0; if (mtl_status == 0) return; /* Drain the errors reported by MTL_INTERRUPT_STATUS */ sc->sc_ev_mtl.ev_count++; if ((mtl_status & GMAC_MTL_INTERRUPT_STATUS_DBGIS) != 0) { debug_data = RD4(sc, GMAC_MTL_FIFO_DEBUG_DATA); sc->sc_ev_mtl_debugdata.ev_count++; } if ((mtl_status & GMAC_MTL_INTERRUPT_STATUS_Q0IS) != 0) { uint32_t new_status = 0; ictrl = RD4(sc, GMAC_MTL_Q0_INTERRUPT_CTRL_STATUS); if ((ictrl & GMAC_MTL_Q0_INTERRUPT_CTRL_STATUS_RXOVFIS) != 0) { new_status |= GMAC_MTL_Q0_INTERRUPT_CTRL_STATUS_RXOVFIS; sc->sc_ev_mtl_rxovfis.ev_count++; } if ((ictrl & GMAC_MTL_Q0_INTERRUPT_CTRL_STATUS_TXUNFIS) != 0) { new_status |= GMAC_MTL_Q0_INTERRUPT_CTRL_STATUS_TXUNFIS; sc->sc_ev_mtl_txovfis.ev_count++; } if (new_status) { new_status |= (ictrl & (GMAC_MTL_Q0_INTERRUPT_CTRL_STATUS_RXOIE | GMAC_MTL_Q0_INTERRUPT_CTRL_STATUS_TXUIE)); WR4(sc, GMAC_MTL_Q0_INTERRUPT_CTRL_STATUS, new_status); } } DPRINTF(EDEB_INTR, "GMAC_MTL_INTERRUPT_STATUS = 0x%08X, " "GMAC_MTL_FIFO_DEBUG_DATA = 0x%08X, " "GMAC_MTL_INTERRUPT_STATUS_Q0IS = 0x%08X\n", mtl_status, debug_data, ictrl); } int eqos_intr(void *arg) { struct eqos_softc * const sc = arg; struct ifnet * const ifp = &sc->sc_ec.ec_if; uint32_t mac_status, mtl_status, dma_status, rx_tx_status; EQOS_LOCK(sc); sc->sc_ev_intr.ev_count++; mac_status = RD4(sc, GMAC_MAC_INTERRUPT_STATUS); mac_status &= RD4(sc, GMAC_MAC_INTERRUPT_ENABLE); if (mac_status) { sc->sc_ev_mac.ev_count++; DPRINTF(EDEB_INTR, "GMAC_MAC_INTERRUPT_STATUS = 0x%08X\n", mac_status); } mtl_status = RD4(sc, GMAC_MTL_INTERRUPT_STATUS); eqos_intr_mtl(sc, mtl_status); dma_status = RD4(sc, GMAC_DMA_CHAN0_STATUS); dma_status &= RD4(sc, GMAC_DMA_CHAN0_INTR_ENABLE); if (dma_status) { WR4(sc, GMAC_DMA_CHAN0_STATUS, dma_status); } if ((dma_status & GMAC_DMA_CHAN0_STATUS_RI) != 0) { eqos_rxintr(sc, 0); sc->sc_ev_rxintr.ev_count++; } if ((dma_status & GMAC_DMA_CHAN0_STATUS_TI) != 0) { EQOS_TXLOCK(sc); eqos_txintr(sc, 0); EQOS_TXUNLOCK(sc); if_schedule_deferred_start(ifp); sc->sc_ev_txintr.ev_count++; } rx_tx_status = RD4(sc, GMAC_MAC_RX_TX_STATUS); EQOS_UNLOCK(sc); if ((mac_status | mtl_status | dma_status) == 0) { DPRINTF(EDEB_NOTE, "spurious interrupt?!\n"); } if (rx_tx_status) { sc->sc_ev_status.ev_count++; if ((rx_tx_status & GMAC_MAC_RX_TX_STATUS_RWT) != 0) sc->sc_ev_rwt.ev_count++; if ((rx_tx_status & GMAC_MAC_RX_TX_STATUS_EXCOL) != 0) sc->sc_ev_excol.ev_count++; if ((rx_tx_status & GMAC_MAC_RX_TX_STATUS_LCOL) != 0) sc->sc_ev_lcol.ev_count++; if ((rx_tx_status & GMAC_MAC_RX_TX_STATUS_EXDEF) != 0) sc->sc_ev_exdef.ev_count++; if ((rx_tx_status & GMAC_MAC_RX_TX_STATUS_LCARR) != 0) sc->sc_ev_lcarr.ev_count++; if ((rx_tx_status & GMAC_MAC_RX_TX_STATUS_NCARR) != 0) sc->sc_ev_ncarr.ev_count++; if ((rx_tx_status & GMAC_MAC_RX_TX_STATUS_TJT) != 0) sc->sc_ev_tjt.ev_count++; DPRINTF(EDEB_INTR, "GMAC_MAC_RX_TX_STATUS = 0x%08x\n", rx_tx_status); } return 1; } static int eqos_ioctl(struct ifnet *ifp, u_long cmd, void *data) { struct eqos_softc * const sc = ifp->if_softc; int error; switch (cmd) { case SIOCADDMULTI: case SIOCDELMULTI: break; default: KASSERT(IFNET_LOCKED(ifp)); } switch (cmd) { case SIOCSIFMTU: { struct ifreq * const ifr = (struct ifreq *)data; if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > EQOS_MAX_MTU) { error = EINVAL; } else { ifp->if_mtu = ifr->ifr_mtu; error = 0; /* no need ENETRESET */ } break; } default: { const int s = splnet(); error = ether_ioctl(ifp, cmd, data); splx(s); if (error != ENETRESET) break; error = 0; if (cmd == SIOCSIFCAP) error = (*ifp->if_init)(ifp); else if (cmd == SIOCADDMULTI || cmd == SIOCDELMULTI) { EQOS_LOCK(sc); if ((sc->sc_if_flags & IFF_RUNNING) != 0) eqos_setup_rxfilter(sc); EQOS_UNLOCK(sc); } break; } } return error; } static int eqos_ifflags_cb(struct ethercom *ec) { struct ifnet * const ifp = &ec->ec_if; struct eqos_softc * const sc = ifp->if_softc; int ret = 0; KASSERT(IFNET_LOCKED(ifp)); EQOS_LOCK(sc); u_short change = ifp->if_flags ^ sc->sc_if_flags; sc->sc_if_flags = ifp->if_flags; if ((change & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0) { ret = ENETRESET; } else if ((change & IFF_PROMISC) != 0) { if ((sc->sc_if_flags & IFF_RUNNING) != 0) eqos_setup_rxfilter(sc); } EQOS_UNLOCK(sc); return ret; } static void eqos_get_eaddr(struct eqos_softc *sc, uint8_t *eaddr) { prop_dictionary_t prop = device_properties(sc->sc_dev); uint32_t maclo, machi; prop_data_t eaprop; eaprop = prop_dictionary_get(prop, "mac-address"); if (eaprop != NULL) { KASSERT(prop_object_type(eaprop) == PROP_TYPE_DATA); KASSERT(prop_data_size(eaprop) == ETHER_ADDR_LEN); memcpy(eaddr, prop_data_value(eaprop), ETHER_ADDR_LEN); return; } maclo = RD4(sc, GMAC_MAC_ADDRESS0_LOW); machi = RD4(sc, GMAC_MAC_ADDRESS0_HIGH) & 0xFFFF; if ((maclo & 0x00000001) != 0) { aprint_error_dev(sc->sc_dev, "Wrong MAC address. Clearing the multicast bit.\n"); maclo &= ~0x00000001; } if (maclo == 0xFFFFFFFF && machi == 0xFFFF) { /* Create one */ maclo = 0x00f2 | (cprng_strong32() & 0xffff0000); machi = cprng_strong32() & 0xffff; } eaddr[0] = maclo & 0xff; eaddr[1] = (maclo >> 8) & 0xff; eaddr[2] = (maclo >> 16) & 0xff; eaddr[3] = (maclo >> 24) & 0xff; eaddr[4] = machi & 0xff; eaddr[5] = (machi >> 8) & 0xff; } static void eqos_get_dma_pbl(struct eqos_softc *sc) { prop_dictionary_t prop = device_properties(sc->sc_dev); uint32_t pbl; /* Set default values. */ sc->sc_dma_txpbl = sc->sc_dma_rxpbl = EQOS_DMA_PBL_DEFAULT; /* Get values from props. */ if (prop_dictionary_get_uint32(prop, "snps,pbl", &pbl) && pbl) sc->sc_dma_txpbl = sc->sc_dma_rxpbl = pbl; if (prop_dictionary_get_uint32(prop, "snps,txpbl", &pbl) && pbl) sc->sc_dma_txpbl = pbl; if (prop_dictionary_get_uint32(prop, "snps,rxpbl", &pbl) && pbl) sc->sc_dma_rxpbl = pbl; } static void eqos_axi_configure(struct eqos_softc *sc) { prop_dictionary_t prop = device_properties(sc->sc_dev); uint32_t val; u_int uival; bool bval; val = RD4(sc, GMAC_DMA_SYSBUS_MODE); if (prop_dictionary_get_bool(prop, "snps,mixed-burst", &bval) && bval) { val |= GMAC_DMA_SYSBUS_MODE_MB; } if (prop_dictionary_get_bool(prop, "snps,fixed-burst", &bval) && bval) { val |= GMAC_DMA_SYSBUS_MODE_FB; } if (prop_dictionary_get_uint(prop, "snps,wr_osr_lmt", &uival)) { val &= ~GMAC_DMA_SYSBUS_MODE_WR_OSR_LMT_MASK; val |= uival << GMAC_DMA_SYSBUS_MODE_WR_OSR_LMT_SHIFT; } if (prop_dictionary_get_uint(prop, "snps,rd_osr_lmt", &uival)) { val &= ~GMAC_DMA_SYSBUS_MODE_RD_OSR_LMT_MASK; val |= uival << GMAC_DMA_SYSBUS_MODE_RD_OSR_LMT_SHIFT; } if (!EQOS_HW_FEATURE_ADDR64_32BIT(sc)) { val |= GMAC_DMA_SYSBUS_MODE_EAME; } /* XXX */ val |= GMAC_DMA_SYSBUS_MODE_BLEN16; val |= GMAC_DMA_SYSBUS_MODE_BLEN8; val |= GMAC_DMA_SYSBUS_MODE_BLEN4; WR4(sc, GMAC_DMA_SYSBUS_MODE, val); } static int eqos_setup_dma(struct eqos_softc *sc, int qid) { struct mbuf *m; int error, nsegs, i; /* Set back pointer */ sc->sc_tx.sc = sc; sc->sc_rx.sc = sc; /* Setup TX ring */ error = bus_dmamap_create(sc->sc_dmat, TX_DESC_SIZE, 1, TX_DESC_SIZE, DESC_BOUNDARY, BUS_DMA_WAITOK, &sc->sc_tx.desc_map); if (error) { return error; } error = bus_dmamem_alloc(sc->sc_dmat, TX_DESC_SIZE, DESC_ALIGN, DESC_BOUNDARY, &sc->sc_tx.desc_dmaseg, 1, &nsegs, BUS_DMA_WAITOK); if (error) { return error; } error = bus_dmamem_map(sc->sc_dmat, &sc->sc_tx.desc_dmaseg, nsegs, TX_DESC_SIZE, (void *)&sc->sc_tx.desc_ring, BUS_DMA_WAITOK); if (error) { return error; } error = bus_dmamap_load(sc->sc_dmat, sc->sc_tx.desc_map, sc->sc_tx.desc_ring, TX_DESC_SIZE, NULL, BUS_DMA_WAITOK); if (error) { return error; } sc->sc_tx.desc_ring_paddr = sc->sc_tx.desc_map->dm_segs[0].ds_addr; memset(sc->sc_tx.desc_ring, 0, TX_DESC_SIZE); bus_dmamap_sync(sc->sc_dmat, sc->sc_tx.desc_map, 0, TX_DESC_SIZE, BUS_DMASYNC_PREWRITE); sc->sc_tx.queued = TX_DESC_COUNT; for (i = 0; i < TX_DESC_COUNT; i++) { error = bus_dmamap_create(sc->sc_dmat, EQOS_TXDMA_SIZE, TX_MAX_SEGS, MCLBYTES, 0, BUS_DMA_WAITOK, &sc->sc_tx.buf_map[i].map); if (error != 0) { device_printf(sc->sc_dev, "cannot create TX buffer map\n"); return error; } EQOS_TXLOCK(sc); eqos_setup_txdesc(sc, i, 0, 0, 0, 0); EQOS_TXUNLOCK(sc); } /* Setup RX ring */ error = bus_dmamap_create(sc->sc_dmat, RX_DESC_SIZE, 1, RX_DESC_SIZE, DESC_BOUNDARY, BUS_DMA_WAITOK, &sc->sc_rx.desc_map); if (error) { return error; } error = bus_dmamem_alloc(sc->sc_dmat, RX_DESC_SIZE, DESC_ALIGN, DESC_BOUNDARY, &sc->sc_rx.desc_dmaseg, 1, &nsegs, BUS_DMA_WAITOK); if (error) { return error; } error = bus_dmamem_map(sc->sc_dmat, &sc->sc_rx.desc_dmaseg, nsegs, RX_DESC_SIZE, (void *)&sc->sc_rx.desc_ring, BUS_DMA_WAITOK); if (error) { return error; } error = bus_dmamap_load(sc->sc_dmat, sc->sc_rx.desc_map, sc->sc_rx.desc_ring, RX_DESC_SIZE, NULL, BUS_DMA_WAITOK); if (error) { return error; } sc->sc_rx.desc_ring_paddr = sc->sc_rx.desc_map->dm_segs[0].ds_addr; memset(sc->sc_rx.desc_ring, 0, RX_DESC_SIZE); for (i = 0; i < RX_DESC_COUNT; i++) { error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, RX_DESC_COUNT, MCLBYTES, 0, BUS_DMA_WAITOK, &sc->sc_rx.buf_map[i].map); if (error != 0) { device_printf(sc->sc_dev, "cannot create RX buffer map\n"); return error; } if ((m = eqos_alloc_mbufcl(sc)) == NULL) { device_printf(sc->sc_dev, "cannot allocate RX mbuf\n"); return ENOMEM; } error = eqos_setup_rxbuf(sc, i, m); if (error != 0) { device_printf(sc->sc_dev, "cannot create RX buffer\n"); return error; } eqos_setup_rxdesc(sc, i, sc->sc_rx.buf_map[i].map->dm_segs[0].ds_addr); } bus_dmamap_sync(sc->sc_dmat, sc->sc_rx.desc_map, 0, sc->sc_rx.desc_map->dm_mapsize, BUS_DMASYNC_PREWRITE); aprint_debug_dev(sc->sc_dev, "TX ring @ 0x%lX, RX ring @ 0x%lX\n", sc->sc_tx.desc_ring_paddr, sc->sc_rx.desc_ring_paddr); return 0; } int eqos_attach(struct eqos_softc *sc) { struct mii_data * const mii = &sc->sc_mii; struct ifnet * const ifp = &sc->sc_ec.ec_if; uint8_t eaddr[ETHER_ADDR_LEN]; u_int userver, snpsver; int error; int n; #ifdef EQOS_DEBUG /* Load the default debug flags. */ sc->sc_debug = eqos_debug; #endif const uint32_t ver = RD4(sc, GMAC_MAC_VERSION); userver = (ver & GMAC_MAC_VERSION_USERVER_MASK) >> GMAC_MAC_VERSION_USERVER_SHIFT; snpsver = ver & GMAC_MAC_VERSION_SNPSVER_MASK; if ((snpsver < 0x51) || (snpsver > 0x52)) { aprint_error(": EQOS version 0x%02x not supported\n", snpsver); return ENXIO; } if (sc->sc_csr_clock < 20000000) { aprint_error(": CSR clock too low\n"); return EINVAL; } else if (sc->sc_csr_clock < 35000000) { sc->sc_clock_range = GMAC_MAC_MDIO_ADDRESS_CR_20_35; } else if (sc->sc_csr_clock < 60000000) { sc->sc_clock_range = GMAC_MAC_MDIO_ADDRESS_CR_35_60; } else if (sc->sc_csr_clock < 100000000) { sc->sc_clock_range = GMAC_MAC_MDIO_ADDRESS_CR_60_100; } else if (sc->sc_csr_clock < 150000000) { sc->sc_clock_range = GMAC_MAC_MDIO_ADDRESS_CR_100_150; } else if (sc->sc_csr_clock < 250000000) { sc->sc_clock_range = GMAC_MAC_MDIO_ADDRESS_CR_150_250; } else if (sc->sc_csr_clock < 300000000) { sc->sc_clock_range = GMAC_MAC_MDIO_ADDRESS_CR_250_300; } else if (sc->sc_csr_clock < 500000000) { sc->sc_clock_range = GMAC_MAC_MDIO_ADDRESS_CR_300_500; } else if (sc->sc_csr_clock < 800000000) { sc->sc_clock_range = GMAC_MAC_MDIO_ADDRESS_CR_500_800; } else { aprint_error(": CSR clock too high\n"); return EINVAL; } for (n = 0; n < 4; n++) { sc->sc_hw_feature[n] = RD4(sc, GMAC_MAC_HW_FEATURE(n)); } aprint_naive("\n"); aprint_normal(": DesignWare EQOS ver 0x%02x (0x%02x)\n", snpsver, userver); aprint_verbose_dev(sc->sc_dev, "hw features %08x %08x %08x %08x\n", sc->sc_hw_feature[0], sc->sc_hw_feature[1], sc->sc_hw_feature[2], sc->sc_hw_feature[3]); if (EQOS_HW_FEATURE_ADDR64_32BIT(sc)) { bus_dma_tag_t ntag; error = bus_dmatag_subregion(sc->sc_dmat, 0, UINT32_MAX, &ntag, 0); if (error) { aprint_error_dev(sc->sc_dev, "failed to restrict DMA: %d\n", error); return error; } aprint_verbose_dev(sc->sc_dev, "using 32-bit DMA\n"); sc->sc_dmat = ntag; } mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_NET); mutex_init(&sc->sc_txlock, MUTEX_DEFAULT, IPL_NET); callout_init(&sc->sc_stat_ch, CALLOUT_MPSAFE); callout_setfunc(&sc->sc_stat_ch, eqos_tick, sc); eqos_get_eaddr(sc, eaddr); aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n", ether_sprintf(eaddr)); /* Soft reset EMAC core */ error = eqos_reset(sc); if (error != 0) { return error; } /* Get DMA burst length */ eqos_get_dma_pbl(sc); /* Configure AXI Bus mode parameters */ eqos_axi_configure(sc); /* Setup DMA descriptors */ if (eqos_setup_dma(sc, 0) != 0) { aprint_error_dev(sc->sc_dev, "failed to setup DMA descriptors\n"); return EINVAL; } /* Setup ethernet interface */ ifp->if_softc = sc; snprintf(ifp->if_xname, IFNAMSIZ, "%s", device_xname(sc->sc_dev)); ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_extflags = IFEF_MPSAFE; ifp->if_start = eqos_start; ifp->if_ioctl = eqos_ioctl; ifp->if_init = eqos_init; ifp->if_stop = eqos_stop; ifp->if_capabilities = 0; ifp->if_capenable = ifp->if_capabilities; IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN); IFQ_SET_READY(&ifp->if_snd); /* 802.1Q VLAN-sized frames, and jumbo frame are supported */ sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_MTU; sc->sc_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU; /* Attach MII driver */ sc->sc_ec.ec_mii = mii; ifmedia_init(&mii->mii_media, 0, ether_mediachange, ether_mediastatus); mii->mii_ifp = ifp; mii->mii_readreg = eqos_mii_readreg; mii->mii_writereg = eqos_mii_writereg; mii->mii_statchg = eqos_mii_statchg; mii_attach(sc->sc_dev, mii, 0xffffffff, sc->sc_phy_id, MII_OFFSET_ANY, MIIF_DOPAUSE); if (LIST_EMPTY(&mii->mii_phys)) { aprint_error_dev(sc->sc_dev, "no PHY found!\n"); return ENOENT; } ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO); /* Master interrupt evcnt */ evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR, NULL, device_xname(sc->sc_dev), "interrupts"); /* Per-interrupt type, using main interrupt */ evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR, &sc->sc_ev_intr, device_xname(sc->sc_dev), "rxintr"); evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR, &sc->sc_ev_intr, device_xname(sc->sc_dev), "txintr"); evcnt_attach_dynamic(&sc->sc_ev_mac, EVCNT_TYPE_INTR, &sc->sc_ev_intr, device_xname(sc->sc_dev), "macstatus"); evcnt_attach_dynamic(&sc->sc_ev_mtl, EVCNT_TYPE_INTR, &sc->sc_ev_intr, device_xname(sc->sc_dev), "intrstatus"); evcnt_attach_dynamic(&sc->sc_ev_status, EVCNT_TYPE_INTR, &sc->sc_ev_intr, device_xname(sc->sc_dev), "rxtxstatus"); /* MAC Status specific type, using macstatus interrupt */ evcnt_attach_dynamic(&sc->sc_ev_mtl_debugdata, EVCNT_TYPE_INTR, &sc->sc_ev_mtl, device_xname(sc->sc_dev), "debugdata"); evcnt_attach_dynamic(&sc->sc_ev_mtl_rxovfis, EVCNT_TYPE_INTR, &sc->sc_ev_mtl, device_xname(sc->sc_dev), "rxovfis"); evcnt_attach_dynamic(&sc->sc_ev_mtl_txovfis, EVCNT_TYPE_INTR, &sc->sc_ev_mtl, device_xname(sc->sc_dev), "txovfis"); /* RX/TX Status specific type, using rxtxstatus interrupt */ evcnt_attach_dynamic(&sc->sc_ev_rwt, EVCNT_TYPE_INTR, &sc->sc_ev_status, device_xname(sc->sc_dev), "rwt"); evcnt_attach_dynamic(&sc->sc_ev_excol, EVCNT_TYPE_INTR, &sc->sc_ev_status, device_xname(sc->sc_dev), "excol"); evcnt_attach_dynamic(&sc->sc_ev_lcol, EVCNT_TYPE_INTR, &sc->sc_ev_status, device_xname(sc->sc_dev), "lcol"); evcnt_attach_dynamic(&sc->sc_ev_exdef, EVCNT_TYPE_INTR, &sc->sc_ev_status, device_xname(sc->sc_dev), "exdef"); evcnt_attach_dynamic(&sc->sc_ev_lcarr, EVCNT_TYPE_INTR, &sc->sc_ev_status, device_xname(sc->sc_dev), "lcarr"); evcnt_attach_dynamic(&sc->sc_ev_ncarr, EVCNT_TYPE_INTR, &sc->sc_ev_status, device_xname(sc->sc_dev), "ncarr"); evcnt_attach_dynamic(&sc->sc_ev_tjt, EVCNT_TYPE_INTR, &sc->sc_ev_status, device_xname(sc->sc_dev), "tjt"); /* Attach interface */ if_attach(ifp); if_deferred_start_init(ifp, NULL); /* Attach ethernet interface */ ether_ifattach(ifp, eaddr); ether_set_ifflags_cb(&sc->sc_ec, eqos_ifflags_cb); eqos_init_sysctls(sc); rnd_attach_source(&sc->sc_rndsource, ifp->if_xname, RND_TYPE_NET, RND_FLAG_DEFAULT); return 0; } static void eqos_init_sysctls(struct eqos_softc *sc) { struct sysctllog **log; const struct sysctlnode *rnode, *qnode, *cnode; const char *dvname; int i, rv; log = &sc->sc_sysctllog; dvname = device_xname(sc->sc_dev); rv = sysctl_createv(log, 0, NULL, &rnode, 0, CTLTYPE_NODE, dvname, SYSCTL_DESCR("eqos information and settings"), NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL); if (rv != 0) goto err; for (i = 0; i < 1; i++) { struct eqos_ring *txr = &sc->sc_tx; struct eqos_ring *rxr = &sc->sc_rx; const unsigned char *name = "q0"; if (sysctl_createv(log, 0, &rnode, &qnode, 0, CTLTYPE_NODE, name, SYSCTL_DESCR("Queue Name"), NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL) != 0) break; if (sysctl_createv(log, 0, &qnode, &cnode, CTLFLAG_READONLY, CTLTYPE_INT, "txs_cur", SYSCTL_DESCR("TX cur"), NULL, 0, &txr->cur, 0, CTL_CREATE, CTL_EOL) != 0) break; if (sysctl_createv(log, 0, &qnode, &cnode, CTLFLAG_READONLY, CTLTYPE_INT, "txs_next", SYSCTL_DESCR("TX next"), NULL, 0, &txr->next, 0, CTL_CREATE, CTL_EOL) != 0) break; if (sysctl_createv(log, 0, &qnode, &cnode, CTLFLAG_READONLY, CTLTYPE_INT, "txs_queued", SYSCTL_DESCR("TX queued"), NULL, 0, &txr->queued, 0, CTL_CREATE, CTL_EOL) != 0) break; if (sysctl_createv(log, 0, &qnode, &cnode, CTLFLAG_READONLY, CTLTYPE_INT, "txr_cur", SYSCTL_DESCR("TX descriptor cur"), eqos_sysctl_tx_cur_handler, 0, (void *)txr, 0, CTL_CREATE, CTL_EOL) != 0) break; if (sysctl_createv(log, 0, &qnode, &cnode, CTLFLAG_READONLY, CTLTYPE_INT, "txr_end", SYSCTL_DESCR("TX descriptor end"), eqos_sysctl_tx_end_handler, 0, (void *)txr, 0, CTL_CREATE, CTL_EOL) != 0) break; if (sysctl_createv(log, 0, &qnode, &cnode, CTLFLAG_READONLY, CTLTYPE_INT, "rxs_cur", SYSCTL_DESCR("RX cur"), NULL, 0, &rxr->cur, 0, CTL_CREATE, CTL_EOL) != 0) break; if (sysctl_createv(log, 0, &qnode, &cnode, CTLFLAG_READONLY, CTLTYPE_INT, "rxs_next", SYSCTL_DESCR("RX next"), NULL, 0, &rxr->next, 0, CTL_CREATE, CTL_EOL) != 0) break; if (sysctl_createv(log, 0, &qnode, &cnode, CTLFLAG_READONLY, CTLTYPE_INT, "rxs_queued", SYSCTL_DESCR("RX queued"), NULL, 0, &rxr->queued, 0, CTL_CREATE, CTL_EOL) != 0) break; if (sysctl_createv(log, 0, &qnode, &cnode, CTLFLAG_READONLY, CTLTYPE_INT, "rxr_cur", SYSCTL_DESCR("RX descriptor cur"), eqos_sysctl_rx_cur_handler, 0, (void *)rxr, 0, CTL_CREATE, CTL_EOL) != 0) break; if (sysctl_createv(log, 0, &qnode, &cnode, CTLFLAG_READONLY, CTLTYPE_INT, "rxr_end", SYSCTL_DESCR("RX descriptor end"), eqos_sysctl_rx_end_handler, 0, (void *)rxr, 0, CTL_CREATE, CTL_EOL) != 0) break; } #ifdef EQOS_DEBUG rv = sysctl_createv(log, 0, &rnode, &cnode, CTLFLAG_READWRITE, CTLTYPE_INT, "debug_flags", SYSCTL_DESCR( "Debug flags:\n" \ "\t0x01 NOTE\n" \ "\t0x02 INTR\n" \ "\t0x04 RX RING\n" \ "\t0x08 TX RING\n"), eqos_sysctl_debug_handler, 0, (void *)sc, 0, CTL_CREATE, CTL_EOL); #endif return; err: sc->sc_sysctllog = NULL; device_printf(sc->sc_dev, "%s: sysctl_createv failed, rv = %d\n", __func__, rv); } static int eqos_sysctl_tx_cur_handler(SYSCTLFN_ARGS) { struct sysctlnode node = *rnode; struct eqos_ring *txq = (struct eqos_ring *)node.sysctl_data; struct eqos_softc *sc = txq->sc; uint32_t reg, index; reg = RD4(sc, GMAC_DMA_CHAN0_CUR_TX_DESC); #if 0 printf("head = %08x\n", (uint32_t)sc->sc_tx.desc_ring_paddr); printf("cdesc = %08x\n", reg); printf("index = %zu\n", (reg - (uint32_t)sc->sc_tx.desc_ring_paddr) / sizeof(struct eqos_dma_desc)); #endif if (reg == 0) index = 0; else { index = (reg - (uint32_t)sc->sc_tx.desc_ring_paddr) / sizeof(struct eqos_dma_desc); } node.sysctl_data = &index; return sysctl_lookup(SYSCTLFN_CALL(&node)); } static int eqos_sysctl_tx_end_handler(SYSCTLFN_ARGS) { struct sysctlnode node = *rnode; struct eqos_ring *txq = (struct eqos_ring *)node.sysctl_data; struct eqos_softc *sc = txq->sc; uint32_t reg, index; reg = RD4(sc, GMAC_DMA_CHAN0_TX_END_ADDR); if (reg == 0) index = 0; else { index = (reg - (uint32_t)sc->sc_tx.desc_ring_paddr) / sizeof(struct eqos_dma_desc); } node.sysctl_data = &index; return sysctl_lookup(SYSCTLFN_CALL(&node)); } static int eqos_sysctl_rx_cur_handler(SYSCTLFN_ARGS) { struct sysctlnode node = *rnode; struct eqos_ring *rxq = (struct eqos_ring *)node.sysctl_data; struct eqos_softc *sc = rxq->sc; uint32_t reg, index; reg = RD4(sc, GMAC_DMA_CHAN0_CUR_RX_DESC); if (reg == 0) index = 0; else { index = (reg - (uint32_t)sc->sc_rx.desc_ring_paddr) / sizeof(struct eqos_dma_desc); } node.sysctl_data = &index; return sysctl_lookup(SYSCTLFN_CALL(&node)); } static int eqos_sysctl_rx_end_handler(SYSCTLFN_ARGS) { struct sysctlnode node = *rnode; struct eqos_ring *rxq = (struct eqos_ring *)node.sysctl_data; struct eqos_softc *sc = rxq->sc; uint32_t reg, index; reg = RD4(sc, GMAC_DMA_CHAN0_RX_END_ADDR); if (reg == 0) index = 0; else { index = (reg - (uint32_t)sc->sc_rx.desc_ring_paddr) / sizeof(struct eqos_dma_desc); } node.sysctl_data = &index; return sysctl_lookup(SYSCTLFN_CALL(&node)); } #ifdef EQOS_DEBUG static int eqos_sysctl_debug_handler(SYSCTLFN_ARGS) { struct sysctlnode node = *rnode; struct eqos_softc *sc = (struct eqos_softc *)node.sysctl_data; uint32_t dflags; int error; dflags = sc->sc_debug; node.sysctl_data = &dflags; error = sysctl_lookup(SYSCTLFN_CALL(&node)); if (error || newp == NULL) return error; sc->sc_debug = dflags; #if 0 /* Addd debug code here if you want. */ #endif return 0; } #endif