/* $NetBSD: if_bge.c,v 1.397 2024/11/10 11:44:08 mlelstv Exp $ */ /* * Copyright (c) 2001 Wind River Systems * Copyright (c) 1997, 1998, 1999, 2001 * Bill Paul . All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Bill Paul. * 4. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. * * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $ */ /* * Broadcom BCM570x family gigabit ethernet driver for NetBSD. * * NetBSD version by: * * Frank van der Linden * Jason Thorpe * Jonathan Stone * * Originally written for FreeBSD by Bill Paul * Senior Engineer, Wind River Systems */ /* * The Broadcom BCM5700 is based on technology originally developed by * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has * two on-board MIPS R4000 CPUs and can have as much as 16MB of external * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo * frames, highly configurable RX filtering, and 16 RX and TX queues * (which, along with RX filter rules, can be used for QOS applications). * Other features, such as TCP segmentation, may be available as part * of value-added firmware updates. Unlike the Tigon I and Tigon II, * firmware images can be stored in hardware and need not be compiled * into the driver. * * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus. * * The BCM5701 is a single-chip solution incorporating both the BCM5700 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701 * does not support external SSRAM. * * Broadcom also produces a variation of the BCM5700 under the "Altima" * brand name, which is functionally similar but lacks PCI-X support. * * Without external SSRAM, you can only have at most 4 TX rings, * and the use of the mini RX ring is disabled. This seems to imply * that these features are simply not available on the BCM5701. As a * result, this driver does not implement any support for the mini RX * ring. */ #include __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.397 2024/11/10 11:44:08 mlelstv Exp $"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Headers for TCP Segmentation Offload (TSO) */ #include /* n_time for ... */ #include /* ip_{src,dst}, for */ #include /* for struct ip */ #include /* for struct tcphdr */ #include #include #include #include #include #include #include #include #include #include #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */ /* * Tunable thresholds for rx-side bge interrupt mitigation. */ /* * The pairs of values below were obtained from empirical measurement * on bcm5700 rev B2; they ar designed to give roughly 1 receive * interrupt for every N packets received, where N is, approximately, * the second value (rx_max_bds) in each pair. The values are chosen * such that moving from one pair to the succeeding pair was observed * to roughly halve interrupt rate under sustained input packet load. * The values were empirically chosen to avoid overflowing internal * limits on the bcm5700: increasing rx_ticks much beyond 600 * results in internal wrapping and higher interrupt rates. * The limit of 46 frames was chosen to match NFS workloads. * * These values also work well on bcm5701, bcm5704C, and (less * tested) bcm5703. On other chipsets, (including the Altima chip * family), the larger values may overflow internal chip limits, * leading to increasing interrupt rates rather than lower interrupt * rates. * * Applications using heavy interrupt mitigation (interrupting every * 32 or 46 frames) in both directions may need to increase the TCP * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain * full link bandwidth, due to ACKs and window updates lingering * in the RX queue during the 30-to-40-frame interrupt-mitigation window. */ static const struct bge_load_rx_thresh { int rx_ticks; int rx_max_bds; } bge_rx_threshes[] = { { 16, 1 }, /* rx_max_bds = 1 disables interrupt mitigation */ { 32, 2 }, { 50, 4 }, { 100, 8 }, { 192, 16 }, { 416, 32 }, { 598, 46 } }; #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0])) /* XXX patchable; should be sysctl'able */ static int bge_auto_thresh = 1; static int bge_rx_thresh_lvl; static int bge_rxthresh_nodenum; typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]); static uint32_t bge_chipid(const struct pci_attach_args *); static int bge_can_use_msi(struct bge_softc *); static int bge_probe(device_t, cfdata_t, void *); static void bge_attach(device_t, device_t, void *); static int bge_detach(device_t, int); static void bge_release_resources(struct bge_softc *); static int bge_get_eaddr_fw(struct bge_softc *, uint8_t[]); static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]); static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]); static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]); static int bge_get_eaddr(struct bge_softc *, uint8_t[]); static void bge_txeof(struct bge_softc *); static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *); static void bge_rxeof(struct bge_softc *); static void bge_asf_driver_up (struct bge_softc *); static void bge_tick(void *); static void bge_stats_update(struct bge_softc *); static void bge_stats_update_regs(struct bge_softc *); static int bge_encap(struct bge_softc *, struct mbuf *, uint32_t *); static int bge_intr(void *); static void bge_start(struct ifnet *); static void bge_start_locked(struct ifnet *); static int bge_ifflags_cb(struct ethercom *); static int bge_ioctl(struct ifnet *, u_long, void *); static int bge_init(struct ifnet *); static void bge_stop(struct ifnet *, int); static bool bge_watchdog_tick(struct ifnet *); static int bge_ifmedia_upd(struct ifnet *); static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *); static void bge_handle_reset_work(struct work *, void *); static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *); static int bge_read_nvram(struct bge_softc *, uint8_t *, int, int); static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *); static int bge_read_eeprom(struct bge_softc *, void *, int, int); static void bge_setmulti(struct bge_softc *); static void bge_handle_events(struct bge_softc *); static int bge_alloc_jumbo_mem(struct bge_softc *); static void bge_free_jumbo_mem(struct bge_softc *); static void *bge_jalloc(struct bge_softc *); static void bge_jfree(struct mbuf *, void *, size_t, void *); static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *); static int bge_init_rx_ring_jumbo(struct bge_softc *); static void bge_free_rx_ring_jumbo(struct bge_softc *); static int bge_newbuf_std(struct bge_softc *, int); static int bge_init_rx_ring_std(struct bge_softc *); static void bge_fill_rx_ring_std(struct bge_softc *); static void bge_free_rx_ring_std(struct bge_softc *m); static void bge_free_tx_ring(struct bge_softc *m, bool); static int bge_init_tx_ring(struct bge_softc *); static int bge_chipinit(struct bge_softc *); static int bge_blockinit(struct bge_softc *); static int bge_phy_addr(struct bge_softc *); static uint32_t bge_readmem_ind(struct bge_softc *, int); static void bge_writemem_ind(struct bge_softc *, int, int); static void bge_writembx(struct bge_softc *, int, int); static void bge_writembx_flush(struct bge_softc *, int, int); static void bge_writemem_direct(struct bge_softc *, int, int); static void bge_writereg_ind(struct bge_softc *, int, int); static void bge_set_max_readrq(struct bge_softc *); static int bge_miibus_readreg(device_t, int, int, uint16_t *); static int bge_miibus_writereg(device_t, int, int, uint16_t); static void bge_miibus_statchg(struct ifnet *); #define BGE_RESET_SHUTDOWN 0 #define BGE_RESET_START 1 #define BGE_RESET_SUSPEND 2 static void bge_sig_post_reset(struct bge_softc *, int); static void bge_sig_legacy(struct bge_softc *, int); static void bge_sig_pre_reset(struct bge_softc *, int); static void bge_wait_for_event_ack(struct bge_softc *); static void bge_stop_fw(struct bge_softc *); static int bge_reset(struct bge_softc *); static void bge_link_upd(struct bge_softc *); static void bge_sysctl_init(struct bge_softc *); static int bge_sysctl_verify(SYSCTLFN_PROTO); static void bge_ape_lock_init(struct bge_softc *); static void bge_ape_read_fw_ver(struct bge_softc *); static int bge_ape_lock(struct bge_softc *, int); static void bge_ape_unlock(struct bge_softc *, int); static void bge_ape_send_event(struct bge_softc *, uint32_t); static void bge_ape_driver_state_change(struct bge_softc *, int); #ifdef BGE_DEBUG #define DPRINTF(x) if (bgedebug) printf x #define DPRINTFN(n, x) if (bgedebug >= (n)) printf x #define BGE_TSO_PRINTF(x) do { if (bge_tso_debug) printf x ;} while (0) int bgedebug = 0; int bge_tso_debug = 0; void bge_debug_info(struct bge_softc *); #else #define DPRINTF(x) #define DPRINTFN(n, x) #define BGE_TSO_PRINTF(x) #endif #ifdef BGE_EVENT_COUNTERS #define BGE_EVCNT_INCR(ev) (ev).ev_count++ #define BGE_EVCNT_ADD(ev, val) (ev).ev_count += (val) #define BGE_EVCNT_UPD(ev, val) (ev).ev_count = (val) #else #define BGE_EVCNT_INCR(ev) /* nothing */ #define BGE_EVCNT_ADD(ev, val) /* nothing */ #define BGE_EVCNT_UPD(ev, val) /* nothing */ #endif #define VIDDID(a, b) PCI_VENDOR_ ## a, PCI_PRODUCT_ ## a ## _ ## b /* * The BCM5700 documentation seems to indicate that the hardware still has the * Alteon vendor ID burned into it, though it should always be overridden by * the value in the EEPROM. We'll check for it anyway. */ static const struct bge_product { pci_vendor_id_t bp_vendor; pci_product_id_t bp_product; const char *bp_name; } bge_products[] = { { VIDDID(ALTEON, BCM5700), "Broadcom BCM5700 Gigabit" }, { VIDDID(ALTEON, BCM5701), "Broadcom BCM5701 Gigabit" }, { VIDDID(ALTIMA, AC1000), "Altima AC1000 Gigabit" }, { VIDDID(ALTIMA, AC1001), "Altima AC1001 Gigabit" }, { VIDDID(ALTIMA, AC1003), "Altima AC1003 Gigabit" }, { VIDDID(ALTIMA, AC9100), "Altima AC9100 Gigabit" }, { VIDDID(APPLE, BCM5701), "APPLE BCM5701 Gigabit" }, { VIDDID(BROADCOM, BCM5700), "Broadcom BCM5700 Gigabit" }, { VIDDID(BROADCOM, BCM5701), "Broadcom BCM5701 Gigabit" }, { VIDDID(BROADCOM, BCM5702), "Broadcom BCM5702 Gigabit" }, { VIDDID(BROADCOM, BCM5702FE), "Broadcom BCM5702FE Fast" }, { VIDDID(BROADCOM, BCM5702X), "Broadcom BCM5702X Gigabit" }, { VIDDID(BROADCOM, BCM5703), "Broadcom BCM5703 Gigabit" }, { VIDDID(BROADCOM, BCM5703X), "Broadcom BCM5703X Gigabit" }, { VIDDID(BROADCOM, BCM5703_ALT),"Broadcom BCM5703 Gigabit" }, { VIDDID(BROADCOM, BCM5704C), "Broadcom BCM5704C Dual Gigabit" }, { VIDDID(BROADCOM, BCM5704S), "Broadcom BCM5704S Dual Gigabit" }, { VIDDID(BROADCOM, BCM5704S_ALT),"Broadcom BCM5704S Dual Gigabit" }, { VIDDID(BROADCOM, BCM5705), "Broadcom BCM5705 Gigabit" }, { VIDDID(BROADCOM, BCM5705F), "Broadcom BCM5705F Gigabit" }, { VIDDID(BROADCOM, BCM5705K), "Broadcom BCM5705K Gigabit" }, { VIDDID(BROADCOM, BCM5705M), "Broadcom BCM5705M Gigabit" }, { VIDDID(BROADCOM, BCM5705M_ALT),"Broadcom BCM5705M Gigabit" }, { VIDDID(BROADCOM, BCM5714), "Broadcom BCM5714 Gigabit" }, { VIDDID(BROADCOM, BCM5714S), "Broadcom BCM5714S Gigabit" }, { VIDDID(BROADCOM, BCM5715), "Broadcom BCM5715 Gigabit" }, { VIDDID(BROADCOM, BCM5715S), "Broadcom BCM5715S Gigabit" }, { VIDDID(BROADCOM, BCM5717), "Broadcom BCM5717 Gigabit" }, { VIDDID(BROADCOM, BCM5717C), "Broadcom BCM5717 Gigabit" }, { VIDDID(BROADCOM, BCM5718), "Broadcom BCM5718 Gigabit" }, { VIDDID(BROADCOM, BCM5719), "Broadcom BCM5719 Gigabit" }, { VIDDID(BROADCOM, BCM5720), "Broadcom BCM5720 Gigabit" }, { VIDDID(BROADCOM, BCM5721), "Broadcom BCM5721 Gigabit" }, { VIDDID(BROADCOM, BCM5722), "Broadcom BCM5722 Gigabit" }, { VIDDID(BROADCOM, BCM5723), "Broadcom BCM5723 Gigabit" }, { VIDDID(BROADCOM, BCM5725), "Broadcom BCM5725 Gigabit" }, { VIDDID(BROADCOM, BCM5727), "Broadcom BCM5727 Gigabit" }, { VIDDID(BROADCOM, BCM5750), "Broadcom BCM5750 Gigabit" }, { VIDDID(BROADCOM, BCM5751), "Broadcom BCM5751 Gigabit" }, { VIDDID(BROADCOM, BCM5751F), "Broadcom BCM5751F Gigabit" }, { VIDDID(BROADCOM, BCM5751M), "Broadcom BCM5751M Gigabit" }, { VIDDID(BROADCOM, BCM5752), "Broadcom BCM5752 Gigabit" }, { VIDDID(BROADCOM, BCM5752M), "Broadcom BCM5752M Gigabit" }, { VIDDID(BROADCOM, BCM5753), "Broadcom BCM5753 Gigabit" }, { VIDDID(BROADCOM, BCM5753F), "Broadcom BCM5753F Gigabit" }, { VIDDID(BROADCOM, BCM5753M), "Broadcom BCM5753M Gigabit" }, { VIDDID(BROADCOM, BCM5754), "Broadcom BCM5754 Gigabit" }, { VIDDID(BROADCOM, BCM5754M), "Broadcom BCM5754M Gigabit" }, { VIDDID(BROADCOM, BCM5755), "Broadcom BCM5755 Gigabit" }, { VIDDID(BROADCOM, BCM5755M), "Broadcom BCM5755M Gigabit" }, { VIDDID(BROADCOM, BCM5756), "Broadcom BCM5756 Gigabit" }, { VIDDID(BROADCOM, BCM5761), "Broadcom BCM5761 Gigabit" }, { VIDDID(BROADCOM, BCM5761E), "Broadcom BCM5761E Gigabit" }, { VIDDID(BROADCOM, BCM5761S), "Broadcom BCM5761S Gigabit" }, { VIDDID(BROADCOM, BCM5761SE), "Broadcom BCM5761SE Gigabit" }, { VIDDID(BROADCOM, BCM5762), "Broadcom BCM5762 Gigabit" }, { VIDDID(BROADCOM, BCM5764), "Broadcom BCM5764 Gigabit" }, { VIDDID(BROADCOM, BCM5780), "Broadcom BCM5780 Gigabit" }, { VIDDID(BROADCOM, BCM5780S), "Broadcom BCM5780S Gigabit" }, { VIDDID(BROADCOM, BCM5781), "Broadcom BCM5781 Gigabit" }, { VIDDID(BROADCOM, BCM5782), "Broadcom BCM5782 Gigabit" }, { VIDDID(BROADCOM, BCM5784M), "BCM5784M NetLink 1000baseT" }, { VIDDID(BROADCOM, BCM5785F), "BCM5785F NetLink 10/100" }, { VIDDID(BROADCOM, BCM5785G), "BCM5785G NetLink 1000baseT" }, { VIDDID(BROADCOM, BCM5786), "Broadcom BCM5786 Gigabit" }, { VIDDID(BROADCOM, BCM5787), "Broadcom BCM5787 Gigabit" }, { VIDDID(BROADCOM, BCM5787F), "Broadcom BCM5787F 10/100" }, { VIDDID(BROADCOM, BCM5787M), "Broadcom BCM5787M Gigabit" }, { VIDDID(BROADCOM, BCM5788), "Broadcom BCM5788 Gigabit" }, { VIDDID(BROADCOM, BCM5789), "Broadcom BCM5789 Gigabit" }, { VIDDID(BROADCOM, BCM5901), "Broadcom BCM5901 Fast" }, { VIDDID(BROADCOM, BCM5901A2), "Broadcom BCM5901A2 Fast" }, { VIDDID(BROADCOM, BCM5903M), "Broadcom BCM5903M Fast" }, { VIDDID(BROADCOM, BCM5906), "Broadcom BCM5906 Fast" }, { VIDDID(BROADCOM, BCM5906M), "Broadcom BCM5906M Fast" }, { VIDDID(BROADCOM, BCM57760), "Broadcom BCM57760 Gigabit" }, { VIDDID(BROADCOM, BCM57761), "Broadcom BCM57761 Gigabit" }, { VIDDID(BROADCOM, BCM57762), "Broadcom BCM57762 Gigabit" }, { VIDDID(BROADCOM, BCM57764), "Broadcom BCM57764 Gigabit" }, { VIDDID(BROADCOM, BCM57765), "Broadcom BCM57765 Gigabit" }, { VIDDID(BROADCOM, BCM57766), "Broadcom BCM57766 Gigabit" }, { VIDDID(BROADCOM, BCM57767), "Broadcom BCM57767 Gigabit" }, { VIDDID(BROADCOM, BCM57780), "Broadcom BCM57780 Gigabit" }, { VIDDID(BROADCOM, BCM57781), "Broadcom BCM57781 Gigabit" }, { VIDDID(BROADCOM, BCM57782), "Broadcom BCM57782 Gigabit" }, { VIDDID(BROADCOM, BCM57785), "Broadcom BCM57785 Gigabit" }, { VIDDID(BROADCOM, BCM57786), "Broadcom BCM57786 Gigabit" }, { VIDDID(BROADCOM, BCM57787), "Broadcom BCM57787 Gigabit" }, { VIDDID(BROADCOM, BCM57788), "Broadcom BCM57788 Gigabit" }, { VIDDID(BROADCOM, BCM57790), "Broadcom BCM57790 Gigabit" }, { VIDDID(BROADCOM, BCM57791), "Broadcom BCM57791 Gigabit" }, { VIDDID(BROADCOM, BCM57795), "Broadcom BCM57795 Gigabit" }, { VIDDID(SCHNEIDERKOCH, SK_9DX1),"SysKonnect SK-9Dx1 Gigabit" }, { VIDDID(SCHNEIDERKOCH, SK_9MXX),"SysKonnect SK-9Mxx Gigabit" }, { VIDDID(3COM, 3C996), "3Com 3c996 Gigabit" }, { VIDDID(FUJITSU4, PW008GE4), "Fujitsu PW008GE4 Gigabit" }, { VIDDID(FUJITSU4, PW008GE5), "Fujitsu PW008GE5 Gigabit" }, { VIDDID(FUJITSU4, PP250_450_LAN),"Fujitsu Primepower 250/450 Gigabit" }, { 0, 0, NULL }, }; #define BGE_IS_JUMBO_CAPABLE(sc) ((sc)->bge_flags & BGEF_JUMBO_CAPABLE) #define BGE_IS_5700_FAMILY(sc) ((sc)->bge_flags & BGEF_5700_FAMILY) #define BGE_IS_5705_PLUS(sc) ((sc)->bge_flags & BGEF_5705_PLUS) #define BGE_IS_5714_FAMILY(sc) ((sc)->bge_flags & BGEF_5714_FAMILY) #define BGE_IS_575X_PLUS(sc) ((sc)->bge_flags & BGEF_575X_PLUS) #define BGE_IS_5755_PLUS(sc) ((sc)->bge_flags & BGEF_5755_PLUS) #define BGE_IS_57765_FAMILY(sc) ((sc)->bge_flags & BGEF_57765_FAMILY) #define BGE_IS_57765_PLUS(sc) ((sc)->bge_flags & BGEF_57765_PLUS) #define BGE_IS_5717_PLUS(sc) ((sc)->bge_flags & BGEF_5717_PLUS) static const struct bge_revision { uint32_t br_chipid; const char *br_name; } bge_revisions[] = { { BGE_CHIPID_BCM5700_A0, "BCM5700 A0" }, { BGE_CHIPID_BCM5700_A1, "BCM5700 A1" }, { BGE_CHIPID_BCM5700_B0, "BCM5700 B0" }, { BGE_CHIPID_BCM5700_B1, "BCM5700 B1" }, { BGE_CHIPID_BCM5700_B2, "BCM5700 B2" }, { BGE_CHIPID_BCM5700_B3, "BCM5700 B3" }, { BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" }, { BGE_CHIPID_BCM5700_C0, "BCM5700 C0" }, { BGE_CHIPID_BCM5701_A0, "BCM5701 A0" }, { BGE_CHIPID_BCM5701_B0, "BCM5701 B0" }, { BGE_CHIPID_BCM5701_B2, "BCM5701 B2" }, { BGE_CHIPID_BCM5701_B5, "BCM5701 B5" }, { BGE_CHIPID_BCM5703_A0, "BCM5702/5703 A0" }, { BGE_CHIPID_BCM5703_A1, "BCM5702/5703 A1" }, { BGE_CHIPID_BCM5703_A2, "BCM5702/5703 A2" }, { BGE_CHIPID_BCM5703_A3, "BCM5702/5703 A3" }, { BGE_CHIPID_BCM5703_B0, "BCM5702/5703 B0" }, { BGE_CHIPID_BCM5704_A0, "BCM5704 A0" }, { BGE_CHIPID_BCM5704_A1, "BCM5704 A1" }, { BGE_CHIPID_BCM5704_A2, "BCM5704 A2" }, { BGE_CHIPID_BCM5704_A3, "BCM5704 A3" }, { BGE_CHIPID_BCM5704_B0, "BCM5704 B0" }, { BGE_CHIPID_BCM5705_A0, "BCM5705 A0" }, { BGE_CHIPID_BCM5705_A1, "BCM5705 A1" }, { BGE_CHIPID_BCM5705_A2, "BCM5705 A2" }, { BGE_CHIPID_BCM5705_A3, "BCM5705 A3" }, { BGE_CHIPID_BCM5750_A0, "BCM5750 A0" }, { BGE_CHIPID_BCM5750_A1, "BCM5750 A1" }, { BGE_CHIPID_BCM5750_A3, "BCM5750 A3" }, { BGE_CHIPID_BCM5750_B0, "BCM5750 B0" }, { BGE_CHIPID_BCM5750_B1, "BCM5750 B1" }, { BGE_CHIPID_BCM5750_C0, "BCM5750 C0" }, { BGE_CHIPID_BCM5750_C1, "BCM5750 C1" }, { BGE_CHIPID_BCM5750_C2, "BCM5750 C2" }, { BGE_CHIPID_BCM5752_A0, "BCM5752 A0" }, { BGE_CHIPID_BCM5752_A1, "BCM5752 A1" }, { BGE_CHIPID_BCM5752_A2, "BCM5752 A2" }, { BGE_CHIPID_BCM5714_A0, "BCM5714 A0" }, { BGE_CHIPID_BCM5714_B0, "BCM5714 B0" }, { BGE_CHIPID_BCM5714_B3, "BCM5714 B3" }, { BGE_CHIPID_BCM5715_A0, "BCM5715 A0" }, { BGE_CHIPID_BCM5715_A1, "BCM5715 A1" }, { BGE_CHIPID_BCM5715_A3, "BCM5715 A3" }, { BGE_CHIPID_BCM5717_A0, "BCM5717 A0" }, { BGE_CHIPID_BCM5717_B0, "BCM5717 B0" }, { BGE_CHIPID_BCM5719_A0, "BCM5719 A0" }, { BGE_CHIPID_BCM5720_A0, "BCM5720 A0" }, { BGE_CHIPID_BCM5755_A0, "BCM5755 A0" }, { BGE_CHIPID_BCM5755_A1, "BCM5755 A1" }, { BGE_CHIPID_BCM5755_A2, "BCM5755 A2" }, { BGE_CHIPID_BCM5755_C0, "BCM5755 C0" }, { BGE_CHIPID_BCM5761_A0, "BCM5761 A0" }, { BGE_CHIPID_BCM5761_A1, "BCM5761 A1" }, { BGE_CHIPID_BCM5762_A0, "BCM5762 A0" }, { BGE_CHIPID_BCM5762_B0, "BCM5762 B0" }, { BGE_CHIPID_BCM5784_A0, "BCM5784 A0" }, { BGE_CHIPID_BCM5784_A1, "BCM5784 A1" }, { BGE_CHIPID_BCM5784_B0, "BCM5784 B0" }, /* 5754 and 5787 share the same ASIC ID */ { BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" }, { BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" }, { BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" }, { BGE_CHIPID_BCM5906_A0, "BCM5906 A0" }, { BGE_CHIPID_BCM5906_A1, "BCM5906 A1" }, { BGE_CHIPID_BCM5906_A2, "BCM5906 A2" }, { BGE_CHIPID_BCM57765_A0, "BCM57765 A0" }, { BGE_CHIPID_BCM57765_B0, "BCM57765 B0" }, { BGE_CHIPID_BCM57766_A0, "BCM57766 A0" }, { BGE_CHIPID_BCM57780_A0, "BCM57780 A0" }, { BGE_CHIPID_BCM57780_A1, "BCM57780 A1" }, { 0, NULL } }; /* * Some defaults for major revisions, so that newer steppings * that we don't know about have a shot at working. */ static const struct bge_revision bge_majorrevs[] = { { BGE_ASICREV_BCM5700, "unknown BCM5700" }, { BGE_ASICREV_BCM5701, "unknown BCM5701" }, { BGE_ASICREV_BCM5703, "unknown BCM5703" }, { BGE_ASICREV_BCM5704, "unknown BCM5704" }, { BGE_ASICREV_BCM5705, "unknown BCM5705" }, { BGE_ASICREV_BCM5750, "unknown BCM5750" }, { BGE_ASICREV_BCM5714, "unknown BCM5714" }, { BGE_ASICREV_BCM5714_A0, "unknown BCM5714" }, { BGE_ASICREV_BCM5752, "unknown BCM5752" }, { BGE_ASICREV_BCM5780, "unknown BCM5780" }, { BGE_ASICREV_BCM5755, "unknown BCM5755" }, { BGE_ASICREV_BCM5761, "unknown BCM5761" }, { BGE_ASICREV_BCM5784, "unknown BCM5784" }, { BGE_ASICREV_BCM5785, "unknown BCM5785" }, /* 5754 and 5787 share the same ASIC ID */ { BGE_ASICREV_BCM5787, "unknown BCM5754/5787" }, { BGE_ASICREV_BCM5906, "unknown BCM5906" }, { BGE_ASICREV_BCM57765, "unknown BCM57765" }, { BGE_ASICREV_BCM57766, "unknown BCM57766" }, { BGE_ASICREV_BCM57780, "unknown BCM57780" }, { BGE_ASICREV_BCM5717, "unknown BCM5717" }, { BGE_ASICREV_BCM5719, "unknown BCM5719" }, { BGE_ASICREV_BCM5720, "unknown BCM5720" }, { BGE_ASICREV_BCM5762, "unknown BCM5762" }, { 0, NULL } }; static int bge_allow_asf = 1; #ifndef BGE_WATCHDOG_TIMEOUT #define BGE_WATCHDOG_TIMEOUT 5 #endif static int bge_watchdog_timeout = BGE_WATCHDOG_TIMEOUT; CFATTACH_DECL3_NEW(bge, sizeof(struct bge_softc), bge_probe, bge_attach, bge_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN); static uint32_t bge_readmem_ind(struct bge_softc *sc, int off) { pcireg_t val; if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 && off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4) return 0; pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off); val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA); pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0); return val; } static void bge_writemem_ind(struct bge_softc *sc, int off, int val) { pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off); pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val); pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0); } /* * PCI Express only */ static void bge_set_max_readrq(struct bge_softc *sc) { pcireg_t val; val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap + PCIE_DCSR); val &= ~PCIE_DCSR_MAX_READ_REQ; switch (sc->bge_expmrq) { case 2048: val |= BGE_PCIE_DEVCTL_MAX_READRQ_2048; break; case 4096: val |= BGE_PCIE_DEVCTL_MAX_READRQ_4096; break; default: panic("incorrect expmrq value(%d)", sc->bge_expmrq); break; } pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap + PCIE_DCSR, val); } #ifdef notdef static uint32_t bge_readreg_ind(struct bge_softc *sc, int off) { pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off); return pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA); } #endif static void bge_writereg_ind(struct bge_softc *sc, int off, int val) { pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off); pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val); } static void bge_writemem_direct(struct bge_softc *sc, int off, int val) { CSR_WRITE_4(sc, off, val); } static void bge_writembx(struct bge_softc *sc, int off, int val) { if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI; CSR_WRITE_4(sc, off, val); } static void bge_writembx_flush(struct bge_softc *sc, int off, int val) { if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI; CSR_WRITE_4_FLUSH(sc, off, val); } /* * Clear all stale locks and select the lock for this driver instance. */ void bge_ape_lock_init(struct bge_softc *sc) { struct pci_attach_args *pa = &(sc->bge_pa); uint32_t bit, regbase; int i; if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761) regbase = BGE_APE_LOCK_GRANT; else regbase = BGE_APE_PER_LOCK_GRANT; /* Clear any stale locks. */ for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) { switch (i) { case BGE_APE_LOCK_PHY0: case BGE_APE_LOCK_PHY1: case BGE_APE_LOCK_PHY2: case BGE_APE_LOCK_PHY3: bit = BGE_APE_LOCK_GRANT_DRIVER0; break; default: if (pa->pa_function == 0) bit = BGE_APE_LOCK_GRANT_DRIVER0; else bit = (1 << pa->pa_function); } APE_WRITE_4(sc, regbase + 4 * i, bit); } /* Select the PHY lock based on the device's function number. */ switch (pa->pa_function) { case 0: sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0; break; case 1: sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1; break; case 2: sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2; break; case 3: sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3; break; default: printf("%s: PHY lock not supported on function\n", device_xname(sc->bge_dev)); break; } } /* * Check for APE firmware, set flags, and print version info. */ void bge_ape_read_fw_ver(struct bge_softc *sc) { const char *fwtype; uint32_t apedata, features; /* Check for a valid APE signature in shared memory. */ apedata = APE_READ_4(sc, BGE_APE_SEG_SIG); if (apedata != BGE_APE_SEG_SIG_MAGIC) { sc->bge_mfw_flags &= ~ BGE_MFW_ON_APE; return; } /* Check if APE firmware is running. */ apedata = APE_READ_4(sc, BGE_APE_FW_STATUS); if ((apedata & BGE_APE_FW_STATUS_READY) == 0) { printf("%s: APE signature found but FW status not ready! " "0x%08x\n", device_xname(sc->bge_dev), apedata); return; } sc->bge_mfw_flags |= BGE_MFW_ON_APE; /* Fetch the APE firmware type and version. */ apedata = APE_READ_4(sc, BGE_APE_FW_VERSION); features = APE_READ_4(sc, BGE_APE_FW_FEATURES); if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) { sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI; fwtype = "NCSI"; } else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) { sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH; fwtype = "DASH"; } else fwtype = "UNKN"; /* Print the APE firmware version. */ aprint_normal_dev(sc->bge_dev, "APE firmware %s %d.%d.%d.%d\n", fwtype, (apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT, (apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT, (apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT, (apedata & BGE_APE_FW_VERSION_BLDMSK)); } int bge_ape_lock(struct bge_softc *sc, int locknum) { struct pci_attach_args *pa = &(sc->bge_pa); uint32_t bit, gnt, req, status; int i, off; if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0) return 0; /* Lock request/grant registers have different bases. */ if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761) { req = BGE_APE_LOCK_REQ; gnt = BGE_APE_LOCK_GRANT; } else { req = BGE_APE_PER_LOCK_REQ; gnt = BGE_APE_PER_LOCK_GRANT; } off = 4 * locknum; switch (locknum) { case BGE_APE_LOCK_GPIO: /* Lock required when using GPIO. */ if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761) return 0; if (pa->pa_function == 0) bit = BGE_APE_LOCK_REQ_DRIVER0; else bit = (1 << pa->pa_function); break; case BGE_APE_LOCK_GRC: /* Lock required to reset the device. */ if (pa->pa_function == 0) bit = BGE_APE_LOCK_REQ_DRIVER0; else bit = (1 << pa->pa_function); break; case BGE_APE_LOCK_MEM: /* Lock required when accessing certain APE memory. */ if (pa->pa_function == 0) bit = BGE_APE_LOCK_REQ_DRIVER0; else bit = (1 << pa->pa_function); break; case BGE_APE_LOCK_PHY0: case BGE_APE_LOCK_PHY1: case BGE_APE_LOCK_PHY2: case BGE_APE_LOCK_PHY3: /* Lock required when accessing PHYs. */ bit = BGE_APE_LOCK_REQ_DRIVER0; break; default: return EINVAL; } /* Request a lock. */ APE_WRITE_4_FLUSH(sc, req + off, bit); /* Wait up to 1 second to acquire lock. */ for (i = 0; i < 20000; i++) { status = APE_READ_4(sc, gnt + off); if (status == bit) break; DELAY(50); } /* Handle any errors. */ if (status != bit) { printf("%s: APE lock %d request failed! " "request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n", device_xname(sc->bge_dev), locknum, req + off, bit & 0xFFFF, gnt + off, status & 0xFFFF); /* Revoke the lock request. */ APE_WRITE_4(sc, gnt + off, bit); return EBUSY; } return 0; } void bge_ape_unlock(struct bge_softc *sc, int locknum) { struct pci_attach_args *pa = &(sc->bge_pa); uint32_t bit, gnt; int off; if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0) return; if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761) gnt = BGE_APE_LOCK_GRANT; else gnt = BGE_APE_PER_LOCK_GRANT; off = 4 * locknum; switch (locknum) { case BGE_APE_LOCK_GPIO: if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761) return; if (pa->pa_function == 0) bit = BGE_APE_LOCK_GRANT_DRIVER0; else bit = (1 << pa->pa_function); break; case BGE_APE_LOCK_GRC: if (pa->pa_function == 0) bit = BGE_APE_LOCK_GRANT_DRIVER0; else bit = (1 << pa->pa_function); break; case BGE_APE_LOCK_MEM: if (pa->pa_function == 0) bit = BGE_APE_LOCK_GRANT_DRIVER0; else bit = (1 << pa->pa_function); break; case BGE_APE_LOCK_PHY0: case BGE_APE_LOCK_PHY1: case BGE_APE_LOCK_PHY2: case BGE_APE_LOCK_PHY3: bit = BGE_APE_LOCK_GRANT_DRIVER0; break; default: return; } /* Write and flush for consecutive bge_ape_lock() */ APE_WRITE_4_FLUSH(sc, gnt + off, bit); } /* * Send an event to the APE firmware. */ void bge_ape_send_event(struct bge_softc *sc, uint32_t event) { uint32_t apedata; int i; /* NCSI does not support APE events. */ if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0) return; /* Wait up to 1ms for APE to service previous event. */ for (i = 10; i > 0; i--) { if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0) break; apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS); if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) { APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event | BGE_APE_EVENT_STATUS_EVENT_PENDING); bge_ape_unlock(sc, BGE_APE_LOCK_MEM); APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1); break; } bge_ape_unlock(sc, BGE_APE_LOCK_MEM); DELAY(100); } if (i == 0) { printf("%s: APE event 0x%08x send timed out\n", device_xname(sc->bge_dev), event); } } void bge_ape_driver_state_change(struct bge_softc *sc, int kind) { uint32_t apedata, event; if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0) return; switch (kind) { case BGE_RESET_START: /* If this is the first load, clear the load counter. */ apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG); if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC) APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0); else { apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT); APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata); } APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG, BGE_APE_HOST_SEG_SIG_MAGIC); APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN, BGE_APE_HOST_SEG_LEN_MAGIC); /* Add some version info if bge(4) supports it. */ APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID, BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0)); APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR, BGE_APE_HOST_BEHAV_NO_PHYLOCK); APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS, BGE_APE_HOST_HEARTBEAT_INT_DISABLE); APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE, BGE_APE_HOST_DRVR_STATE_START); event = BGE_APE_EVENT_STATUS_STATE_START; break; case BGE_RESET_SHUTDOWN: APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE, BGE_APE_HOST_DRVR_STATE_UNLOAD); event = BGE_APE_EVENT_STATUS_STATE_UNLOAD; break; case BGE_RESET_SUSPEND: event = BGE_APE_EVENT_STATUS_STATE_SUSPEND; break; default: return; } bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT | BGE_APE_EVENT_STATUS_STATE_CHNGE); } static uint8_t bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest) { uint32_t access, byte = 0; int i; /* Lock. */ CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1); for (i = 0; i < 8000; i++) { if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1) break; DELAY(20); } if (i == 8000) return 1; /* Enable access. */ access = CSR_READ_4(sc, BGE_NVRAM_ACCESS); CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE); CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc); CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD); for (i = 0; i < BGE_TIMEOUT * 10; i++) { DELAY(10); if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) { DELAY(10); break; } } if (i == BGE_TIMEOUT * 10) { aprint_error_dev(sc->bge_dev, "nvram read timed out\n"); return 1; } /* Get result. */ byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA); *dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF; /* Disable access. */ CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access); /* Unlock. */ CSR_WRITE_4_FLUSH(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1); return 0; } /* * Read a sequence of bytes from NVRAM. */ static int bge_read_nvram(struct bge_softc *sc, uint8_t *dest, int off, int cnt) { int error = 0, i; uint8_t byte = 0; if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906) return 1; for (i = 0; i < cnt; i++) { error = bge_nvram_getbyte(sc, off + i, &byte); if (error) break; *(dest + i) = byte; } return error ? 1 : 0; } /* * Read a byte of data stored in the EEPROM at address 'addr.' The * BCM570x supports both the traditional bitbang interface and an * auto access interface for reading the EEPROM. We use the auto * access method. */ static uint8_t bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest) { int i; uint32_t byte = 0; /* * Enable use of auto EEPROM access so we can avoid * having to use the bitbang method. */ BGE_SETBIT_FLUSH(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM); /* Reset the EEPROM, load the clock period. */ CSR_WRITE_4_FLUSH(sc, BGE_EE_ADDR, BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL)); DELAY(20); /* Issue the read EEPROM command. */ CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr); /* Wait for completion */ for (i = 0; i < BGE_TIMEOUT * 10; i++) { DELAY(10); if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE) break; } if (i == BGE_TIMEOUT * 10) { aprint_error_dev(sc->bge_dev, "eeprom read timed out\n"); return 1; } /* Get result. */ byte = CSR_READ_4(sc, BGE_EE_DATA); *dest = (byte >> ((addr % 4) * 8)) & 0xFF; return 0; } /* * Read a sequence of bytes from the EEPROM. */ static int bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt) { int error = 0, i; uint8_t byte = 0; char *dest = destv; for (i = 0; i < cnt; i++) { error = bge_eeprom_getbyte(sc, off + i, &byte); if (error) break; *(dest + i) = byte; } return error ? 1 : 0; } static int bge_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val) { struct bge_softc * const sc = device_private(dev); uint32_t data; uint32_t autopoll; int rv = 0; int i; KASSERT(mutex_owned(sc->sc_intr_lock)); if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0) return -1; /* Reading with autopolling on may trigger PCI errors */ autopoll = CSR_READ_4(sc, BGE_MI_MODE); if (autopoll & BGE_MIMODE_AUTOPOLL) { BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL); BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL); DELAY(80); } CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY | BGE_MIPHY(phy) | BGE_MIREG(reg)); for (i = 0; i < BGE_TIMEOUT; i++) { delay(10); data = CSR_READ_4(sc, BGE_MI_COMM); if (!(data & BGE_MICOMM_BUSY)) { DELAY(5); data = CSR_READ_4(sc, BGE_MI_COMM); break; } } if (i == BGE_TIMEOUT) { aprint_error_dev(sc->bge_dev, "PHY read timed out\n"); rv = ETIMEDOUT; } else if ((data & BGE_MICOMM_READFAIL) != 0) { /* XXX This error occurs on some devices while attaching. */ aprint_debug_dev(sc->bge_dev, "PHY read I/O error\n"); rv = EIO; } else *val = data & BGE_MICOMM_DATA; if (autopoll & BGE_MIMODE_AUTOPOLL) { BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL); BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL); DELAY(80); } bge_ape_unlock(sc, sc->bge_phy_ape_lock); return rv; } static int bge_miibus_writereg(device_t dev, int phy, int reg, uint16_t val) { struct bge_softc * const sc = device_private(dev); uint32_t data, autopoll; int rv = 0; int i; KASSERT(mutex_owned(sc->sc_intr_lock)); if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 && (reg == MII_GTCR || reg == BRGPHY_MII_AUXCTL)) return 0; if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0) return -1; /* Reading with autopolling on may trigger PCI errors */ autopoll = CSR_READ_4(sc, BGE_MI_MODE); if (autopoll & BGE_MIMODE_AUTOPOLL) { BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL); BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL); DELAY(80); } CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY | BGE_MIPHY(phy) | BGE_MIREG(reg) | val); for (i = 0; i < BGE_TIMEOUT; i++) { delay(10); data = CSR_READ_4(sc, BGE_MI_COMM); if (!(data & BGE_MICOMM_BUSY)) { delay(5); data = CSR_READ_4(sc, BGE_MI_COMM); break; } } if (i == BGE_TIMEOUT) { aprint_error_dev(sc->bge_dev, "PHY write timed out\n"); rv = ETIMEDOUT; } else if ((data & BGE_MICOMM_READFAIL) != 0) { aprint_error_dev(sc->bge_dev, "PHY write I/O error\n"); rv = EIO; } if (autopoll & BGE_MIMODE_AUTOPOLL) { BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL); BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL); delay(80); } bge_ape_unlock(sc, sc->bge_phy_ape_lock); return rv; } static void bge_miibus_statchg(struct ifnet *ifp) { struct bge_softc * const sc = ifp->if_softc; struct mii_data *mii = &sc->bge_mii; uint32_t mac_mode, rx_mode, tx_mode; KASSERT(mutex_owned(sc->sc_intr_lock)); /* * Get flow control negotiation result. */ if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO && (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags) sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK; if (!BGE_STS_BIT(sc, BGE_STS_LINK) && mii->mii_media_status & IFM_ACTIVE && IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) BGE_STS_SETBIT(sc, BGE_STS_LINK); else if (BGE_STS_BIT(sc, BGE_STS_LINK) && (!(mii->mii_media_status & IFM_ACTIVE) || IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) BGE_STS_CLRBIT(sc, BGE_STS_LINK); if (!BGE_STS_BIT(sc, BGE_STS_LINK)) return; /* Set the port mode (MII/GMII) to match the link speed. */ mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX); tx_mode = CSR_READ_4(sc, BGE_TX_MODE); rx_mode = CSR_READ_4(sc, BGE_RX_MODE); if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T || IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX) mac_mode |= BGE_PORTMODE_GMII; else mac_mode |= BGE_PORTMODE_MII; tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE; rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE; if ((mii->mii_media_active & IFM_FDX) != 0) { if (sc->bge_flowflags & IFM_ETH_TXPAUSE) tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE; if (sc->bge_flowflags & IFM_ETH_RXPAUSE) rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE; } else mac_mode |= BGE_MACMODE_HALF_DUPLEX; CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, mac_mode); DELAY(40); CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode); CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode); } /* * Update rx threshold levels to values in a particular slot * of the interrupt-mitigation table bge_rx_threshes. */ static void bge_set_thresh(struct ifnet *ifp, int lvl) { struct bge_softc * const sc = ifp->if_softc; /* * For now, just save the new Rx-intr thresholds and record * that a threshold update is pending. Updating the hardware * registers here (even at splhigh()) is observed to * occasionally cause glitches where Rx-interrupts are not * honoured for up to 10 seconds. jonathan@NetBSD.org, 2003-04-05 */ mutex_enter(sc->sc_intr_lock); sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks; sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds; sc->bge_pending_rxintr_change = true; mutex_exit(sc->sc_intr_lock); } /* * Update Rx thresholds of all bge devices */ static void bge_update_all_threshes(int lvl) { const char * const namebuf = "bge"; const size_t namelen = strlen(namebuf); struct ifnet *ifp; if (lvl < 0) lvl = 0; else if (lvl >= NBGE_RX_THRESH) lvl = NBGE_RX_THRESH - 1; /* * Now search all the interfaces for this name/number */ int s = pserialize_read_enter(); IFNET_READER_FOREACH(ifp) { if (strncmp(ifp->if_xname, namebuf, namelen) != 0) continue; /* We got a match: update if doing auto-threshold-tuning */ if (bge_auto_thresh) bge_set_thresh(ifp, lvl); } pserialize_read_exit(s); } /* * Handle events that have triggered interrupts. */ static void bge_handle_events(struct bge_softc *sc) { return; } /* * Memory management for jumbo frames. */ static int bge_alloc_jumbo_mem(struct bge_softc *sc) { char *ptr, *kva; int i, rseg, state, error; struct bge_jpool_entry *entry; state = error = 0; /* Grab a big chunk o' storage. */ if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0, &sc->bge_cdata.bge_rx_jumbo_seg, 1, &rseg, BUS_DMA_WAITOK)) { aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n"); return ENOBUFS; } state = 1; if (bus_dmamem_map(sc->bge_dmatag, &sc->bge_cdata.bge_rx_jumbo_seg, rseg, BGE_JMEM, (void **)&kva, BUS_DMA_WAITOK)) { aprint_error_dev(sc->bge_dev, "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM); error = ENOBUFS; goto out; } state = 2; if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0, BUS_DMA_WAITOK, &sc->bge_cdata.bge_rx_jumbo_map)) { aprint_error_dev(sc->bge_dev, "can't create DMA map\n"); error = ENOBUFS; goto out; } state = 3; if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map, kva, BGE_JMEM, NULL, BUS_DMA_WAITOK)) { aprint_error_dev(sc->bge_dev, "can't load DMA map\n"); error = ENOBUFS; goto out; } state = 4; sc->bge_cdata.bge_jumbo_buf = (void *)kva; DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf)); SLIST_INIT(&sc->bge_jfree_listhead); SLIST_INIT(&sc->bge_jinuse_listhead); /* * Now divide it up into 9K pieces and save the addresses * in an array. */ ptr = sc->bge_cdata.bge_jumbo_buf; for (i = 0; i < BGE_JSLOTS; i++) { sc->bge_cdata.bge_jslots[i] = ptr; ptr += BGE_JLEN; entry = kmem_alloc(sizeof(*entry), KM_SLEEP); entry->slot = i; SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries); } out: if (error != 0) { switch (state) { case 4: bus_dmamap_unload(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map); /* FALLTHROUGH */ case 3: bus_dmamap_destroy(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map); /* FALLTHROUGH */ case 2: bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM); /* FALLTHROUGH */ case 1: bus_dmamem_free(sc->bge_dmatag, &sc->bge_cdata.bge_rx_jumbo_seg, rseg); break; default: break; } } return error; } static void bge_free_jumbo_mem(struct bge_softc *sc) { struct bge_jpool_entry *entry, *tmp; KASSERT(SLIST_EMPTY(&sc->bge_jinuse_listhead)); SLIST_FOREACH_SAFE(entry, &sc->bge_jfree_listhead, jpool_entries, tmp) { kmem_free(entry, sizeof(*entry)); } bus_dmamap_unload(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map); bus_dmamap_destroy(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map); bus_dmamem_unmap(sc->bge_dmatag, sc->bge_cdata.bge_jumbo_buf, BGE_JMEM); bus_dmamem_free(sc->bge_dmatag, &sc->bge_cdata.bge_rx_jumbo_seg, 1); } /* * Allocate a jumbo buffer. */ static void * bge_jalloc(struct bge_softc *sc) { struct bge_jpool_entry *entry; entry = SLIST_FIRST(&sc->bge_jfree_listhead); if (entry == NULL) { aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n"); return NULL; } SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries); SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries); return sc->bge_cdata.bge_jslots[entry->slot]; } /* * Release a jumbo buffer. */ static void bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg) { struct bge_jpool_entry *entry; struct bge_softc * const sc = arg; if (sc == NULL) panic("bge_jfree: can't find softc pointer!"); /* calculate the slot this buffer belongs to */ int i = ((char *)buf - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN; if (i < 0 || i >= BGE_JSLOTS) panic("bge_jfree: asked to free buffer that we don't manage!"); mutex_enter(sc->sc_intr_lock); entry = SLIST_FIRST(&sc->bge_jinuse_listhead); if (entry == NULL) panic("bge_jfree: buffer not in use!"); entry->slot = i; SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries); SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries); mutex_exit(sc->sc_intr_lock); if (__predict_true(m != NULL)) pool_cache_put(mb_cache, m); } /* * Initialize a standard receive ring descriptor. */ static int bge_newbuf_std(struct bge_softc *sc, int i) { const bus_dmamap_t dmamap = sc->bge_cdata.bge_rx_std_map[i]; struct mbuf *m; MGETHDR(m, M_DONTWAIT, MT_DATA); if (m == NULL) return ENOBUFS; MCLAIM(m, &sc->ethercom.ec_rx_mowner); MCLGET(m, M_DONTWAIT); if (!(m->m_flags & M_EXT)) { m_freem(m); return ENOBUFS; } m->m_len = m->m_pkthdr.len = MCLBYTES; if (!(sc->bge_flags & BGEF_RX_ALIGNBUG)) m_adj(m, ETHER_ALIGN); if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m, BUS_DMA_READ | BUS_DMA_NOWAIT)) { m_freem(m); return ENOBUFS; } bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); sc->bge_cdata.bge_rx_std_chain[i] = m; bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map, offsetof(struct bge_ring_data, bge_rx_std_ring) + i * sizeof(struct bge_rx_bd), sizeof(struct bge_rx_bd), BUS_DMASYNC_POSTWRITE); struct bge_rx_bd * const r = &sc->bge_rdata->bge_rx_std_ring[i]; BGE_HOSTADDR(r->bge_addr, dmamap->dm_segs[0].ds_addr); r->bge_flags = BGE_RXBDFLAG_END; r->bge_len = m->m_len; r->bge_idx = i; bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map, offsetof(struct bge_ring_data, bge_rx_std_ring) + i * sizeof(struct bge_rx_bd), sizeof(struct bge_rx_bd), BUS_DMASYNC_PREWRITE); sc->bge_std_cnt++; return 0; } /* * Initialize a jumbo receive ring descriptor. This allocates * a jumbo buffer from the pool managed internally by the driver. */ static int bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m) { struct mbuf *m_new = NULL; struct bge_rx_bd *r; void *buf = NULL; if (m == NULL) { /* Allocate the mbuf. */ MGETHDR(m_new, M_DONTWAIT, MT_DATA); if (m_new == NULL) return ENOBUFS; MCLAIM(m, &sc->ethercom.ec_rx_mowner); /* Allocate the jumbo buffer */ buf = bge_jalloc(sc); if (buf == NULL) { m_freem(m_new); aprint_error_dev(sc->bge_dev, "jumbo allocation failed -- packet dropped!\n"); return ENOBUFS; } /* Attach the buffer to the mbuf. */ m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN; MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF, bge_jfree, sc); m_new->m_flags |= M_EXT_RW; } else { m_new = m; buf = m_new->m_data = m_new->m_ext.ext_buf; m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN; } if (!(sc->bge_flags & BGEF_RX_ALIGNBUG)) m_adj(m_new, ETHER_ALIGN); bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map, mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf, BGE_JLEN, BUS_DMASYNC_PREREAD); /* Set up the descriptor. */ r = &sc->bge_rdata->bge_rx_jumbo_ring[i]; sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new; BGE_HOSTADDR(r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new)); r->bge_flags = BGE_RXBDFLAG_END | BGE_RXBDFLAG_JUMBO_RING; r->bge_len = m_new->m_len; r->bge_idx = i; bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map, offsetof(struct bge_ring_data, bge_rx_jumbo_ring) + i * sizeof(struct bge_rx_bd), sizeof(struct bge_rx_bd), BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD); return 0; } static int bge_init_rx_ring_std(struct bge_softc *sc) { bus_dmamap_t dmamap; int error = 0; u_int i; if (sc->bge_flags & BGEF_RXRING_VALID) return 0; for (i = 0; i < BGE_STD_RX_RING_CNT; i++) { error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1, MCLBYTES, 0, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, &dmamap); if (error) goto uncreate; sc->bge_cdata.bge_rx_std_map[i] = dmamap; memset(&sc->bge_rdata->bge_rx_std_ring[i], 0, sizeof(struct bge_rx_bd)); } sc->bge_std = i - 1; sc->bge_std_cnt = 0; bge_fill_rx_ring_std(sc); sc->bge_flags |= BGEF_RXRING_VALID; return 0; uncreate: while (--i) { bus_dmamap_destroy(sc->bge_dmatag, sc->bge_cdata.bge_rx_std_map[i]); } return error; } static void bge_fill_rx_ring_std(struct bge_softc *sc) { int i = sc->bge_std; bool post = false; while (sc->bge_std_cnt < BGE_STD_RX_RING_CNT) { BGE_INC(i, BGE_STD_RX_RING_CNT); if (bge_newbuf_std(sc, i) != 0) break; sc->bge_std = i; post = true; } if (post) bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std); } static void bge_free_rx_ring_std(struct bge_softc *sc) { if (!(sc->bge_flags & BGEF_RXRING_VALID)) return; for (u_int i = 0; i < BGE_STD_RX_RING_CNT; i++) { const bus_dmamap_t dmap = sc->bge_cdata.bge_rx_std_map[i]; struct mbuf * const m = sc->bge_cdata.bge_rx_std_chain[i]; if (m != NULL) { bus_dmamap_sync(sc->bge_dmatag, dmap, 0, dmap->dm_mapsize, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->bge_dmatag, dmap); m_freem(m); sc->bge_cdata.bge_rx_std_chain[i] = NULL; } bus_dmamap_destroy(sc->bge_dmatag, sc->bge_cdata.bge_rx_std_map[i]); sc->bge_cdata.bge_rx_std_map[i] = NULL; memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0, sizeof(struct bge_rx_bd)); } sc->bge_flags &= ~BGEF_RXRING_VALID; } static int bge_init_rx_ring_jumbo(struct bge_softc *sc) { int i; volatile struct bge_rcb *rcb; if (sc->bge_flags & BGEF_JUMBO_RXRING_VALID) return 0; for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) { if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS) return ENOBUFS; } sc->bge_jumbo = i - 1; sc->bge_flags |= BGEF_JUMBO_RXRING_VALID; rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb; rcb->bge_maxlen_flags = 0; CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags); bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo); return 0; } static void bge_free_rx_ring_jumbo(struct bge_softc *sc) { int i; if (!(sc->bge_flags & BGEF_JUMBO_RXRING_VALID)) return; for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) { m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]); sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL; memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0, sizeof(struct bge_rx_bd)); } sc->bge_flags &= ~BGEF_JUMBO_RXRING_VALID; } static void bge_free_tx_ring(struct bge_softc *sc, bool disable) { int i; struct txdmamap_pool_entry *dma; if (!(sc->bge_flags & BGEF_TXRING_VALID)) return; for (i = 0; i < BGE_TX_RING_CNT; i++) { if (sc->bge_cdata.bge_tx_chain[i] != NULL) { m_freem(sc->bge_cdata.bge_tx_chain[i]); sc->bge_cdata.bge_tx_chain[i] = NULL; SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i], link); sc->txdma[i] = 0; } memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0, sizeof(struct bge_tx_bd)); } if (disable) { while ((dma = SLIST_FIRST(&sc->txdma_list))) { SLIST_REMOVE_HEAD(&sc->txdma_list, link); bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap); if (sc->bge_dma64) { bus_dmamap_destroy(sc->bge_dmatag32, dma->dmamap32); } kmem_free(dma, sizeof(*dma)); } SLIST_INIT(&sc->txdma_list); } sc->bge_flags &= ~BGEF_TXRING_VALID; } static int bge_init_tx_ring(struct bge_softc *sc) { struct ifnet * const ifp = &sc->ethercom.ec_if; int i; bus_dmamap_t dmamap, dmamap32; bus_size_t maxsegsz; struct txdmamap_pool_entry *dma; if (sc->bge_flags & BGEF_TXRING_VALID) return 0; sc->bge_txcnt = 0; sc->bge_tx_saved_considx = 0; /* Initialize transmit producer index for host-memory send ring. */ sc->bge_tx_prodidx = 0; bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx); /* 5700 b2 errata */ if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX) bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx); /* NIC-memory send ring not used; initialize to zero. */ bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0); /* 5700 b2 errata */ if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX) bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0); /* Limit DMA segment size for some chips */ if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) && (ifp->if_mtu <= ETHERMTU)) maxsegsz = 2048; else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) maxsegsz = 4096; else maxsegsz = ETHER_MAX_LEN_JUMBO; if (SLIST_FIRST(&sc->txdma_list) != NULL) goto alloc_done; for (i = 0; i < BGE_TX_RING_CNT; i++) { if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX, BGE_NTXSEG, maxsegsz, 0, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, &dmamap)) return ENOBUFS; if (dmamap == NULL) panic("dmamap NULL in bge_init_tx_ring"); if (sc->bge_dma64) { if (bus_dmamap_create(sc->bge_dmatag32, BGE_TXDMA_MAX, BGE_NTXSEG, maxsegsz, 0, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, &dmamap32)) { bus_dmamap_destroy(sc->bge_dmatag, dmamap); return ENOBUFS; } if (dmamap32 == NULL) panic("dmamap32 NULL in bge_init_tx_ring"); } else dmamap32 = dmamap; dma = kmem_alloc(sizeof(*dma), KM_NOSLEEP); if (dma == NULL) { aprint_error_dev(sc->bge_dev, "can't alloc txdmamap_pool_entry\n"); bus_dmamap_destroy(sc->bge_dmatag, dmamap); if (sc->bge_dma64) bus_dmamap_destroy(sc->bge_dmatag32, dmamap32); return ENOMEM; } dma->dmamap = dmamap; dma->dmamap32 = dmamap32; SLIST_INSERT_HEAD(&sc->txdma_list, dma, link); } alloc_done: sc->bge_flags |= BGEF_TXRING_VALID; return 0; } static void bge_setmulti(struct bge_softc *sc) { struct ethercom * const ec = &sc->ethercom; struct ether_multi *enm; struct ether_multistep step; uint32_t hashes[4] = { 0, 0, 0, 0 }; uint32_t h; int i; KASSERT(mutex_owned(sc->sc_mcast_lock)); if (sc->bge_if_flags & IFF_PROMISC) goto allmulti; /* Now program new ones. */ ETHER_LOCK(ec); ETHER_FIRST_MULTI(step, ec, enm); while (enm != NULL) { if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) { /* * We must listen to a range of multicast addresses. * For now, just accept all multicasts, rather than * trying to set only those filter bits needed to match * the range. (At this time, the only use of address * ranges is for IP multicast routing, for which the * range is big enough to require all bits set.) */ ETHER_UNLOCK(ec); goto allmulti; } h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN); /* Just want the 7 least-significant bits. */ h &= 0x7f; hashes[(h & 0x60) >> 5] |= 1U << (h & 0x1F); ETHER_NEXT_MULTI(step, enm); } ec->ec_flags &= ~ETHER_F_ALLMULTI; ETHER_UNLOCK(ec); goto setit; allmulti: ETHER_LOCK(ec); ec->ec_flags |= ETHER_F_ALLMULTI; ETHER_UNLOCK(ec); hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff; setit: for (i = 0; i < 4; i++) CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]); } static void bge_sig_pre_reset(struct bge_softc *sc, int type) { /* * Some chips don't like this so only do this if ASF is enabled */ if (sc->bge_asf_mode) bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC); if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) { switch (type) { case BGE_RESET_START: bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB, BGE_FW_DRV_STATE_START); break; case BGE_RESET_SHUTDOWN: bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB, BGE_FW_DRV_STATE_UNLOAD); break; case BGE_RESET_SUSPEND: bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB, BGE_FW_DRV_STATE_SUSPEND); break; } } if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND) bge_ape_driver_state_change(sc, type); } static void bge_sig_post_reset(struct bge_softc *sc, int type) { if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) { switch (type) { case BGE_RESET_START: bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB, BGE_FW_DRV_STATE_START_DONE); /* START DONE */ break; case BGE_RESET_SHUTDOWN: bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB, BGE_FW_DRV_STATE_UNLOAD_DONE); break; } } if (type == BGE_RESET_SHUTDOWN) bge_ape_driver_state_change(sc, type); } static void bge_sig_legacy(struct bge_softc *sc, int type) { if (sc->bge_asf_mode) { switch (type) { case BGE_RESET_START: bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB, BGE_FW_DRV_STATE_START); break; case BGE_RESET_SHUTDOWN: bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB, BGE_FW_DRV_STATE_UNLOAD); break; } } } static void bge_wait_for_event_ack(struct bge_softc *sc) { int i; /* wait up to 2500usec */ for (i = 0; i < 250; i++) { if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) & BGE_RX_CPU_DRV_EVENT)) break; DELAY(10); } } static void bge_stop_fw(struct bge_softc *sc) { if (sc->bge_asf_mode) { bge_wait_for_event_ack(sc); bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE); CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT, CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT); bge_wait_for_event_ack(sc); } } static int bge_poll_fw(struct bge_softc *sc) { uint32_t val; int i; if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) { for (i = 0; i < BGE_TIMEOUT; i++) { val = CSR_READ_4(sc, BGE_VCPU_STATUS); if (val & BGE_VCPU_STATUS_INIT_DONE) break; DELAY(100); } if (i >= BGE_TIMEOUT) { aprint_error_dev(sc->bge_dev, "reset timed out\n"); return -1; } } else { /* * Poll the value location we just wrote until * we see the 1's complement of the magic number. * This indicates that the firmware initialization * is complete. * XXX 1000ms for Flash and 10000ms for SEEPROM. */ for (i = 0; i < BGE_TIMEOUT; i++) { val = bge_readmem_ind(sc, BGE_SRAM_FW_MB); if (val == ~BGE_SRAM_FW_MB_MAGIC) break; DELAY(10); } if ((i >= BGE_TIMEOUT) && ((sc->bge_flags & BGEF_NO_EEPROM) == 0)) { aprint_error_dev(sc->bge_dev, "firmware handshake timed out, val = %x\n", val); return -1; } } if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) { /* tg3 says we have to wait extra time */ delay(10 * 1000); } return 0; } int bge_phy_addr(struct bge_softc *sc) { struct pci_attach_args *pa = &(sc->bge_pa); int phy_addr = 1; /* * PHY address mapping for various devices. * * | F0 Cu | F0 Sr | F1 Cu | F1 Sr | * ---------+-------+-------+-------+-------+ * BCM57XX | 1 | X | X | X | * BCM5704 | 1 | X | 1 | X | * BCM5717 | 1 | 8 | 2 | 9 | * BCM5719 | 1 | 8 | 2 | 9 | * BCM5720 | 1 | 8 | 2 | 9 | * * | F2 Cu | F2 Sr | F3 Cu | F3 Sr | * ---------+-------+-------+-------+-------+ * BCM57XX | X | X | X | X | * BCM5704 | X | X | X | X | * BCM5717 | X | X | X | X | * BCM5719 | 3 | 10 | 4 | 11 | * BCM5720 | X | X | X | X | * * Other addresses may respond but they are not * IEEE compliant PHYs and should be ignored. */ switch (BGE_ASICREV(sc->bge_chipid)) { case BGE_ASICREV_BCM5717: case BGE_ASICREV_BCM5719: case BGE_ASICREV_BCM5720: phy_addr = pa->pa_function; if (sc->bge_chipid != BGE_CHIPID_BCM5717_A0) { phy_addr += (CSR_READ_4(sc, BGE_SGDIG_STS) & BGE_SGDIGSTS_IS_SERDES) ? 8 : 1; } else { phy_addr += (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) & BGE_CPMU_PHY_STRAP_IS_SERDES) ? 8 : 1; } } return phy_addr; } /* * Do endian, PCI and DMA initialization. Also check the on-board ROM * self-test results. */ static int bge_chipinit(struct bge_softc *sc) { uint32_t dma_rw_ctl, misc_ctl, mode_ctl, reg; int i; /* Set endianness before we access any non-PCI registers. */ misc_ctl = BGE_INIT; if (sc->bge_flags & BGEF_TAGGED_STATUS) misc_ctl |= BGE_PCIMISCCTL_TAGGED_STATUS; pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL, misc_ctl); /* * Clear the MAC statistics block in the NIC's * internal memory. */ for (i = BGE_STATS_BLOCK; i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t)) BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0); for (i = BGE_STATUS_BLOCK; i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t)) BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0); /* 5717 workaround from tg3 */ if (sc->bge_chipid == BGE_CHIPID_BCM5717_A0) { /* Save */ mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL); /* Temporary modify MODE_CTL to control TLP */ reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK; CSR_WRITE_4(sc, BGE_MODE_CTL, reg | BGE_MODECTL_PCIE_TLPADDR1); /* Control TLP */ reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL1); CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL1, reg | BGE_TLP_PHYCTL1_EN_L1PLLPD); /* Restore */ CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl); } if (BGE_IS_57765_FAMILY(sc)) { if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) { /* Save */ mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL); /* Temporary modify MODE_CTL to control TLP */ reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK; CSR_WRITE_4(sc, BGE_MODE_CTL, reg | BGE_MODECTL_PCIE_TLPADDR1); /* Control TLP */ reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL5); CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL5, reg | BGE_TLP_PHYCTL5_DIS_L2CLKREQ); /* Restore */ CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl); } if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_57765_AX) { /* * For the 57766 and non Ax versions of 57765, bootcode * needs to setup the PCIE Fast Training Sequence (FTS) * value to prevent transmit hangs. */ reg = CSR_READ_4(sc, BGE_CPMU_PADRNG_CTL); CSR_WRITE_4(sc, BGE_CPMU_PADRNG_CTL, reg | BGE_CPMU_PADRNG_CTL_RDIV2); /* Save */ mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL); /* Temporary modify MODE_CTL to control TLP */ reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK; CSR_WRITE_4(sc, BGE_MODE_CTL, reg | BGE_MODECTL_PCIE_TLPADDR0); /* Control TLP */ reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_FTSMAX); reg &= ~BGE_TLP_FTSMAX_MSK; CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_FTSMAX, reg | BGE_TLP_FTSMAX_VAL); /* Restore */ CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl); } reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK); reg &= ~BGE_CPMU_LSPD_10MB_MACCLK_MASK; reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25; CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg); } /* Set up the PCI DMA control register. */ dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD; if (sc->bge_flags & BGEF_PCIE) { /* Read watermark not used, 128 bytes for write. */ DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n", device_xname(sc->bge_dev))); if (sc->bge_mps >= 256) dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(7); else dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3); } else if (sc->bge_flags & BGEF_PCIX) { DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n", device_xname(sc->bge_dev))); /* PCI-X bus */ if (BGE_IS_5714_FAMILY(sc)) { /* 256 bytes for read and write. */ dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) | BGE_PCIDMARWCTL_WR_WAT_SHIFT(2); if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780) dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL; else dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL; } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) { /* * In the BCM5703, the DMA read watermark should * be set to less than or equal to the maximum * memory read byte count of the PCI-X command * register. */ dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(4) | BGE_PCIDMARWCTL_WR_WAT_SHIFT(3); } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) { /* 1536 bytes for read, 384 bytes for write. */ dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) | BGE_PCIDMARWCTL_WR_WAT_SHIFT(3); } else { /* 384 bytes for read and write. */ dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) | BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) | (0x0F); } if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 || BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) { uint32_t tmp; /* Set ONEDMA_ATONCE for hardware workaround. */ tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f; if (tmp == 6 || tmp == 7) dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL; /* Set PCI-X DMA write workaround. */ dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE; } } else { /* Conventional PCI bus: 256 bytes for read and write. */ DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n", device_xname(sc->bge_dev))); dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) | BGE_PCIDMARWCTL_WR_WAT_SHIFT(7); if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5705 && BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5750) dma_rw_ctl |= 0x0F; } if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 || BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701) dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM | BGE_PCIDMARWCTL_ASRT_ALL_BE; if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 || BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA; if (BGE_IS_57765_PLUS(sc)) { dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT; if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK; /* * Enable HW workaround for controllers that misinterpret * a status tag update and leave interrupts permanently * disabled. */ if (!BGE_IS_57765_FAMILY(sc) && BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 && BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5762) dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA; } pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL, dma_rw_ctl); /* * Set up general mode register. */ mode_ctl = BGE_DMA_SWAP_OPTIONS; if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 || BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) { /* Retain Host-2-BMC settings written by APE firmware. */ mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL) & (BGE_MODECTL_BYTESWAP_B2HRX_DATA | BGE_MODECTL_WORDSWAP_B2HRX_DATA | BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE); } mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS | BGE_MODECTL_TX_NO_PHDR_CSUM; /* * BCM5701 B5 have a bug causing data corruption when using * 64-bit DMA reads, which can be terminated early and then * completed later as 32-bit accesses, in combination with * certain bridges. */ if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 && sc->bge_chipid == BGE_CHIPID_BCM5701_B5) mode_ctl |= BGE_MODECTL_FORCE_PCI32; /* * Tell the firmware the driver is running */ if (sc->bge_asf_mode & ASF_STACKUP) mode_ctl |= BGE_MODECTL_STACKUP; CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl); /* * Disable memory write invalidate. Apparently it is not supported * properly by these devices. */ PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, PCI_COMMAND_INVALIDATE_ENABLE); #ifdef __brokenalpha__ /* * Must insure that we do not cross an 8K (bytes) boundary * for DMA reads. Our highest limit is 1K bytes. This is a * restriction on some ALPHA platforms with early revision * 21174 PCI chipsets, such as the AlphaPC 164lx */ PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4); #endif /* Set the timer prescaler (always 66MHz) */ CSR_WRITE_4_FLUSH(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ); if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) { DELAY(40); /* XXX */ /* Put PHY into ready state */ BGE_CLRBIT_FLUSH(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ); DELAY(40); } return 0; } static int bge_blockinit(struct bge_softc *sc) { volatile struct bge_rcb *rcb; bus_size_t rcb_addr; struct ifnet * const ifp = &sc->ethercom.ec_if; bge_hostaddr taddr; uint32_t dmactl, rdmareg, mimode, val; int i, limit; /* * Initialize the memory window pointer register so that * we can access the first 32K of internal NIC RAM. This will * allow us to set up the TX send ring RCBs and the RX return * ring RCBs, plus other things which live in NIC memory. */ pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0); if (!BGE_IS_5705_PLUS(sc)) { /* 57XX step 33 */ /* Configure mbuf memory pool */ CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1); if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000); else CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000); /* 57XX step 34 */ /* Configure DMA resource pool */ CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR, BGE_DMA_DESCRIPTORS); CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000); } /* 5718 step 11, 57XX step 35 */ /* * Configure mbuf pool watermarks. New broadcom docs strongly * recommend these. */ if (BGE_IS_5717_PLUS(sc)) { CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0); if (ifp->if_mtu > ETHERMTU) { CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x7e); CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xea); } else { CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a); CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0); } } else if (BGE_IS_5705_PLUS(sc)) { CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0); if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) { CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04); CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10); } else { CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10); CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60); } } else { CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50); CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20); CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60); } /* 57XX step 36 */ /* Configure DMA resource watermarks */ CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5); CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10); /* 5718 step 13, 57XX step 38 */ /* Enable buffer manager */ val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_ATTN; /* * Change the arbitration algorithm of TXMBUF read request to * round-robin instead of priority based for BCM5719. When * TXFIFO is almost empty, RDMA will hold its request until * TXFIFO is not almost empty. */ if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) val |= BGE_BMANMODE_NO_TX_UNDERRUN; if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 || sc->bge_chipid == BGE_CHIPID_BCM5719_A0 || sc->bge_chipid == BGE_CHIPID_BCM5720_A0) val |= BGE_BMANMODE_LOMBUF_ATTN; CSR_WRITE_4(sc, BGE_BMAN_MODE, val); /* 57XX step 39 */ /* Poll for buffer manager start indication */ for (i = 0; i < BGE_TIMEOUT * 2; i++) { DELAY(10); if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE) break; } if (i == BGE_TIMEOUT * 2) { aprint_error_dev(sc->bge_dev, "buffer manager failed to start\n"); return ENXIO; } /* 57XX step 40 */ /* Enable flow-through queues */ CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF); CSR_WRITE_4(sc, BGE_FTQ_RESET, 0); /* Wait until queue initialization is complete */ for (i = 0; i < BGE_TIMEOUT * 2; i++) { if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0) break; DELAY(10); } if (i == BGE_TIMEOUT * 2) { aprint_error_dev(sc->bge_dev, "flow-through queue init failed\n"); return ENXIO; } /* * Summary of rings supported by the controller: * * Standard Receive Producer Ring * - This ring is used to feed receive buffers for "standard" * sized frames (typically 1536 bytes) to the controller. * * Jumbo Receive Producer Ring * - This ring is used to feed receive buffers for jumbo sized * frames (i.e. anything bigger than the "standard" frames) * to the controller. * * Mini Receive Producer Ring * - This ring is used to feed receive buffers for "mini" * sized frames to the controller. * - This feature required external memory for the controller * but was never used in a production system. Should always * be disabled. * * Receive Return Ring * - After the controller has placed an incoming frame into a * receive buffer that buffer is moved into a receive return * ring. The driver is then responsible to passing the * buffer up to the stack. Many versions of the controller * support multiple RR rings. * * Send Ring * - This ring is used for outgoing frames. Many versions of * the controller support multiple send rings. */ /* 5718 step 15, 57XX step 41 */ /* Initialize the standard RX ring control block */ rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb; BGE_HOSTADDR(rcb->bge_hostaddr, BGE_RING_DMA_ADDR(sc, bge_rx_std_ring)); /* 5718 step 16 */ if (BGE_IS_57765_PLUS(sc)) { /* * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32) * Bits 15-2 : Maximum RX frame size * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled * Bit 0 : Reserved */ rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2); } else if (BGE_IS_5705_PLUS(sc)) { /* * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32) * Bits 15-2 : Reserved (should be 0) * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled * Bit 0 : Reserved */ rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0); } else { /* * Ring size is always XXX entries * Bits 31-16: Maximum RX frame size * Bits 15-2 : Reserved (should be 0) * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled * Bit 0 : Reserved */ rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0); } if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 || BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 || BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717; else rcb->bge_nicaddr = BGE_STD_RX_RINGS; /* Write the standard receive producer ring control block. */ CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi); CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo); CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags); CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr); /* Reset the standard receive producer ring producer index. */ bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0); /* 57XX step 42 */ /* * Initialize the jumbo RX ring control block * We set the 'ring disabled' bit in the flags * field until we're actually ready to start * using this ring (i.e. once we set the MTU * high enough to require it). */ if (BGE_IS_JUMBO_CAPABLE(sc)) { rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb; BGE_HOSTADDR(rcb->bge_hostaddr, BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring)); rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED); if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 || BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 || BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717; else rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS; CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi); CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo); /* Program the jumbo receive producer ring RCB parameters. */ CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags); CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr); /* Reset the jumbo receive producer ring producer index. */ bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0); } /* 57XX step 43 */ /* Disable the mini receive producer ring RCB. */ if (BGE_IS_5700_FAMILY(sc)) { /* Set up dummy disabled mini ring RCB */ rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb; rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED); CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags); /* Reset the mini receive producer ring producer index. */ bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0); bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map, offsetof(struct bge_ring_data, bge_info), sizeof(struct bge_gib), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); } /* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */ if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) { if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 || sc->bge_chipid == BGE_CHIPID_BCM5906_A1 || sc->bge_chipid == BGE_CHIPID_BCM5906_A2) CSR_WRITE_4(sc, BGE_ISO_PKT_TX, (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2); } /* 5718 step 14, 57XX step 44 */ /* * The BD ring replenish thresholds control how often the * hardware fetches new BD's from the producer rings in host * memory. Setting the value too low on a busy system can * starve the hardware and reduce the throughput. * * Set the BD ring replenish thresholds. The recommended * values are 1/8th the number of descriptors allocated to * each ring, but since we try to avoid filling the entire * ring we set these to the minimal value of 8. This needs to * be done on several of the supported chip revisions anyway, * to work around HW bugs. */ CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, 8); if (BGE_IS_JUMBO_CAPABLE(sc)) CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, 8); /* 5718 step 18 */ if (BGE_IS_5717_PLUS(sc)) { CSR_WRITE_4(sc, BGE_STD_REPL_LWM, 4); CSR_WRITE_4(sc, BGE_JUMBO_REPL_LWM, 4); } /* 57XX step 45 */ /* * Disable all send rings by setting the 'ring disabled' bit * in the flags field of all the TX send ring control blocks, * located in NIC memory. */ if (BGE_IS_5700_FAMILY(sc)) { /* 5700 to 5704 had 16 send rings. */ limit = BGE_TX_RINGS_EXTSSRAM_MAX; } else if (BGE_IS_5717_PLUS(sc)) { limit = BGE_TX_RINGS_5717_MAX; } else if (BGE_IS_57765_FAMILY(sc) || BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) { limit = BGE_TX_RINGS_57765_MAX; } else limit = 1; rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB; for (i = 0; i < limit; i++) { RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags, BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED)); RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0); rcb_addr += sizeof(struct bge_rcb); } /* 57XX step 46 and 47 */ /* Configure send ring RCB 0 (we use only the first ring) */ rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB; BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring)); RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi); RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo); if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 || BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 || BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, BGE_SEND_RING_5717); else RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT)); RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags, BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0)); /* 57XX step 48 */ /* * Disable all receive return rings by setting the * 'ring disabled' bit in the flags field of all the receive * return ring control blocks, located in NIC memory. */ if (BGE_IS_5717_PLUS(sc)) { /* Should be 17, use 16 until we get an SRAM map. */ limit = 16; } else if (BGE_IS_5700_FAMILY(sc)) limit = BGE_RX_RINGS_MAX; else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 || BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762 || BGE_IS_57765_FAMILY(sc)) limit = 4; else limit = 1; /* Disable all receive return rings */ rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB; for (i = 0; i < limit; i++) { RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0); RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0); RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags, BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, BGE_RCB_FLAG_RING_DISABLED)); RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0); bge_writembx(sc, BGE_MBX_RX_CONS0_LO + (i * (sizeof(uint64_t))), 0); rcb_addr += sizeof(struct bge_rcb); } /* 57XX step 49 */ /* * Set up receive return ring 0. Note that the NIC address * for RX return rings is 0x0. The return rings live entirely * within the host, so the nicaddr field in the RCB isn't used. */ rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB; BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring)); RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi); RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo); RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000); RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags, BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0)); /* 5718 step 24, 57XX step 53 */ /* Set random backoff seed for TX */ CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF, (CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] + CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] + CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5]) & BGE_TX_BACKOFF_SEED_MASK); /* 5718 step 26, 57XX step 55 */ /* Set inter-packet gap */ val = 0x2620; if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 || BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) val |= CSR_READ_4(sc, BGE_TX_LENGTHS) & (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK); CSR_WRITE_4(sc, BGE_TX_LENGTHS, val); /* 5718 step 27, 57XX step 56 */ /* * Specify which ring to use for packets that don't match * any RX rules. */ CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08); /* 5718 step 28, 57XX step 57 */ /* * Configure number of RX lists. One interrupt distribution * list, sixteen active lists, one bad frames class. */ CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181); /* 5718 step 29, 57XX step 58 */ /* Initialize RX list placement stats mask. */ if (BGE_IS_575X_PLUS(sc)) { val = CSR_READ_4(sc, BGE_RXLP_STATS_ENABLE_MASK); val &= ~BGE_RXLPSTATCONTROL_DACK_FIX; CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, val); } else CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF); /* 5718 step 30, 57XX step 59 */ CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1); /* 5718 step 33, 57XX step 62 */ /* Disable host coalescing until we get it set up */ CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000); /* 5718 step 34, 57XX step 63 */ /* Poll to make sure it's shut down. */ for (i = 0; i < BGE_TIMEOUT * 2; i++) { DELAY(10); if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE)) break; } if (i == BGE_TIMEOUT * 2) { aprint_error_dev(sc->bge_dev, "host coalescing engine failed to idle\n"); return ENXIO; } /* 5718 step 35, 36, 37 */ /* Set up host coalescing defaults */ mutex_enter(sc->sc_intr_lock); const uint32_t rx_coal_ticks = sc->bge_rx_coal_ticks; const uint32_t tx_coal_ticks = sc->bge_tx_coal_ticks; const uint32_t rx_max_coal_bds = sc->bge_rx_max_coal_bds; const uint32_t tx_max_coal_bds = sc->bge_tx_max_coal_bds; mutex_exit(sc->sc_intr_lock); CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_coal_ticks); CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, tx_coal_ticks); CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_max_coal_bds); CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, tx_max_coal_bds); if (!(BGE_IS_5705_PLUS(sc))) { CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0); CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0); } CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0); CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0); /* Set up address of statistics block */ if (BGE_IS_5700_FAMILY(sc)) { BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats)); CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks); CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK); CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi); CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo); } /* 5718 step 38 */ /* Set up address of status block */ BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_status_block)); CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK); CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi); CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo); sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0; sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0; /* Set up status block size. */ if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 && sc->bge_chipid != BGE_CHIPID_BCM5700_C0) { val = BGE_STATBLKSZ_FULL; bzero(&sc->bge_rdata->bge_status_block, BGE_STATUS_BLK_SZ); } else { val = BGE_STATBLKSZ_32BYTE; bzero(&sc->bge_rdata->bge_status_block, 32); } /* 5718 step 39, 57XX step 73 */ /* Turn on host coalescing state machine */ CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE); /* 5718 step 40, 57XX step 74 */ /* Turn on RX BD completion state machine and enable attentions */ CSR_WRITE_4(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN); /* 5718 step 41, 57XX step 75 */ /* Turn on RX list placement state machine */ CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE); /* 57XX step 76 */ /* Turn on RX list selector state machine. */ if (!(BGE_IS_5705_PLUS(sc))) CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE); val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB | BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR | BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB | BGE_MACMODE_FRMHDR_DMA_ENB; if (sc->bge_flags & BGEF_FIBER_TBI) val |= BGE_PORTMODE_TBI; else if (sc->bge_flags & BGEF_FIBER_MII) val |= BGE_PORTMODE_GMII; else val |= BGE_PORTMODE_MII; /* 5718 step 42 and 43, 57XX step 77 and 78 */ /* Allow APE to send/receive frames. */ if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0) val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN; /* Turn on DMA, clear stats */ CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val); /* 5718 step 44 */ DELAY(40); /* 5718 step 45, 57XX step 79 */ /* Set misc. local control, enable interrupts on attentions */ BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN); if (BGE_IS_5717_PLUS(sc)) { CSR_READ_4(sc, BGE_MISC_LOCAL_CTL); /* Flush */ /* 5718 step 46 */ DELAY(100); } /* 57XX step 81 */ /* Turn on DMA completion state machine */ if (!(BGE_IS_5705_PLUS(sc))) CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE); /* 5718 step 47, 57XX step 82 */ val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS; /* 5718 step 48 */ /* Enable host coalescing bug fix. */ if (BGE_IS_5755_PLUS(sc)) val |= BGE_WDMAMODE_STATUS_TAG_FIX; if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785) val |= BGE_WDMAMODE_BURST_ALL_DATA; /* Turn on write DMA state machine */ CSR_WRITE_4_FLUSH(sc, BGE_WDMA_MODE, val); /* 5718 step 49 */ DELAY(40); val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS; if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717) val |= BGE_RDMAMODE_MULT_DMA_RD_DIS; if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 || BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 || BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780) val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN | BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN | BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN; if (sc->bge_flags & BGEF_PCIE) val |= BGE_RDMAMODE_FIFO_LONG_BURST; if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) { if (ifp->if_mtu <= ETHERMTU) val |= BGE_RDMAMODE_JMB_2K_MMRR; } if (sc->bge_flags & BGEF_TSO) { val |= BGE_RDMAMODE_TSO4_ENABLE; if (BGE_IS_5717_PLUS(sc)) val |= BGE_RDMAMODE_TSO6_ENABLE; } if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 || BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) { val |= CSR_READ_4(sc, BGE_RDMA_MODE) & BGE_RDMAMODE_H2BNC_VLAN_DET; /* * Allow multiple outstanding read requests from * non-LSO read DMA engine. */ val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS; } if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 || BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 || BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 || BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780 || BGE_IS_57765_PLUS(sc)) { if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) rdmareg = BGE_RDMA_RSRVCTRL_REG2; else rdmareg = BGE_RDMA_RSRVCTRL; dmactl = CSR_READ_4(sc, rdmareg); /* * Adjust tx margin to prevent TX data corruption and * fix internal FIFO overflow. */ if (sc->bge_chipid == BGE_CHIPID_BCM5719_A0 || BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) { dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK | BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK | BGE_RDMA_RSRVCTRL_TXMRGN_MASK); dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K | BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K | BGE_RDMA_RSRVCTRL_TXMRGN_320B; } /* * Enable fix for read DMA FIFO overruns. * The fix is to limit the number of RX BDs * the hardware would fetch at a time. */ CSR_WRITE_4(sc, rdmareg, dmactl | BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX); } if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) { CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) | BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K | BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K); } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) { /* * Allow 4KB burst length reads for non-LSO frames. * Enable 512B burst length reads for buffer descriptors. */ CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) | BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 | BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K); } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) { CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2, CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2) | BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K | BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K); } /* Turn on read DMA state machine */ CSR_WRITE_4_FLUSH(sc, BGE_RDMA_MODE, val); /* 5718 step 52 */ delay(40); if (sc->bge_flags & BGEF_RDMA_BUG) { for (i = 0; i < BGE_NUM_RDMA_CHANNELS / 2; i++) { val = CSR_READ_4(sc, BGE_RDMA_LENGTH + i * 4); if ((val & 0xFFFF) > BGE_FRAMELEN) break; if (((val >> 16) & 0xFFFF) > BGE_FRAMELEN) break; } if (i != BGE_NUM_RDMA_CHANNELS / 2) { val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL); if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) val |= BGE_RDMA_TX_LENGTH_WA_5719; else val |= BGE_RDMA_TX_LENGTH_WA_5720; CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val); } } /* 5718 step 56, 57XX step 84 */ /* Turn on RX data completion state machine */ CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE); /* Turn on RX data and RX BD initiator state machine */ CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE); /* 57XX step 85 */ /* Turn on Mbuf cluster free state machine */ if (!BGE_IS_5705_PLUS(sc)) CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE); /* 5718 step 57, 57XX step 86 */ /* Turn on send data completion state machine */ val = BGE_SDCMODE_ENABLE; if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761) val |= BGE_SDCMODE_CDELAY; CSR_WRITE_4(sc, BGE_SDC_MODE, val); /* 5718 step 58 */ /* Turn on send BD completion state machine */ CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE); /* 57XX step 88 */ /* Turn on RX BD initiator state machine */ CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE); /* 5718 step 60, 57XX step 90 */ /* Turn on send data initiator state machine */ if (sc->bge_flags & BGEF_TSO) { /* XXX: magic value from Linux driver */ CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE | BGE_SDIMODE_HW_LSO_PRE_DMA); } else CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE); /* 5718 step 61, 57XX step 91 */ /* Turn on send BD initiator state machine */ CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE); /* 5718 step 62, 57XX step 92 */ /* Turn on send BD selector state machine */ CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE); /* 5718 step 31, 57XX step 60 */ CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF); /* 5718 step 32, 57XX step 61 */ CSR_WRITE_4(sc, BGE_SDI_STATS_CTL, BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER); /* ack/clear link change events */ CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED | BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE | BGE_MACSTAT_LINK_CHANGED); CSR_WRITE_4(sc, BGE_MI_STS, 0); /* * Enable attention when the link has changed state for * devices that use auto polling. */ if (sc->bge_flags & BGEF_FIBER_TBI) { CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK); } else { if ((sc->bge_flags & BGEF_CPMU_PRESENT) != 0) mimode = BGE_MIMODE_500KHZ_CONST; else mimode = BGE_MIMODE_BASE; /* 5718 step 68. 5718 step 69 (optionally). */ if (BGE_IS_5700_FAMILY(sc) || BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705) { mimode |= BGE_MIMODE_AUTOPOLL; BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL); } mimode |= BGE_MIMODE_PHYADDR(sc->bge_phy_addr); CSR_WRITE_4(sc, BGE_MI_MODE, mimode); if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) CSR_WRITE_4(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_MI_INTERRUPT); } /* * Clear any pending link state attention. * Otherwise some link state change events may be lost until attention * is cleared by bge_intr() -> bge_link_upd() sequence. * It's not necessary on newer BCM chips - perhaps enabling link * state change attentions implies clearing pending attention. */ CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED | BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE | BGE_MACSTAT_LINK_CHANGED); /* Enable link state change attentions. */ BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED); return 0; } static const struct bge_revision * bge_lookup_rev(uint32_t chipid) { const struct bge_revision *br; for (br = bge_revisions; br->br_name != NULL; br++) { if (br->br_chipid == chipid) return br; } for (br = bge_majorrevs; br->br_name != NULL; br++) { if (br->br_chipid == BGE_ASICREV(chipid)) return br; } return NULL; } static const struct bge_product * bge_lookup(const struct pci_attach_args *pa) { const struct bge_product *bp; for (bp = bge_products; bp->bp_name != NULL; bp++) { if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor && PCI_PRODUCT(pa->pa_id) == bp->bp_product) return bp; } return NULL; } static uint32_t bge_chipid(const struct pci_attach_args *pa) { uint32_t id; id = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL) >> BGE_PCIMISCCTL_ASICREV_SHIFT; if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) { switch (PCI_PRODUCT(pa->pa_id)) { case PCI_PRODUCT_BROADCOM_BCM5717: case PCI_PRODUCT_BROADCOM_BCM5718: case PCI_PRODUCT_BROADCOM_BCM5719: case PCI_PRODUCT_BROADCOM_BCM5720: case PCI_PRODUCT_BROADCOM_BCM5725: case PCI_PRODUCT_BROADCOM_BCM5727: case PCI_PRODUCT_BROADCOM_BCM5762: case PCI_PRODUCT_BROADCOM_BCM57764: case PCI_PRODUCT_BROADCOM_BCM57767: case PCI_PRODUCT_BROADCOM_BCM57787: id = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_GEN2_PRODID_ASICREV); break; case PCI_PRODUCT_BROADCOM_BCM57761: case PCI_PRODUCT_BROADCOM_BCM57762: case PCI_PRODUCT_BROADCOM_BCM57765: case PCI_PRODUCT_BROADCOM_BCM57766: case PCI_PRODUCT_BROADCOM_BCM57781: case PCI_PRODUCT_BROADCOM_BCM57782: case PCI_PRODUCT_BROADCOM_BCM57785: case PCI_PRODUCT_BROADCOM_BCM57786: case PCI_PRODUCT_BROADCOM_BCM57791: case PCI_PRODUCT_BROADCOM_BCM57795: id = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_GEN15_PRODID_ASICREV); break; default: id = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PRODID_ASICREV); break; } } return id; } /* * Return true if MSI can be used with this device. */ static int bge_can_use_msi(struct bge_softc *sc) { int can_use_msi = 0; switch (BGE_ASICREV(sc->bge_chipid)) { case BGE_ASICREV_BCM5714_A0: case BGE_ASICREV_BCM5714: /* * Apparently, MSI doesn't work when these chips are * configured in single-port mode. */ break; case BGE_ASICREV_BCM5750: if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5750_AX && BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5750_BX) can_use_msi = 1; break; default: if (BGE_IS_575X_PLUS(sc)) can_use_msi = 1; } return can_use_msi; } /* * Probe for a Broadcom chip. Check the PCI vendor and device IDs * against our list and return its name if we find a match. Note * that since the Broadcom controller contains VPD support, we * can get the device name string from the controller itself instead * of the compiled-in string. This is a little slow, but it guarantees * we'll always announce the right product name. */ static int bge_probe(device_t parent, cfdata_t match, void *aux) { struct pci_attach_args *pa = (struct pci_attach_args *)aux; if (bge_lookup(pa) != NULL) return 1; return 0; } static void bge_attach(device_t parent, device_t self, void *aux) { struct bge_softc * const sc = device_private(self); struct pci_attach_args * const pa = aux; prop_dictionary_t dict; const struct bge_product *bp; const struct bge_revision *br; pci_chipset_tag_t pc; const char *intrstr = NULL; uint32_t hwcfg, hwcfg2, hwcfg3, hwcfg4, hwcfg5; uint32_t command; struct ifnet *ifp; struct mii_data * const mii = &sc->bge_mii; uint32_t misccfg, mimode, macmode; void * kva; u_char eaddr[ETHER_ADDR_LEN]; pcireg_t memtype, subid, reg; bus_addr_t memaddr; uint32_t pm_ctl; bool no_seeprom; int capmask, trys; int mii_flags; int map_flags; char intrbuf[PCI_INTRSTR_LEN]; bp = bge_lookup(pa); KASSERT(bp != NULL); sc->sc_pc = pa->pa_pc; sc->sc_pcitag = pa->pa_tag; sc->bge_dev = self; sc->bge_pa = *pa; pc = sc->sc_pc; subid = pci_conf_read(pc, sc->sc_pcitag, PCI_SUBSYS_ID_REG); aprint_naive(": Ethernet controller\n"); aprint_normal(": %s Ethernet\n", bp->bp_name); /* * Map control/status registers. */ DPRINTFN(5, ("Map control/status regs\n")); command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG); command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE; pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command); command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG); if (!(command & PCI_COMMAND_MEM_ENABLE)) { aprint_error_dev(sc->bge_dev, "failed to enable memory mapping!\n"); return; } DPRINTFN(5, ("pci_mem_find\n")); memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0); switch (memtype) { case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT: case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT: #if 0 if (pci_mapreg_map(pa, BGE_PCI_BAR0, memtype, 0, &sc->bge_btag, &sc->bge_bhandle, &memaddr, &sc->bge_bsize) == 0) break; #else /* * Workaround for PCI prefetchable bit. Some BCM5717-5720 based * system get NMI on boot (PR#48451). This problem might not be * the driver's bug but our PCI common part's bug. Until we * find a real reason, we ignore the prefetchable bit. */ if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR0, memtype, &memaddr, &sc->bge_bsize, &map_flags) == 0) { map_flags &= ~BUS_SPACE_MAP_PREFETCHABLE; if (bus_space_map(pa->pa_memt, memaddr, sc->bge_bsize, map_flags, &sc->bge_bhandle) == 0) { sc->bge_btag = pa->pa_memt; break; } } #endif /* FALLTHROUGH */ default: aprint_error_dev(sc->bge_dev, "can't find mem space\n"); return; } sc->bge_txrx_stopping = false; /* Save various chip information. */ sc->bge_chipid = bge_chipid(pa); sc->bge_phy_addr = bge_phy_addr(sc); if (pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS, &sc->bge_pciecap, NULL) != 0) { /* PCIe */ sc->bge_flags |= BGEF_PCIE; /* Extract supported maximum payload size. */ reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap + PCIE_DCAP); sc->bge_mps = 128 << (reg & PCIE_DCAP_MAX_PAYLOAD); if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 || BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) sc->bge_expmrq = 2048; else sc->bge_expmrq = 4096; bge_set_max_readrq(sc); } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785) { /* PCIe without PCIe cap */ sc->bge_flags |= BGEF_PCIE; } else if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) & BGE_PCISTATE_PCI_BUSMODE) == 0) { /* PCI-X */ sc->bge_flags |= BGEF_PCIX; if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX, &sc->bge_pcixcap, NULL) == 0) aprint_error_dev(sc->bge_dev, "unable to find PCIX capability\n"); } if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX) { /* * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?) * can clobber the chip's PCI config-space power control * registers, leaving the card in D3 powersave state. We do * not have memory-mapped registers in this state, so force * device into D0 state before starting initialization. */ pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD); pm_ctl &= ~(PCI_PWR_D0 | PCI_PWR_D1 | PCI_PWR_D2 | PCI_PWR_D3); pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */ pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl); DELAY(1000); /* 27 usec is allegedly sufficient */ } /* Save chipset family. */ switch (BGE_ASICREV(sc->bge_chipid)) { case BGE_ASICREV_BCM5717: case BGE_ASICREV_BCM5719: case BGE_ASICREV_BCM5720: sc->bge_flags |= BGEF_5717_PLUS; /* FALLTHROUGH */ case BGE_ASICREV_BCM5762: case BGE_ASICREV_BCM57765: case BGE_ASICREV_BCM57766: if (!BGE_IS_5717_PLUS(sc)) sc->bge_flags |= BGEF_57765_FAMILY; sc->bge_flags |= BGEF_57765_PLUS | BGEF_5755_PLUS | BGEF_575X_PLUS | BGEF_5705_PLUS | BGEF_JUMBO_CAPABLE; if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 || BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) { /* * Enable work around for DMA engine miscalculation * of TXMBUF available space. */ sc->bge_flags |= BGEF_RDMA_BUG; if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) && (sc->bge_chipid == BGE_CHIPID_BCM5719_A0)) { /* Jumbo frame on BCM5719 A0 does not work. */ sc->bge_flags &= ~BGEF_JUMBO_CAPABLE; } } break; case BGE_ASICREV_BCM5755: case BGE_ASICREV_BCM5761: case BGE_ASICREV_BCM5784: case BGE_ASICREV_BCM5785: case BGE_ASICREV_BCM5787: case BGE_ASICREV_BCM57780: sc->bge_flags |= BGEF_5755_PLUS | BGEF_575X_PLUS | BGEF_5705_PLUS; break; case BGE_ASICREV_BCM5700: case BGE_ASICREV_BCM5701: case BGE_ASICREV_BCM5703: case BGE_ASICREV_BCM5704: sc->bge_flags |= BGEF_5700_FAMILY | BGEF_JUMBO_CAPABLE; break; case BGE_ASICREV_BCM5714_A0: case BGE_ASICREV_BCM5780: case BGE_ASICREV_BCM5714: sc->bge_flags |= BGEF_5714_FAMILY | BGEF_JUMBO_CAPABLE; /* FALLTHROUGH */ case BGE_ASICREV_BCM5750: case BGE_ASICREV_BCM5752: case BGE_ASICREV_BCM5906: sc->bge_flags |= BGEF_575X_PLUS; /* FALLTHROUGH */ case BGE_ASICREV_BCM5705: sc->bge_flags |= BGEF_5705_PLUS; break; } /* Identify chips with APE processor. */ switch (BGE_ASICREV(sc->bge_chipid)) { case BGE_ASICREV_BCM5717: case BGE_ASICREV_BCM5719: case BGE_ASICREV_BCM5720: case BGE_ASICREV_BCM5761: case BGE_ASICREV_BCM5762: sc->bge_flags |= BGEF_APE; break; } /* * The 40bit DMA bug applies to the 5714/5715 controllers and is * not actually a MAC controller bug but an issue with the embedded * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround. */ if (BGE_IS_5714_FAMILY(sc) && ((sc->bge_flags & BGEF_PCIX) != 0)) sc->bge_flags |= BGEF_40BIT_BUG; /* Chips with APE need BAR2 access for APE registers/memory. */ if ((sc->bge_flags & BGEF_APE) != 0) { memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2); #if 0 if (pci_mapreg_map(pa, BGE_PCI_BAR2, memtype, 0, &sc->bge_apetag, &sc->bge_apehandle, NULL, &sc->bge_apesize)) { aprint_error_dev(sc->bge_dev, "couldn't map BAR2 memory\n"); return; } #else /* * Workaround for PCI prefetchable bit. Some BCM5717-5720 based * system get NMI on boot (PR#48451). This problem might not be * the driver's bug but our PCI common part's bug. Until we * find a real reason, we ignore the prefetchable bit. */ if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2, memtype, &memaddr, &sc->bge_apesize, &map_flags) != 0) { aprint_error_dev(sc->bge_dev, "couldn't map BAR2 memory\n"); return; } map_flags &= ~BUS_SPACE_MAP_PREFETCHABLE; if (bus_space_map(pa->pa_memt, memaddr, sc->bge_apesize, map_flags, &sc->bge_apehandle) != 0) { aprint_error_dev(sc->bge_dev, "couldn't map BAR2 memory\n"); return; } sc->bge_apetag = pa->pa_memt; #endif /* Enable APE register/memory access by host driver. */ reg = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE); reg |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR | BGE_PCISTATE_ALLOW_APE_SHMEM_WR | BGE_PCISTATE_ALLOW_APE_PSPACE_WR; pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE, reg); bge_ape_lock_init(sc); bge_ape_read_fw_ver(sc); } /* Identify the chips that use an CPMU. */ if (BGE_IS_5717_PLUS(sc) || BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 || BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 || BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 || BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780) sc->bge_flags |= BGEF_CPMU_PRESENT; /* * When using the BCM5701 in PCI-X mode, data corruption has * been observed in the first few bytes of some received packets. * Aligning the packet buffer in memory eliminates the corruption. * Unfortunately, this misaligns the packet payloads. On platforms * which do not support unaligned accesses, we will realign the * payloads by copying the received packets. */ if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 && sc->bge_flags & BGEF_PCIX) sc->bge_flags |= BGEF_RX_ALIGNBUG; if (BGE_IS_5700_FAMILY(sc)) sc->bge_flags |= BGEF_JUMBO_CAPABLE; misccfg = CSR_READ_4(sc, BGE_MISC_CFG); misccfg &= BGE_MISCCFG_BOARD_ID_MASK; if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 && (misccfg == BGE_MISCCFG_BOARD_ID_5788 || misccfg == BGE_MISCCFG_BOARD_ID_5788M)) sc->bge_flags |= BGEF_IS_5788; /* * Some controllers seem to require a special firmware to use * TSO. But the firmware is not available to FreeBSD and Linux * claims that the TSO performed by the firmware is slower than * hardware based TSO. Moreover the firmware based TSO has one * known bug which can't handle TSO if ethernet header + IP/TCP * header is greater than 80 bytes. The workaround for the TSO * bug exist but it seems it's too expensive than not using * TSO at all. Some hardware also have the TSO bug so limit * the TSO to the controllers that are not affected TSO issues * (e.g. 5755 or higher). */ if (BGE_IS_5755_PLUS(sc)) { /* * BCM5754 and BCM5787 shares the same ASIC id so * explicit device id check is required. */ if ((PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754) && (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754M)) sc->bge_flags |= BGEF_TSO; /* TSO on BCM5719 A0 does not work. */ if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) && (sc->bge_chipid == BGE_CHIPID_BCM5719_A0)) sc->bge_flags &= ~BGEF_TSO; } capmask = 0xffffffff; /* XXX BMSR_DEFCAPMASK */ if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 && (misccfg == 0x4000 || misccfg == 0x8000)) || (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 && PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM && (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901 || PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901A2 || PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5705F)) || (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM && (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5751F || PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5753F || PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5787F)) || PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57790 || PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57791 || PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57795 || BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) { /* These chips are 10/100 only. */ capmask &= ~BMSR_EXTSTAT; sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED; } if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 || (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 && (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 && sc->bge_chipid != BGE_CHIPID_BCM5705_A1))) sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED; /* Set various PHY bug flags. */ if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 || sc->bge_chipid == BGE_CHIPID_BCM5701_B0) sc->bge_phy_flags |= BGEPHYF_CRC_BUG; if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5703_AX || BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_AX) sc->bge_phy_flags |= BGEPHYF_ADC_BUG; if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0) sc->bge_phy_flags |= BGEPHYF_5704_A0_BUG; if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 || BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701) && PCI_VENDOR(subid) == PCI_VENDOR_DELL) sc->bge_phy_flags |= BGEPHYF_NO_3LED; if (BGE_IS_5705_PLUS(sc) && BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906 && BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 && BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57780 && !BGE_IS_57765_PLUS(sc)) { if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 || BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 || BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 || BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787) { if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5722 && PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5756) sc->bge_phy_flags |= BGEPHYF_JITTER_BUG; if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5755M) sc->bge_phy_flags |= BGEPHYF_ADJUST_TRIM; } else sc->bge_phy_flags |= BGEPHYF_BER_BUG; } /* * SEEPROM check. * First check if firmware knows we do not have SEEPROM. */ if (prop_dictionary_get_bool(device_properties(self), "without-seeprom", &no_seeprom) && no_seeprom) sc->bge_flags |= BGEF_NO_EEPROM; else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) sc->bge_flags |= BGEF_NO_EEPROM; /* Now check the 'ROM failed' bit on the RX CPU */ else if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) sc->bge_flags |= BGEF_NO_EEPROM; sc->bge_asf_mode = 0; /* No ASF if APE present. */ if ((sc->bge_flags & BGEF_APE) == 0) { if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) == BGE_SRAM_DATA_SIG_MAGIC)) { if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) & BGE_HWCFG_ASF) { sc->bge_asf_mode |= ASF_ENABLE; sc->bge_asf_mode |= ASF_STACKUP; if (BGE_IS_575X_PLUS(sc)) sc->bge_asf_mode |= ASF_NEW_HANDSHAKE; } } } int counts[PCI_INTR_TYPE_SIZE] = { [PCI_INTR_TYPE_INTX] = 1, [PCI_INTR_TYPE_MSI] = 1, [PCI_INTR_TYPE_MSIX] = 1, }; int max_type = PCI_INTR_TYPE_MSIX; if (!bge_can_use_msi(sc)) { /* MSI broken, allow only INTx */ max_type = PCI_INTR_TYPE_INTX; } if (pci_intr_alloc(pa, &sc->bge_pihp, counts, max_type) != 0) { aprint_error_dev(sc->bge_dev, "couldn't alloc interrupt\n"); return; } DPRINTFN(5, ("pci_intr_string\n")); intrstr = pci_intr_string(pc, sc->bge_pihp[0], intrbuf, sizeof(intrbuf)); DPRINTFN(5, ("pci_intr_establish\n")); sc->bge_intrhand = pci_intr_establish_xname(pc, sc->bge_pihp[0], IPL_NET, bge_intr, sc, device_xname(sc->bge_dev)); if (sc->bge_intrhand == NULL) { pci_intr_release(pc, sc->bge_pihp, 1); sc->bge_pihp = NULL; aprint_error_dev(self, "couldn't establish interrupt"); if (intrstr != NULL) aprint_error(" at %s", intrstr); aprint_error("\n"); return; } aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr); switch (pci_intr_type(pc, sc->bge_pihp[0])) { case PCI_INTR_TYPE_MSIX: case PCI_INTR_TYPE_MSI: KASSERT(bge_can_use_msi(sc)); sc->bge_flags |= BGEF_MSI; break; default: /* nothing to do */ break; } char wqname[MAXCOMLEN]; snprintf(wqname, sizeof(wqname), "%sReset", device_xname(sc->bge_dev)); int error = workqueue_create(&sc->sc_reset_wq, wqname, bge_handle_reset_work, sc, PRI_NONE, IPL_SOFTCLOCK, WQ_MPSAFE); if (error) { aprint_error_dev(sc->bge_dev, "unable to create reset workqueue\n"); return; } /* * All controllers except BCM5700 supports tagged status but * we use tagged status only for MSI case on BCM5717. Otherwise * MSI on BCM5717 does not work. */ if (BGE_IS_57765_PLUS(sc) && sc->bge_flags & BGEF_MSI) sc->bge_flags |= BGEF_TAGGED_STATUS; /* * Reset NVRAM before bge_reset(). It's required to acquire NVRAM * lock in bge_reset(). */ CSR_WRITE_4_FLUSH(sc, BGE_EE_ADDR, BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL)); delay(1000); BGE_SETBIT_FLUSH(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM); bge_stop_fw(sc); bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN); if (bge_reset(sc)) aprint_error_dev(sc->bge_dev, "chip reset failed\n"); /* * Read the hardware config word in the first 32k of NIC internal * memory, or fall back to the config word in the EEPROM. * Note: on some BCM5700 cards, this value appears to be unset. */ hwcfg = hwcfg2 = hwcfg3 = hwcfg4 = hwcfg5 = 0; if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) == BGE_SRAM_DATA_SIG_MAGIC) { uint32_t tmp; hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG); tmp = bge_readmem_ind(sc, BGE_SRAM_DATA_VER) >> BGE_SRAM_DATA_VER_SHIFT; if ((0 < tmp) && (tmp < 0x100)) hwcfg2 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_2); if (sc->bge_flags & BGEF_PCIE) hwcfg3 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_3); if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785) hwcfg4 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_4); if (BGE_IS_5717_PLUS(sc)) hwcfg5 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_5); } else if (!(sc->bge_flags & BGEF_NO_EEPROM)) { bge_read_eeprom(sc, (void *)&hwcfg, BGE_EE_HWCFG_OFFSET, sizeof(hwcfg)); hwcfg = be32toh(hwcfg); } aprint_normal_dev(sc->bge_dev, "HW config %08x, %08x, %08x, %08x %08x\n", hwcfg, hwcfg2, hwcfg3, hwcfg4, hwcfg5); bge_sig_legacy(sc, BGE_RESET_SHUTDOWN); bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN); if (bge_chipinit(sc)) { aprint_error_dev(sc->bge_dev, "chip initialization failed\n"); bge_release_resources(sc); return; } if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) { BGE_SETBIT_FLUSH(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT1 | BGE_MLC_MISCIO_OUTEN1); DELAY(100); } /* Set MI_MODE */ mimode = BGE_MIMODE_PHYADDR(sc->bge_phy_addr); if ((sc->bge_flags & BGEF_CPMU_PRESENT) != 0) mimode |= BGE_MIMODE_500KHZ_CONST; else mimode |= BGE_MIMODE_BASE; CSR_WRITE_4_FLUSH(sc, BGE_MI_MODE, mimode); DELAY(80); /* * Get station address from the EEPROM. */ if (bge_get_eaddr(sc, eaddr)) { aprint_error_dev(sc->bge_dev, "failed to read station address\n"); bge_release_resources(sc); return; } br = bge_lookup_rev(sc->bge_chipid); if (br == NULL) { aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%x)", sc->bge_chipid); } else { aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%x)", br->br_name, sc->bge_chipid); } aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr)); /* Allocate the general information block and ring buffers. */ if (pci_dma64_available(pa)) { sc->bge_dmatag = pa->pa_dmat64; sc->bge_dmatag32 = pa->pa_dmat; sc->bge_dma64 = true; } else { sc->bge_dmatag = pa->pa_dmat; sc->bge_dmatag32 = pa->pa_dmat; sc->bge_dma64 = false; } /* 40bit DMA workaround */ if (sizeof(bus_addr_t) > 4) { if ((sc->bge_flags & BGEF_40BIT_BUG) != 0) { bus_dma_tag_t olddmatag = sc->bge_dmatag; /* save */ if (bus_dmatag_subregion(olddmatag, 0, (bus_addr_t)__MASK(40), &(sc->bge_dmatag), BUS_DMA_WAITOK) != 0) { aprint_error_dev(self, "WARNING: failed to restrict dma range," " falling back to parent bus dma range\n"); sc->bge_dmatag = olddmatag; } } } SLIST_INIT(&sc->txdma_list); DPRINTFN(5, ("bus_dmamem_alloc\n")); if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data), PAGE_SIZE, 0, &sc->bge_ring_seg, 1, &sc->bge_ring_rseg, BUS_DMA_WAITOK)) { aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n"); return; } DPRINTFN(5, ("bus_dmamem_map\n")); if (bus_dmamem_map(sc->bge_dmatag, &sc->bge_ring_seg, sc->bge_ring_rseg, sizeof(struct bge_ring_data), &kva, BUS_DMA_WAITOK)) { aprint_error_dev(sc->bge_dev, "can't map DMA buffers (%zu bytes)\n", sizeof(struct bge_ring_data)); bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg, sc->bge_ring_rseg); return; } DPRINTFN(5, ("bus_dmamap_create\n")); if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1, sizeof(struct bge_ring_data), 0, BUS_DMA_WAITOK, &sc->bge_ring_map)) { aprint_error_dev(sc->bge_dev, "can't create DMA map\n"); bus_dmamem_unmap(sc->bge_dmatag, kva, sizeof(struct bge_ring_data)); bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg, sc->bge_ring_rseg); return; } DPRINTFN(5, ("bus_dmamap_load\n")); if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva, sizeof(struct bge_ring_data), NULL, BUS_DMA_WAITOK)) { bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map); bus_dmamem_unmap(sc->bge_dmatag, kva, sizeof(struct bge_ring_data)); bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg, sc->bge_ring_rseg); return; } DPRINTFN(5, ("bzero\n")); sc->bge_rdata = (struct bge_ring_data *)kva; memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data)); /* Try to allocate memory for jumbo buffers. */ if (BGE_IS_JUMBO_CAPABLE(sc)) { if (bge_alloc_jumbo_mem(sc)) { aprint_error_dev(sc->bge_dev, "jumbo buffer allocation failed\n"); } else sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU; } /* Set default tuneable values. */ sc->bge_stat_ticks = BGE_TICKS_PER_SEC; sc->bge_rx_coal_ticks = 150; sc->bge_rx_max_coal_bds = 64; sc->bge_tx_coal_ticks = 300; sc->bge_tx_max_coal_bds = 400; if (BGE_IS_5705_PLUS(sc)) { sc->bge_tx_coal_ticks = (12 * 5); sc->bge_tx_max_coal_bds = (12 * 5); aprint_verbose_dev(sc->bge_dev, "setting short Tx thresholds\n"); } if (BGE_IS_5717_PLUS(sc)) sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT; else if (BGE_IS_5705_PLUS(sc)) sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705; else sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT; sc->sc_mcast_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SOFTNET); sc->sc_intr_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET); /* Set up ifnet structure */ ifp = &sc->ethercom.ec_if; ifp->if_softc = sc; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_extflags = IFEF_MPSAFE; ifp->if_ioctl = bge_ioctl; ifp->if_stop = bge_stop; ifp->if_start = bge_start; ifp->if_init = bge_init; IFQ_SET_MAXLEN(&ifp->if_snd, uimax(BGE_TX_RING_CNT - 1, IFQ_MAXLEN)); IFQ_SET_READY(&ifp->if_snd); DPRINTFN(5, ("strcpy if_xname\n")); strcpy(ifp->if_xname, device_xname(sc->bge_dev)); if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0) sc->ethercom.ec_if.if_capabilities |= IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx; #if 1 /* XXX TCP/UDP checksum offload breaks with pf(4) */ sc->ethercom.ec_if.if_capabilities |= IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx; #endif sc->ethercom.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU; sc->ethercom.ec_capenable |= ETHERCAP_VLAN_HWTAGGING; if (sc->bge_flags & BGEF_TSO) sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4; /* * Do MII setup. */ DPRINTFN(5, ("mii setup\n")); mii->mii_ifp = ifp; mii->mii_readreg = bge_miibus_readreg; mii->mii_writereg = bge_miibus_writereg; mii->mii_statchg = bge_miibus_statchg; /* * Figure out what sort of media we have by checking the hardware * config word. Note: on some BCM5700 cards, this value appears to be * unset. If that's the case, we have to rely on identifying the NIC * by its PCI subsystem ID, as we do below for the SysKonnect SK-9D41. * The SysKonnect SK-9D41 is a 1000baseSX card. */ if (PCI_PRODUCT(subid) == SK_SUBSYSID_9D41 || (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) { if (BGE_IS_5705_PLUS(sc)) { sc->bge_flags |= BGEF_FIBER_MII; sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED; } else sc->bge_flags |= BGEF_FIBER_TBI; } /* Set bge_phy_flags before prop_dictionary_set_uint32() */ if (BGE_IS_JUMBO_CAPABLE(sc)) sc->bge_phy_flags |= BGEPHYF_JUMBO_CAPABLE; /* set phyflags and chipid before mii_attach() */ dict = device_properties(self); prop_dictionary_set_uint32(dict, "phyflags", sc->bge_phy_flags); prop_dictionary_set_uint32(dict, "chipid", sc->bge_chipid); macmode = CSR_READ_4(sc, BGE_MAC_MODE); macmode &= ~BGE_MACMODE_PORTMODE; /* Initialize ifmedia structures. */ if (sc->bge_flags & BGEF_FIBER_TBI) { CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, macmode | BGE_PORTMODE_TBI); DELAY(40); struct ifmedia * const ifm = &sc->bge_ifmedia; sc->ethercom.ec_ifmedia = ifm; ifmedia_init_with_lock(ifm, IFM_IMASK, bge_ifmedia_upd, bge_ifmedia_sts, sc->sc_intr_lock); ifmedia_add(ifm, IFM_ETHER | IFM_1000_SX, 0, NULL); ifmedia_add(ifm, IFM_ETHER | IFM_1000_SX | IFM_FDX, 0, NULL); ifmedia_add(ifm, IFM_ETHER | IFM_AUTO, 0, NULL); ifmedia_set(ifm, IFM_ETHER | IFM_AUTO); /* Pretend the user requested this setting */ sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media; } else { uint16_t phyreg; int rv; /* * Do transceiver setup and tell the firmware the * driver is down so we can try to get access the * probe if ASF is running. Retry a couple of times * if we get a conflict with the ASF firmware accessing * the PHY. */ if (sc->bge_flags & BGEF_FIBER_MII) macmode |= BGE_PORTMODE_GMII; else macmode |= BGE_PORTMODE_MII; CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, macmode); DELAY(40); /* * Do transceiver setup and tell the firmware the * driver is down so we can try to get access the * probe if ASF is running. Retry a couple of times * if we get a conflict with the ASF firmware accessing * the PHY. */ trys = 0; BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); sc->ethercom.ec_mii = mii; ifmedia_init_with_lock(&mii->mii_media, 0, bge_ifmedia_upd, bge_ifmedia_sts, sc->sc_intr_lock); mii_flags = MIIF_DOPAUSE; if (sc->bge_flags & BGEF_FIBER_MII) mii_flags |= MIIF_HAVEFIBER; again: bge_asf_driver_up(sc); mutex_enter(sc->sc_intr_lock); rv = bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr, MII_BMCR, &phyreg); if ((rv != 0) || ((phyreg & BMCR_PDOWN) != 0)) { int i; bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr, MII_BMCR, BMCR_RESET); /* Wait up to 500ms for it to complete. */ for (i = 0; i < 500; i++) { bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr, MII_BMCR, &phyreg); if ((phyreg & BMCR_RESET) == 0) break; DELAY(1000); } } mutex_exit(sc->sc_intr_lock); mii_attach(sc->bge_dev, mii, capmask, sc->bge_phy_addr, MII_OFFSET_ANY, mii_flags); if (LIST_EMPTY(&mii->mii_phys) && (trys++ < 4)) goto again; if (LIST_EMPTY(&mii->mii_phys)) { aprint_error_dev(sc->bge_dev, "no PHY found!\n"); ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL, 0, NULL); ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL); } else ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO); /* * Now tell the firmware we are going up after probing the PHY */ if (sc->bge_asf_mode & ASF_STACKUP) BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); } /* * Call MI attach routine. */ DPRINTFN(5, ("if_initialize\n")); if_initialize(ifp); ifp->if_percpuq = if_percpuq_create(ifp); if_deferred_start_init(ifp, NULL); if_register(ifp); DPRINTFN(5, ("ether_ifattach\n")); ether_ifattach(ifp, eaddr); ether_set_ifflags_cb(&sc->ethercom, bge_ifflags_cb); rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev), RND_TYPE_NET, RND_FLAG_DEFAULT); #ifdef BGE_EVENT_COUNTERS /* * Attach event counters. */ evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR, NULL, device_xname(sc->bge_dev), "intr"); evcnt_attach_dynamic(&sc->bge_ev_intr_spurious, EVCNT_TYPE_INTR, NULL, device_xname(sc->bge_dev), "intr_spurious"); evcnt_attach_dynamic(&sc->bge_ev_intr_spurious2, EVCNT_TYPE_INTR, NULL, device_xname(sc->bge_dev), "intr_spurious2"); evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC, NULL, device_xname(sc->bge_dev), "tx_xoff"); evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC, NULL, device_xname(sc->bge_dev), "tx_xon"); evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC, NULL, device_xname(sc->bge_dev), "rx_xoff"); evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC, NULL, device_xname(sc->bge_dev), "rx_xon"); evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC, NULL, device_xname(sc->bge_dev), "rx_macctl"); evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC, NULL, device_xname(sc->bge_dev), "xoffentered"); #endif /* BGE_EVENT_COUNTERS */ DPRINTFN(5, ("callout_init\n")); callout_init(&sc->bge_timeout, CALLOUT_MPSAFE); callout_setfunc(&sc->bge_timeout, bge_tick, sc); if (pmf_device_register(self, NULL, NULL)) pmf_class_network_register(self, ifp); else aprint_error_dev(self, "couldn't establish power handler\n"); bge_sysctl_init(sc); #ifdef BGE_DEBUG bge_debug_info(sc); #endif sc->bge_attached = true; } /* * Stop all chip I/O so that the kernel's probe routines don't * get confused by errant DMAs when rebooting. */ static int bge_detach(device_t self, int flags __unused) { struct bge_softc * const sc = device_private(self); struct ifnet * const ifp = &sc->ethercom.ec_if; if (!sc->bge_attached) return 0; IFNET_LOCK(ifp); /* Stop the interface. Callouts are stopped in it. */ bge_stop(ifp, 1); sc->bge_detaching = true; IFNET_UNLOCK(ifp); mii_detach(&sc->bge_mii, MII_PHY_ANY, MII_OFFSET_ANY); ether_ifdetach(ifp); if_detach(ifp); /* Delete all remaining media. */ ifmedia_fini(&sc->bge_mii.mii_media); bge_release_resources(sc); return 0; } static void bge_release_resources(struct bge_softc *sc) { /* Detach sysctl */ if (sc->bge_log != NULL) sysctl_teardown(&sc->bge_log); callout_destroy(&sc->bge_timeout); #ifdef BGE_EVENT_COUNTERS /* Detach event counters. */ evcnt_detach(&sc->bge_ev_intr); evcnt_detach(&sc->bge_ev_intr_spurious); evcnt_detach(&sc->bge_ev_intr_spurious2); evcnt_detach(&sc->bge_ev_tx_xoff); evcnt_detach(&sc->bge_ev_tx_xon); evcnt_detach(&sc->bge_ev_rx_xoff); evcnt_detach(&sc->bge_ev_rx_xon); evcnt_detach(&sc->bge_ev_rx_macctl); evcnt_detach(&sc->bge_ev_xoffentered); #endif /* BGE_EVENT_COUNTERS */ /* Disestablish the interrupt handler */ if (sc->bge_intrhand != NULL) { pci_intr_disestablish(sc->sc_pc, sc->bge_intrhand); pci_intr_release(sc->sc_pc, sc->bge_pihp, 1); sc->bge_intrhand = NULL; } if (sc->bge_cdata.bge_jumbo_buf != NULL) bge_free_jumbo_mem(sc); if (sc->bge_dmatag != NULL) { bus_dmamap_unload(sc->bge_dmatag, sc->bge_ring_map); bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map); bus_dmamem_unmap(sc->bge_dmatag, (void *)sc->bge_rdata, sizeof(struct bge_ring_data)); bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg, sc->bge_ring_rseg); } /* Unmap the device registers */ if (sc->bge_bsize != 0) { bus_space_unmap(sc->bge_btag, sc->bge_bhandle, sc->bge_bsize); sc->bge_bsize = 0; } /* Unmap the APE registers */ if (sc->bge_apesize != 0) { bus_space_unmap(sc->bge_apetag, sc->bge_apehandle, sc->bge_apesize); sc->bge_apesize = 0; } if (sc->sc_intr_lock) { mutex_obj_free(sc->sc_intr_lock); sc->sc_intr_lock = NULL; } if (sc->sc_mcast_lock) { mutex_obj_free(sc->sc_mcast_lock); sc->sc_mcast_lock = NULL; } } static int bge_reset(struct bge_softc *sc) { uint32_t cachesize, command; uint32_t reset, mac_mode, mac_mode_mask; pcireg_t devctl, reg; int i, val; void (*write_op)(struct bge_softc *, int, int); /* Make mask for BGE_MAC_MODE register. */ mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE; if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0) mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN; /* Keep mac_mode_mask's bits of BGE_MAC_MODE register into mac_mode */ mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask; if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) && (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)) { if (sc->bge_flags & BGEF_PCIE) write_op = bge_writemem_direct; else write_op = bge_writemem_ind; } else write_op = bge_writereg_ind; /* 57XX step 4 */ /* Acquire the NVM lock */ if ((sc->bge_flags & BGEF_NO_EEPROM) == 0 && BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5700 && BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5701) { CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1); for (i = 0; i < 8000; i++) { if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1) break; DELAY(20); } if (i == 8000) { printf("%s: NVRAM lock timedout!\n", device_xname(sc->bge_dev)); } } /* Take APE lock when performing reset. */ bge_ape_lock(sc, BGE_APE_LOCK_GRC); /* 57XX step 3 */ /* Save some important PCI state. */ cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ); /* 5718 reset step 3 */ command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD); /* 5718 reset step 5, 57XX step 5b-5d */ pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR | BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW); /* XXX ???: Disable fastboot on controllers that support it. */ if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 || BGE_IS_5755_PLUS(sc)) CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0); /* 5718 reset step 2, 57XX step 6 */ /* * Write the magic number to SRAM at offset 0xB50. * When firmware finishes its initialization it will * write ~BGE_MAGIC_NUMBER to the same location. */ bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC); if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780) { val = CSR_READ_4(sc, BGE_PCIE_LINKCTL); val = (val & ~BGE_PCIE_LINKCTL_L1_PLL_PDEN) | BGE_PCIE_LINKCTL_L1_PLL_PDDIS; CSR_WRITE_4(sc, BGE_PCIE_LINKCTL, val); } /* 5718 reset step 6, 57XX step 7 */ reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ; /* * XXX: from FreeBSD/Linux; no documentation */ if (sc->bge_flags & BGEF_PCIE) { if ((BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) && !BGE_IS_57765_PLUS(sc) && (CSR_READ_4(sc, BGE_PHY_TEST_CTRL_REG) == (BGE_PHY_PCIE_LTASS_MODE | BGE_PHY_PCIE_SCRAM_MODE))) { /* PCI Express 1.0 system */ CSR_WRITE_4(sc, BGE_PHY_TEST_CTRL_REG, BGE_PHY_PCIE_SCRAM_MODE); } if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) { /* * Prevent PCI Express link training * during global reset. */ CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29); reset |= (1 << 29); } } if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) { i = CSR_READ_4(sc, BGE_VCPU_STATUS); CSR_WRITE_4(sc, BGE_VCPU_STATUS, i | BGE_VCPU_STATUS_DRV_RESET); i = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL); CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL, i & ~BGE_VCPU_EXT_CTRL_HALT_CPU); } /* * Set GPHY Power Down Override to leave GPHY * powered up in D0 uninitialized. */ if (BGE_IS_5705_PLUS(sc) && (sc->bge_flags & BGEF_CPMU_PRESENT) == 0) reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE; /* Issue global reset */ write_op(sc, BGE_MISC_CFG, reset); /* 5718 reset step 7, 57XX step 8 */ if (sc->bge_flags & BGEF_PCIE) delay(100*1000); /* too big */ else delay(1000); if (sc->bge_flags & BGEF_PCIE) { if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) { DELAY(500000); /* XXX: Magic Numbers */ reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_UNKNOWN0); pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_UNKNOWN0, reg | (1 << 15)); } devctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap + PCIE_DCSR); /* Clear enable no snoop and disable relaxed ordering. */ devctl &= ~(PCIE_DCSR_ENA_RELAX_ORD | PCIE_DCSR_ENA_NO_SNOOP); /* Set PCIE max payload size to 128 for older PCIe devices */ if ((sc->bge_flags & BGEF_CPMU_PRESENT) == 0) devctl &= ~(0x00e0); /* Clear device status register. Write 1b to clear */ devctl |= PCIE_DCSR_URD | PCIE_DCSR_FED | PCIE_DCSR_NFED | PCIE_DCSR_CED; pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap + PCIE_DCSR, devctl); bge_set_max_readrq(sc); } /* From Linux: dummy read to flush PCI posted writes */ reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD); /* * Reset some of the PCI state that got zapped by reset * To modify the PCISTATE register, BGE_PCIMISCCTL_PCISTATE_RW must be * set, too. */ pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR | BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW); val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE; if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 && (sc->bge_flags & BGEF_PCIX) != 0) val |= BGE_PCISTATE_RETRY_SAME_DMA; if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0) val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR | BGE_PCISTATE_ALLOW_APE_SHMEM_WR | BGE_PCISTATE_ALLOW_APE_PSPACE_WR; pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE, val); pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize); pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command); /* 57xx step 11: disable PCI-X Relaxed Ordering. */ if (sc->bge_flags & BGEF_PCIX) { reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap + PCIX_CMD); /* Set max memory read byte count to 2K */ if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) { reg &= ~PCIX_CMD_BYTECNT_MASK; reg |= PCIX_CMD_BCNT_2048; } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704){ /* * For 5704, set max outstanding split transaction * field to 0 (0 means it supports 1 request) */ reg &= ~(PCIX_CMD_SPLTRANS_MASK | PCIX_CMD_BYTECNT_MASK); reg |= PCIX_CMD_BCNT_2048; } pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap + PCIX_CMD, reg & ~PCIX_CMD_RELAXED_ORDER); } /* 5718 reset step 10, 57XX step 12 */ /* Enable memory arbiter. */ if (BGE_IS_5714_FAMILY(sc)) { val = CSR_READ_4(sc, BGE_MARB_MODE); CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val); } else CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE); /* XXX 5721, 5751 and 5752 */ if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750) { /* Step 19: */ BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, 1 << 29 | 1 << 25); /* Step 20: */ BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, BGE_TLP_DATA_FIFO_PROTECT); } /* 5718 reset step 12, 57XX step 15 and 16 */ /* Fix up byte swapping */ CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS); /* 5718 reset step 13, 57XX step 17 */ /* Poll until the firmware initialization is complete */ bge_poll_fw(sc); /* 57XX step 21 */ if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_BX) { pcireg_t msidata; msidata = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MSI_DATA); msidata |= ((1 << 13 | 1 << 12 | 1 << 10) << 16); pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MSI_DATA, msidata); } /* 57XX step 18 */ /* Write mac mode. */ val = CSR_READ_4(sc, BGE_MAC_MODE); /* Restore mac_mode_mask's bits using mac_mode */ val = (val & ~mac_mode_mask) | mac_mode; CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val); DELAY(40); bge_ape_unlock(sc, BGE_APE_LOCK_GRC); /* * The 5704 in TBI mode apparently needs some special * adjustment to insure the SERDES drive level is set * to 1.2V. */ if (sc->bge_flags & BGEF_FIBER_TBI && BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) { uint32_t serdescfg; serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG); serdescfg = (serdescfg & ~0xFFF) | 0x880; CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg); } if (sc->bge_flags & BGEF_PCIE && !BGE_IS_57765_PLUS(sc) && sc->bge_chipid != BGE_CHIPID_BCM5750_A0 && BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) { uint32_t v; /* Enable PCI Express bug fix */ v = CSR_READ_4(sc, BGE_TLP_CONTROL_REG); CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG, v | BGE_TLP_DATA_FIFO_PROTECT); } if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE, CPMU_CLCK_ORIDE_MAC_ORIDE_EN); return 0; } /* * Frame reception handling. This is called if there's a frame * on the receive return list. * * Note: we have to be able to handle two possibilities here: * 1) the frame is from the jumbo receive ring * 2) the frame is from the standard receive ring */ static void bge_rxeof(struct bge_softc *sc) { struct ifnet * const ifp = &sc->ethercom.ec_if; uint16_t rx_prod, rx_cons; int stdcnt = 0, jumbocnt = 0; bus_dmamap_t dmamap; bus_addr_t offset, toff; bus_size_t tlen; int tosync; KASSERT(mutex_owned(sc->sc_intr_lock)); bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map, offsetof(struct bge_ring_data, bge_status_block), sizeof(struct bge_status_block), BUS_DMASYNC_POSTREAD); rx_cons = sc->bge_rx_saved_considx; rx_prod = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx; /* Nothing to do */ if (rx_cons == rx_prod) return; offset = offsetof(struct bge_ring_data, bge_rx_return_ring); tosync = rx_prod - rx_cons; if (tosync != 0) rnd_add_uint32(&sc->rnd_source, tosync); toff = offset + (rx_cons * sizeof(struct bge_rx_bd)); if (tosync < 0) { tlen = (sc->bge_return_ring_cnt - rx_cons) * sizeof(struct bge_rx_bd); bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map, toff, tlen, BUS_DMASYNC_POSTREAD); tosync = rx_prod; toff = offset; } if (tosync != 0) { bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map, toff, tosync * sizeof(struct bge_rx_bd), BUS_DMASYNC_POSTREAD); } while (rx_cons != rx_prod) { struct bge_rx_bd *cur_rx; uint32_t rxidx; struct mbuf *m = NULL; cur_rx = &sc->bge_rdata->bge_rx_return_ring[rx_cons]; rxidx = cur_rx->bge_idx; BGE_INC(rx_cons, sc->bge_return_ring_cnt); if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) { BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT); m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx]; sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL; jumbocnt++; bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map, mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf, BGE_JLEN, BUS_DMASYNC_POSTREAD); if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) { if_statinc(ifp, if_ierrors); bge_newbuf_jumbo(sc, sc->bge_jumbo, m); continue; } if (bge_newbuf_jumbo(sc, sc->bge_jumbo, NULL) == ENOBUFS) { if_statinc(ifp, if_ierrors); bge_newbuf_jumbo(sc, sc->bge_jumbo, m); continue; } } else { m = sc->bge_cdata.bge_rx_std_chain[rxidx]; sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL; stdcnt++; sc->bge_std_cnt--; dmamap = sc->bge_cdata.bge_rx_std_map[rxidx]; bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->bge_dmatag, dmamap); if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) { m_free(m); if_statinc(ifp, if_ierrors); continue; } } #ifndef __NO_STRICT_ALIGNMENT /* * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect, * the Rx buffer has the layer-2 header unaligned. * If our CPU requires alignment, re-align by copying. */ if (sc->bge_flags & BGEF_RX_ALIGNBUG) { memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data, cur_rx->bge_len); m->m_data += ETHER_ALIGN; } #endif m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN; m_set_rcvif(m, ifp); bge_rxcsum(sc, cur_rx, m); /* * If we received a packet with a vlan tag, pass it * to vlan_input() instead of ether_input(). */ if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) vlan_set_tag(m, cur_rx->bge_vlan_tag); if_percpuq_enqueue(ifp->if_percpuq, m); } sc->bge_rx_saved_considx = rx_cons; bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx); if (stdcnt) bge_fill_rx_ring_std(sc); if (jumbocnt) bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo); } static void bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m) { if (BGE_IS_57765_PLUS(sc)) { if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) { if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0) m->m_pkthdr.csum_flags = M_CSUM_IPv4; if ((cur_rx->bge_error_flag & BGE_RXERRFLAG_IP_CSUM_NOK) != 0) m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD; if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) { m->m_pkthdr.csum_data = cur_rx->bge_tcp_udp_csum; m->m_pkthdr.csum_flags |= (M_CSUM_TCPv4 | M_CSUM_UDPv4 |M_CSUM_DATA); } } } else { if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0) m->m_pkthdr.csum_flags = M_CSUM_IPv4; if ((cur_rx->bge_ip_csum ^ 0xffff) != 0) m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD; /* * Rx transport checksum-offload may also * have bugs with packets which, when transmitted, * were `runts' requiring padding. */ if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM && (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/ m->m_pkthdr.len >= ETHER_MIN_NOPAD)) { m->m_pkthdr.csum_data = cur_rx->bge_tcp_udp_csum; m->m_pkthdr.csum_flags |= (M_CSUM_TCPv4 | M_CSUM_UDPv4 | M_CSUM_DATA); } } } static void bge_txeof(struct bge_softc *sc) { struct ifnet * const ifp = &sc->ethercom.ec_if; struct bge_tx_bd *cur_tx = NULL; struct txdmamap_pool_entry *dma; bus_addr_t offset, toff; bus_size_t tlen; int tosync; struct mbuf *m; KASSERT(mutex_owned(sc->sc_intr_lock)); bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map, offsetof(struct bge_ring_data, bge_status_block), sizeof(struct bge_status_block), BUS_DMASYNC_POSTREAD); const uint16_t hw_cons_idx = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx; offset = offsetof(struct bge_ring_data, bge_tx_ring); tosync = hw_cons_idx - sc->bge_tx_saved_considx; if (tosync != 0) rnd_add_uint32(&sc->rnd_source, tosync); toff = offset + (sc->bge_tx_saved_considx * sizeof(struct bge_tx_bd)); if (tosync < 0) { tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) * sizeof(struct bge_tx_bd); bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map, toff, tlen, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); tosync = hw_cons_idx; toff = offset; } if (tosync != 0) { bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map, toff, tosync * sizeof(struct bge_tx_bd), BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); } /* * Go through our tx ring and free mbufs for those * frames that have been sent. */ while (sc->bge_tx_saved_considx != hw_cons_idx) { uint32_t idx = sc->bge_tx_saved_considx; cur_tx = &sc->bge_rdata->bge_tx_ring[idx]; if (cur_tx->bge_flags & BGE_TXBDFLAG_END) if_statinc(ifp, if_opackets); m = sc->bge_cdata.bge_tx_chain[idx]; if (m != NULL) { sc->bge_cdata.bge_tx_chain[idx] = NULL; dma = sc->txdma[idx]; if (dma->is_dma32) { bus_dmamap_sync(sc->bge_dmatag32, dma->dmamap32, 0, dma->dmamap32->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload( sc->bge_dmatag32, dma->dmamap32); } else { bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0, dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->bge_dmatag, dma->dmamap); } SLIST_INSERT_HEAD(&sc->txdma_list, dma, link); sc->txdma[idx] = NULL; m_freem(m); } sc->bge_txcnt--; BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT); sc->bge_tx_sending = false; } } static int bge_intr(void *xsc) { struct bge_softc * const sc = xsc; struct ifnet * const ifp = &sc->ethercom.ec_if; uint32_t pcistate, statusword, statustag; uint32_t intrmask = BGE_PCISTATE_INTR_NOT_ACTIVE; /* 5717 and newer chips have no BGE_PCISTATE_INTR_NOT_ACTIVE bit */ if (BGE_IS_5717_PLUS(sc)) intrmask = 0; mutex_enter(sc->sc_intr_lock); if (sc->bge_txrx_stopping) { mutex_exit(sc->sc_intr_lock); return 1; } /* * It is possible for the interrupt to arrive before * the status block is updated prior to the interrupt. * Reading the PCI State register will confirm whether the * interrupt is ours and will flush the status block. */ pcistate = CSR_READ_4(sc, BGE_PCI_PCISTATE); /* read status word from status block */ bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map, offsetof(struct bge_ring_data, bge_status_block), sizeof(struct bge_status_block), BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); statusword = sc->bge_rdata->bge_status_block.bge_status; statustag = sc->bge_rdata->bge_status_block.bge_status_tag << 24; if (sc->bge_flags & BGEF_TAGGED_STATUS) { if (sc->bge_lasttag == statustag && (~pcistate & intrmask)) { BGE_EVCNT_INCR(sc->bge_ev_intr_spurious); mutex_exit(sc->sc_intr_lock); return 0; } sc->bge_lasttag = statustag; } else { if (!(statusword & BGE_STATFLAG_UPDATED) && !(~pcistate & intrmask)) { BGE_EVCNT_INCR(sc->bge_ev_intr_spurious2); mutex_exit(sc->sc_intr_lock); return 0; } statustag = 0; } /* Ack interrupt and stop others from occurring. */ bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1); BGE_EVCNT_INCR(sc->bge_ev_intr); /* clear status word */ sc->bge_rdata->bge_status_block.bge_status = 0; bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map, offsetof(struct bge_ring_data, bge_status_block), sizeof(struct bge_status_block), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 || statusword & BGE_STATFLAG_LINKSTATE_CHANGED || BGE_STS_BIT(sc, BGE_STS_LINK_EVT)) bge_link_upd(sc); /* Check RX return ring producer/consumer */ bge_rxeof(sc); /* Check TX ring producer/consumer */ bge_txeof(sc); if (sc->bge_pending_rxintr_change) { uint32_t rx_ticks = sc->bge_rx_coal_ticks; uint32_t rx_bds = sc->bge_rx_max_coal_bds; CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks); DELAY(10); (void)CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS); CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds); DELAY(10); (void)CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS); sc->bge_pending_rxintr_change = false; } bge_handle_events(sc); /* Re-enable interrupts. */ bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, statustag); if_schedule_deferred_start(ifp); mutex_exit(sc->sc_intr_lock); return 1; } static void bge_asf_driver_up(struct bge_softc *sc) { if (sc->bge_asf_mode & ASF_STACKUP) { /* Send ASF heartbeat approx. every 2s */ if (sc->bge_asf_count) sc->bge_asf_count --; else { sc->bge_asf_count = 2; bge_wait_for_event_ack(sc); bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_DRV_ALIVE3); bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4); bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB, BGE_FW_HB_TIMEOUT_SEC); CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT, CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT); } } } static void bge_tick(void *xsc) { struct bge_softc * const sc = xsc; struct ifnet * const ifp = &sc->ethercom.ec_if; struct mii_data * const mii = &sc->bge_mii; mutex_enter(sc->sc_intr_lock); if (BGE_IS_5705_PLUS(sc)) bge_stats_update_regs(sc); else bge_stats_update(sc); if (sc->bge_flags & BGEF_FIBER_TBI) { /* * Since in TBI mode auto-polling can't be used we should poll * link status manually. Here we register pending link event * and trigger interrupt. */ BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT); BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET); } else { /* * Do not touch PHY if we have link up. This could break * IPMI/ASF mode or produce extra input errors. * (extra input errors was reported for bcm5701 & bcm5704). */ if (!BGE_STS_BIT(sc, BGE_STS_LINK)) { mii_tick(mii); } } bge_asf_driver_up(sc); const bool ok = bge_watchdog_tick(ifp); if (ok) callout_schedule(&sc->bge_timeout, hz); mutex_exit(sc->sc_intr_lock); } static void bge_stats_update_regs(struct bge_softc *sc) { struct ifnet * const ifp = &sc->ethercom.ec_if; net_stat_ref_t nsr = IF_STAT_GETREF(ifp); if_statadd_ref(ifp, nsr, if_collisions, CSR_READ_4(sc, BGE_MAC_STATS + offsetof(struct bge_mac_stats_regs, etherStatsCollisions))); /* * On BCM5717, BCM5718, BCM5719 A0 and BCM5720 A0, * RXLP_LOCSTAT_IFIN_DROPS includes unwanted multicast frames * (silicon bug). There's no reliable workaround so just * ignore the counter */ if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 && sc->bge_chipid != BGE_CHIPID_BCM5719_A0 && sc->bge_chipid != BGE_CHIPID_BCM5720_A0) { if_statadd_ref(ifp, nsr, if_ierrors, CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS)); } if_statadd_ref(ifp, nsr, if_ierrors, CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS)); if_statadd_ref(ifp, nsr, if_ierrors, CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS)); IF_STAT_PUTREF(ifp); if (sc->bge_flags & BGEF_RDMA_BUG) { uint32_t val, ucast, mcast, bcast; ucast = CSR_READ_4(sc, BGE_MAC_STATS + offsetof(struct bge_mac_stats_regs, ifHCOutUcastPkts)); mcast = CSR_READ_4(sc, BGE_MAC_STATS + offsetof(struct bge_mac_stats_regs, ifHCOutMulticastPkts)); bcast = CSR_READ_4(sc, BGE_MAC_STATS + offsetof(struct bge_mac_stats_regs, ifHCOutBroadcastPkts)); /* * If controller transmitted more than BGE_NUM_RDMA_CHANNELS * frames, it's safe to disable workaround for DMA engine's * miscalculation of TXMBUF space. */ if (ucast + mcast + bcast > BGE_NUM_RDMA_CHANNELS) { val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL); if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) val &= ~BGE_RDMA_TX_LENGTH_WA_5719; else val &= ~BGE_RDMA_TX_LENGTH_WA_5720; CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val); sc->bge_flags &= ~BGEF_RDMA_BUG; } } } static void bge_stats_update(struct bge_softc *sc) { struct ifnet * const ifp = &sc->ethercom.ec_if; bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK; #define READ_STAT(sc, stats, stat) \ CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat)) uint64_t collisions = (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) + READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) + READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) + READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)); if_statadd(ifp, if_collisions, collisions - sc->bge_if_collisions); sc->bge_if_collisions = collisions; BGE_EVCNT_UPD(sc->bge_ev_tx_xoff, READ_STAT(sc, stats, outXoffSent.bge_addr_lo)); BGE_EVCNT_UPD(sc->bge_ev_tx_xon, READ_STAT(sc, stats, outXonSent.bge_addr_lo)); BGE_EVCNT_UPD(sc->bge_ev_rx_xoff, READ_STAT(sc, stats, xoffPauseFramesReceived.bge_addr_lo)); BGE_EVCNT_UPD(sc->bge_ev_rx_xon, READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo)); BGE_EVCNT_UPD(sc->bge_ev_rx_macctl, READ_STAT(sc, stats, macControlFramesReceived.bge_addr_lo)); BGE_EVCNT_UPD(sc->bge_ev_xoffentered, READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo)); #undef READ_STAT } /* * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason. * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD, * but when such padded frames employ the bge IP/TCP checksum offload, * the hardware checksum assist gives incorrect results (possibly * from incorporating its own padding into the UDP/TCP checksum; who knows). * If we pad such runts with zeros, the onboard checksum comes out correct. */ static inline int bge_cksum_pad(struct mbuf *pkt) { struct mbuf *last = NULL; int padlen; padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len; /* if there's only the packet-header and we can pad there, use it. */ if (pkt->m_pkthdr.len == pkt->m_len && M_TRAILINGSPACE(pkt) >= padlen) { last = pkt; } else { /* * Walk packet chain to find last mbuf. We will either * pad there, or append a new mbuf and pad it * (thus perhaps avoiding the bcm5700 dma-min bug). */ for (last = pkt; last->m_next != NULL; last = last->m_next) { continue; /* do nothing */ } /* `last' now points to last in chain. */ if (M_TRAILINGSPACE(last) < padlen) { /* Allocate new empty mbuf, pad it. Compact later. */ struct mbuf *n; MGET(n, M_DONTWAIT, MT_DATA); if (n == NULL) return ENOBUFS; MCLAIM(n, last->m_owner); n->m_len = 0; last->m_next = n; last = n; } } KDASSERT(!M_READONLY(last)); KDASSERT(M_TRAILINGSPACE(last) >= padlen); /* Now zero the pad area, to avoid the bge cksum-assist bug */ memset(mtod(last, char *) + last->m_len, 0, padlen); last->m_len += padlen; pkt->m_pkthdr.len += padlen; return 0; } /* * Compact outbound packets to avoid bug with DMA segments less than 8 bytes. */ static inline int bge_compact_dma_runt(struct mbuf *pkt) { struct mbuf *m, *prev; int totlen; prev = NULL; totlen = 0; for (m = pkt; m != NULL; prev = m, m = m->m_next) { int mlen = m->m_len; int shortfall = 8 - mlen ; totlen += mlen; if (mlen == 0) continue; if (mlen >= 8) continue; /* * If we get here, mbuf data is too small for DMA engine. * Try to fix by shuffling data to prev or next in chain. * If that fails, do a compacting deep-copy of the whole chain. */ /* Internal frag. If fits in prev, copy it there. */ if (prev && M_TRAILINGSPACE(prev) >= m->m_len) { memcpy(prev->m_data + prev->m_len, m->m_data, mlen); prev->m_len += mlen; m->m_len = 0; /* XXX stitch chain */ prev->m_next = m_free(m); m = prev; continue; } else if (m->m_next != NULL && M_TRAILINGSPACE(m) >= shortfall && m->m_next->m_len >= (8 + shortfall)) { /* m is writable and have enough data in next, pull up. */ memcpy(m->m_data + m->m_len, m->m_next->m_data, shortfall); m->m_len += shortfall; m->m_next->m_len -= shortfall; m->m_next->m_data += shortfall; } else if (m->m_next == NULL || 1) { /* * Got a runt at the very end of the packet. * borrow data from the tail of the preceding mbuf and * update its length in-place. (The original data is * still valid, so we can do this even if prev is not * writable.) */ /* * If we'd make prev a runt, just move all of its data. */ KASSERT(prev != NULL /*, ("runt but null PREV")*/); KASSERT(prev->m_len >= 8 /*, ("runt prev")*/); if ((prev->m_len - shortfall) < 8) shortfall = prev->m_len; #ifdef notyet /* just do the safe slow thing for now */ if (!M_READONLY(m)) { if (M_LEADINGSPACE(m) < shorfall) { void *m_dat; m_dat = M_BUFADDR(m); memmove(m_dat, mtod(m, void*), m->m_len); m->m_data = m_dat; } } else #endif /* just do the safe slow thing */ { struct mbuf * n = NULL; int newprevlen = prev->m_len - shortfall; MGET(n, M_NOWAIT, MT_DATA); if (n == NULL) return ENOBUFS; MCLAIM(n, prev->m_owner); KASSERT(m->m_len + shortfall < MLEN /*, ("runt %d +prev %d too big\n", m->m_len, shortfall)*/); /* first copy the data we're stealing from prev */ memcpy(n->m_data, prev->m_data + newprevlen, shortfall); /* update prev->m_len accordingly */ prev->m_len -= shortfall; /* copy data from runt m */ memcpy(n->m_data + shortfall, m->m_data, m->m_len); /* n holds what we stole from prev, plus m */ n->m_len = shortfall + m->m_len; /* stitch n into chain and free m */ n->m_next = m->m_next; prev->m_next = n; /* KASSERT(m->m_next == NULL); */ m->m_next = NULL; m_free(m); m = n; /* for continuing loop */ } } } return 0; } /* * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data * pointers to descriptors. */ static int bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx) { struct bge_tx_bd *f, *prev_f; uint32_t frag, cur; uint16_t csum_flags = 0; uint16_t txbd_tso_flags = 0; struct txdmamap_pool_entry *dma; bus_dmamap_t dmamap; bus_dma_tag_t dmatag; int i = 0; int use_tso, maxsegsize, error; bool have_vtag; uint16_t vtag; bool remap; KASSERT(mutex_owned(sc->sc_intr_lock)); if (m_head->m_pkthdr.csum_flags) { if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4) csum_flags |= BGE_TXBDFLAG_IP_CSUM; if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4 |M_CSUM_UDPv4)) csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM; } /* * If we were asked to do an outboard checksum, and the NIC * has the bug where it sometimes adds in the Ethernet padding, * explicitly pad with zeros so the cksum will be correct either way. * (For now, do this for all chip versions, until newer * are confirmed to not require the workaround.) */ if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 || #ifdef notyet (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 || #endif m_head->m_pkthdr.len >= ETHER_MIN_NOPAD) goto check_dma_bug; if (bge_cksum_pad(m_head) != 0) return ENOBUFS; check_dma_bug: if (!(BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)) goto doit; /* * bcm5700 Revision B silicon cannot handle DMA descriptors with * less than eight bytes. If we encounter a teeny mbuf * at the end of a chain, we can pad. Otherwise, copy. */ if (bge_compact_dma_runt(m_head) != 0) return ENOBUFS; doit: dma = SLIST_FIRST(&sc->txdma_list); if (dma == NULL) { return ENOBUFS; } dmamap = dma->dmamap; dmatag = sc->bge_dmatag; dma->is_dma32 = false; /* * Set up any necessary TSO state before we start packing... */ use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0; if (!use_tso) { maxsegsize = 0; } else { /* TSO setup */ unsigned mss; struct ether_header *eh; unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset; unsigned bge_hlen; struct mbuf * m0 = m_head; struct ip *ip; struct tcphdr *th; int iphl, hlen; /* * XXX It would be nice if the mbuf pkthdr had offset * fields for the protocol headers. */ eh = mtod(m0, struct ether_header *); switch (htons(eh->ether_type)) { case ETHERTYPE_IP: offset = ETHER_HDR_LEN; break; case ETHERTYPE_VLAN: offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN; break; default: /* * Don't support this protocol or encapsulation. */ return ENOBUFS; } /* * TCP/IP headers are in the first mbuf; we can do * this the easy way. */ iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data); hlen = iphl + offset; if (__predict_false(m0->m_len < (hlen + sizeof(struct tcphdr)))) { aprint_error_dev(sc->bge_dev, "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd," "not handled yet\n", m0->m_len, hlen+ sizeof(struct tcphdr)); #ifdef NOTYET /* * XXX jonathan@NetBSD.org: untested. * how to force this branch to be taken? */ BGE_EVCNT_INCR(sc->bge_ev_txtsopain); m_copydata(m0, offset, sizeof(ip), &ip); m_copydata(m0, hlen, sizeof(th), &th); ip.ip_len = 0; m_copyback(m0, hlen + offsetof(struct ip, ip_len), sizeof(ip.ip_len), &ip.ip_len); th.th_sum = in_cksum_phdr(ip.ip_src.s_addr, ip.ip_dst.s_addr, htons(IPPROTO_TCP)); m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum), sizeof(th.th_sum), &th.th_sum); hlen += th.th_off << 2; iptcp_opt_words = hlen; #else /* * if_wm "hard" case not yet supported, can we not * mandate it out of existence? */ (void) ip; (void)th; (void) ip_tcp_hlen; return ENOBUFS; #endif } else { ip = (struct ip *) (mtod(m0, char *) + offset); th = (struct tcphdr *) (mtod(m0, char *) + hlen); ip_tcp_hlen = iphl + (th->th_off << 2); /* Total IP/TCP options, in 32-bit words */ iptcp_opt_words = (ip_tcp_hlen - sizeof(struct tcphdr) - sizeof(struct ip)) >> 2; } if (BGE_IS_575X_PLUS(sc)) { th->th_sum = 0; csum_flags = 0; } else { /* * XXX jonathan@NetBSD.org: 5705 untested. * Requires TSO firmware patch for 5701/5703/5704. */ th->th_sum = in_cksum_phdr(ip->ip_src.s_addr, ip->ip_dst.s_addr, htons(IPPROTO_TCP)); } mss = m_head->m_pkthdr.segsz; txbd_tso_flags |= BGE_TXBDFLAG_CPU_PRE_DMA | BGE_TXBDFLAG_CPU_POST_DMA; /* * Our NIC TSO-assist assumes TSO has standard, optionless * IPv4 and TCP headers, which total 40 bytes. By default, * the NIC copies 40 bytes of IP/TCP header from the * supplied header into the IP/TCP header portion of * each post-TSO-segment. If the supplied packet has IP or * TCP options, we need to tell the NIC to copy those extra * bytes into each post-TSO header, in addition to the normal * 40-byte IP/TCP header (and to leave space accordingly). * Unfortunately, the driver encoding of option length * varies across different ASIC families. */ tcp_seg_flags = 0; bge_hlen = ip_tcp_hlen >> 2; if (BGE_IS_5717_PLUS(sc)) { tcp_seg_flags = (bge_hlen & 0x3) << 14; txbd_tso_flags |= ((bge_hlen & 0xF8) << 7) | ((bge_hlen & 0x4) << 2); } else if (BGE_IS_5705_PLUS(sc)) { tcp_seg_flags = bge_hlen << 11; } else { /* XXX iptcp_opt_words or bge_hlen ? */ txbd_tso_flags |= iptcp_opt_words << 12; } maxsegsize = mss | tcp_seg_flags; ip->ip_len = htons(mss + ip_tcp_hlen); ip->ip_sum = 0; } /* TSO setup */ have_vtag = vlan_has_tag(m_head); if (have_vtag) vtag = vlan_get_tag(m_head); /* * Start packing the mbufs in this chain into * the fragment pointers. Stop when we run out * of fragments or hit the end of the mbuf chain. */ remap = true; load_again: error = bus_dmamap_load_mbuf(dmatag, dmamap, m_head, BUS_DMA_NOWAIT); if (__predict_false(error)) { if (error == EFBIG && remap) { struct mbuf *m; remap = false; m = m_defrag(m_head, M_NOWAIT); if (m != NULL) { KASSERT(m == m_head); goto load_again; } } return error; } /* * Sanity check: avoid coming within 16 descriptors * of the end of the ring. */ if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) { BGE_TSO_PRINTF(("%s: " " dmamap_load_mbuf too close to ring wrap\n", device_xname(sc->bge_dev))); goto fail_unload; } /* Iterate over dmap-map fragments. */ f = prev_f = NULL; cur = frag = *txidx; for (i = 0; i < dmamap->dm_nsegs; i++) { f = &sc->bge_rdata->bge_tx_ring[frag]; if (sc->bge_cdata.bge_tx_chain[frag] != NULL) break; BGE_HOSTADDR(f->bge_addr, dmamap->dm_segs[i].ds_addr); f->bge_len = dmamap->dm_segs[i].ds_len; if (sizeof(bus_addr_t) > 4 && dma->is_dma32 == false && use_tso && ( (dmamap->dm_segs[i].ds_addr & 0xffffffff00000000) != ((dmamap->dm_segs[i].ds_addr + f->bge_len) & 0xffffffff00000000) || (prev_f != NULL && prev_f->bge_addr.bge_addr_hi != f->bge_addr.bge_addr_hi)) ) { /* * watchdog timeout issue was observed with TSO, * limiting DMA address space to 32bits seems to * address the issue. */ bus_dmamap_unload(dmatag, dmamap); dmatag = sc->bge_dmatag32; dmamap = dma->dmamap32; dma->is_dma32 = true; remap = true; goto load_again; } /* * For 5751 and follow-ons, for TSO we must turn * off checksum-assist flag in the tx-descr, and * supply the ASIC-revision-specific encoding * of TSO flags and segsize. */ if (use_tso) { if (BGE_IS_575X_PLUS(sc) || i == 0) { f->bge_rsvd = maxsegsize; f->bge_flags = csum_flags | txbd_tso_flags; } else { f->bge_rsvd = 0; f->bge_flags = (csum_flags | txbd_tso_flags) & 0x0fff; } } else { f->bge_rsvd = 0; f->bge_flags = csum_flags; } if (have_vtag) { f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG; f->bge_vlan_tag = vtag; } else { f->bge_vlan_tag = 0; } prev_f = f; cur = frag; BGE_INC(frag, BGE_TX_RING_CNT); } if (i < dmamap->dm_nsegs) { BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n", device_xname(sc->bge_dev), i, dmamap->dm_nsegs)); goto fail_unload; } bus_dmamap_sync(dmatag, dmamap, 0, dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE); if (frag == sc->bge_tx_saved_considx) { BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n", device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx)); goto fail_unload; } sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END; sc->bge_cdata.bge_tx_chain[cur] = m_head; SLIST_REMOVE_HEAD(&sc->txdma_list, link); sc->txdma[cur] = dma; sc->bge_txcnt += dmamap->dm_nsegs; *txidx = frag; return 0; fail_unload: bus_dmamap_unload(dmatag, dmamap); return ENOBUFS; } static void bge_start(struct ifnet *ifp) { struct bge_softc * const sc = ifp->if_softc; mutex_enter(sc->sc_intr_lock); if (!sc->bge_txrx_stopping) bge_start_locked(ifp); mutex_exit(sc->sc_intr_lock); } /* * Main transmit routine. To avoid having to do mbuf copies, we put pointers * to the mbuf data regions directly in the transmit descriptors. */ static void bge_start_locked(struct ifnet *ifp) { struct bge_softc * const sc = ifp->if_softc; struct mbuf *m_head = NULL; struct mbuf *m; uint32_t prodidx; int pkts = 0; int error; KASSERT(mutex_owned(sc->sc_intr_lock)); prodidx = sc->bge_tx_prodidx; while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) { IFQ_POLL(&ifp->if_snd, m_head); if (m_head == NULL) break; #if 0 /* * XXX * safety overkill. If this is a fragmented packet chain * with delayed TCP/UDP checksums, then only encapsulate * it if we have enough descriptors to handle the entire * chain at once. * (paranoia -- may not actually be needed) */ if (m_head->m_flags & M_FIRSTFRAG && m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) { if ((BGE_TX_RING_CNT - sc->bge_txcnt) < M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) { ifp->if_flags |= IFF_OACTIVE; break; } } #endif /* * Pack the data into the transmit ring. If we * don't have room, set the OACTIVE flag and wait * for the NIC to drain the ring. */ error = bge_encap(sc, m_head, &prodidx); if (__predict_false(error)) { if (SLIST_EMPTY(&sc->txdma_list)) { /* just wait for the transmit ring to drain */ break; } IFQ_DEQUEUE(&ifp->if_snd, m); KASSERT(m == m_head); m_freem(m_head); continue; } /* now we are committed to transmit the packet */ IFQ_DEQUEUE(&ifp->if_snd, m); KASSERT(m == m_head); pkts++; /* * If there's a BPF listener, bounce a copy of this frame * to him. */ bpf_mtap(ifp, m_head, BPF_D_OUT); } if (pkts == 0) return; /* Transmit */ bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx); /* 5700 b2 errata */ if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX) bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx); sc->bge_tx_prodidx = prodidx; sc->bge_tx_lastsent = time_uptime; sc->bge_tx_sending = true; } static int bge_init(struct ifnet *ifp) { struct bge_softc * const sc = ifp->if_softc; const uint16_t *m; uint32_t mode, reg; int error = 0; ASSERT_SLEEPABLE(); KASSERT(IFNET_LOCKED(ifp)); KASSERT(ifp == &sc->ethercom.ec_if); if (sc->bge_detaching) return ENXIO; /* Cancel pending I/O and flush buffers. */ bge_stop(ifp, 0); bge_stop_fw(sc); bge_sig_pre_reset(sc, BGE_RESET_START); bge_reset(sc); bge_sig_legacy(sc, BGE_RESET_START); if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) { reg = CSR_READ_4(sc, BGE_CPMU_CTRL); reg &= ~(BGE_CPMU_CTRL_LINK_AWARE_MODE | BGE_CPMU_CTRL_LINK_IDLE_MODE); CSR_WRITE_4(sc, BGE_CPMU_CTRL, reg); reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK); reg &= ~BGE_CPMU_LSPD_10MB_CLK; reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25; CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg); reg = CSR_READ_4(sc, BGE_CPMU_LNK_AWARE_PWRMD); reg &= ~BGE_CPMU_LNK_AWARE_MACCLK_MASK; reg |= BGE_CPMU_LNK_AWARE_MACCLK_6_25; CSR_WRITE_4(sc, BGE_CPMU_LNK_AWARE_PWRMD, reg); reg = CSR_READ_4(sc, BGE_CPMU_HST_ACC); reg &= ~BGE_CPMU_HST_ACC_MACCLK_MASK; reg |= BGE_CPMU_HST_ACC_MACCLK_6_25; CSR_WRITE_4(sc, BGE_CPMU_HST_ACC, reg); } if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780) { pcireg_t aercap; reg = CSR_READ_4(sc, BGE_PCIE_PWRMNG_THRESH); reg = (reg & ~BGE_PCIE_PWRMNG_L1THRESH_MASK) | BGE_PCIE_PWRMNG_L1THRESH_4MS | BGE_PCIE_PWRMNG_EXTASPMTMR_EN; CSR_WRITE_4(sc, BGE_PCIE_PWRMNG_THRESH, reg); reg = CSR_READ_4(sc, BGE_PCIE_EIDLE_DELAY); reg = (reg & ~BGE_PCIE_EIDLE_DELAY_MASK) | BGE_PCIE_EIDLE_DELAY_13CLK; CSR_WRITE_4(sc, BGE_PCIE_EIDLE_DELAY, reg); /* Clear correctable error */ if (pci_get_ext_capability(sc->sc_pc, sc->sc_pcitag, PCI_EXTCAP_AER, &aercap, NULL) != 0) pci_conf_write(sc->sc_pc, sc->sc_pcitag, aercap + PCI_AER_COR_STATUS, 0xffffffff); reg = CSR_READ_4(sc, BGE_PCIE_LINKCTL); reg = (reg & ~BGE_PCIE_LINKCTL_L1_PLL_PDEN) | BGE_PCIE_LINKCTL_L1_PLL_PDDIS; CSR_WRITE_4(sc, BGE_PCIE_LINKCTL, reg); } bge_sig_post_reset(sc, BGE_RESET_START); bge_chipinit(sc); /* * Init the various state machines, ring * control blocks and firmware. */ error = bge_blockinit(sc); if (error != 0) { aprint_error_dev(sc->bge_dev, "initialization error %d\n", error); return error; } /* 5718 step 25, 57XX step 54 */ /* Specify MTU. */ CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN); /* 5718 step 23 */ /* Load our MAC address. */ m = (const uint16_t *)&(CLLADDR(ifp->if_sadl)[0]); CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0])); CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, ((uint32_t)htons(m[1]) << 16) | htons(m[2])); /* Enable or disable promiscuous mode as needed. */ if (ifp->if_flags & IFF_PROMISC) BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC); else BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC); /* Program multicast filter. */ mutex_enter(sc->sc_mcast_lock); bge_setmulti(sc); mutex_exit(sc->sc_mcast_lock); /* Init RX ring. */ bge_init_rx_ring_std(sc); /* * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's * memory to insure that the chip has in fact read the first * entry of the ring. */ if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) { u_int i; for (i = 0; i < 10; i++) { DELAY(20); uint32_t v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8); if (v == (MCLBYTES - ETHER_ALIGN)) break; } if (i == 10) aprint_error_dev(sc->bge_dev, "5705 A0 chip failed to load RX ring\n"); } /* Init jumbo RX ring. */ if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN)) bge_init_rx_ring_jumbo(sc); /* Init our RX return ring index */ sc->bge_rx_saved_considx = 0; /* Init TX ring. */ bge_init_tx_ring(sc); /* 5718 step 63, 57XX step 94 */ /* Enable TX MAC state machine lockup fix. */ mode = CSR_READ_4(sc, BGE_TX_MODE); if (BGE_IS_5755_PLUS(sc) || BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) mode |= BGE_TXMODE_MBUF_LOCKUP_FIX; if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 || BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) { mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE); mode |= CSR_READ_4(sc, BGE_TX_MODE) & (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE); } /* Turn on transmitter */ CSR_WRITE_4_FLUSH(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE); /* 5718 step 64 */ DELAY(100); /* 5718 step 65, 57XX step 95 */ /* Turn on receiver */ mode = CSR_READ_4(sc, BGE_RX_MODE); if (BGE_IS_5755_PLUS(sc)) mode |= BGE_RXMODE_IPV6_ENABLE; if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) mode |= BGE_RXMODE_IPV4_FRAG_FIX; CSR_WRITE_4_FLUSH(sc, BGE_RX_MODE, mode | BGE_RXMODE_ENABLE); /* 5718 step 66 */ DELAY(10); /* 5718 step 12, 57XX step 37 */ /* * XXX Documents of 5718 series and 577xx say the recommended value * is 1, but tg3 set 1 only on 57765 series. */ if (BGE_IS_57765_PLUS(sc)) reg = 1; else reg = 2; CSR_WRITE_4_FLUSH(sc, BGE_MAX_RX_FRAME_LOWAT, reg); /* Tell firmware we're alive. */ BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); /* Enable host interrupts. */ BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA); BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR); bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 0); mutex_enter(sc->sc_intr_lock); if ((error = bge_ifmedia_upd(ifp)) == 0) { sc->bge_txrx_stopping = false; /* IFNET_LOCKED asserted above */ ifp->if_flags |= IFF_RUNNING; callout_schedule(&sc->bge_timeout, hz); } mutex_exit(sc->sc_intr_lock); mutex_enter(sc->sc_mcast_lock); sc->bge_if_flags = ifp->if_flags; mutex_exit(sc->sc_mcast_lock); return error; } /* * Set media options. */ static int bge_ifmedia_upd(struct ifnet *ifp) { struct bge_softc * const sc = ifp->if_softc; struct mii_data * const mii = &sc->bge_mii; struct ifmedia * const ifm = &sc->bge_ifmedia; int rc; KASSERT(mutex_owned(sc->sc_intr_lock)); /* If this is a 1000baseX NIC, enable the TBI port. */ if (sc->bge_flags & BGEF_FIBER_TBI) { if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) return EINVAL; switch (IFM_SUBTYPE(ifm->ifm_media)) { case IFM_AUTO: /* * The BCM5704 ASIC appears to have a special * mechanism for programming the autoneg * advertisement registers in TBI mode. */ if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) { uint32_t sgdig; sgdig = CSR_READ_4(sc, BGE_SGDIG_STS); if (sgdig & BGE_SGDIGSTS_DONE) { CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0); sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG); sgdig |= BGE_SGDIGCFG_AUTO | BGE_SGDIGCFG_PAUSE_CAP | BGE_SGDIGCFG_ASYM_PAUSE; CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG, sgdig | BGE_SGDIGCFG_SEND); DELAY(5); CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG, sgdig); } } break; case IFM_1000_SX: if ((ifm->ifm_media & IFM_FDX) != 0) { BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX); } else { BGE_SETBIT_FLUSH(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX); } DELAY(40); break; default: return EINVAL; } /* XXX 802.3x flow control for 1000BASE-SX */ return 0; } if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784) && (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5784_AX)) { uint32_t reg; reg = CSR_READ_4(sc, BGE_CPMU_CTRL); if ((reg & BGE_CPMU_CTRL_GPHY_10MB_RXONLY) != 0) { reg &= ~BGE_CPMU_CTRL_GPHY_10MB_RXONLY; CSR_WRITE_4(sc, BGE_CPMU_CTRL, reg); } } BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT); if ((rc = mii_mediachg(mii)) == ENXIO) return 0; if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) { uint32_t reg; reg = CSR_READ_4(sc, BGE_CPMU_LSPD_1000MB_CLK); if ((reg & BGE_CPMU_LSPD_1000MB_MACCLK_MASK) == (BGE_CPMU_LSPD_1000MB_MACCLK_12_5)) { reg &= ~BGE_CPMU_LSPD_1000MB_MACCLK_MASK; delay(40); CSR_WRITE_4(sc, BGE_CPMU_LSPD_1000MB_CLK, reg); } } /* * Force an interrupt so that we will call bge_link_upd * if needed and clear any pending link state attention. * Without this we are not getting any further interrupts * for link state changes and thus will not UP the link and * not be able to send in bge_start. The only way to get * things working was to receive a packet and get a RX intr. */ if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 || sc->bge_flags & BGEF_IS_5788) BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET); else BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW); return rc; } /* * Report current media status. */ static void bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) { struct bge_softc * const sc = ifp->if_softc; struct mii_data * const mii = &sc->bge_mii; KASSERT(mutex_owned(sc->sc_intr_lock)); if (sc->bge_flags & BGEF_FIBER_TBI) { ifmr->ifm_status = IFM_AVALID; ifmr->ifm_active = IFM_ETHER; if (CSR_READ_4(sc, BGE_MAC_STS) & BGE_MACSTAT_TBI_PCS_SYNCHED) ifmr->ifm_status |= IFM_ACTIVE; ifmr->ifm_active |= IFM_1000_SX; if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX) ifmr->ifm_active |= IFM_HDX; else ifmr->ifm_active |= IFM_FDX; return; } mii_pollstat(mii); ifmr->ifm_status = mii->mii_media_status; ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) | sc->bge_flowflags; } static int bge_ifflags_cb(struct ethercom *ec) { struct ifnet * const ifp = &ec->ec_if; struct bge_softc * const sc = ifp->if_softc; int ret = 0; KASSERT(IFNET_LOCKED(ifp)); mutex_enter(sc->sc_mcast_lock); u_short change = ifp->if_flags ^ sc->bge_if_flags; sc->bge_if_flags = ifp->if_flags; if ((change & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0) { ret = ENETRESET; } else if ((change & (IFF_PROMISC | IFF_ALLMULTI)) != 0) { if ((ifp->if_flags & IFF_PROMISC) == 0) BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC); else BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC); bge_setmulti(sc); } mutex_exit(sc->sc_mcast_lock); return ret; } static int bge_ioctl(struct ifnet *ifp, u_long command, void *data) { struct bge_softc * const sc = ifp->if_softc; struct ifreq * const ifr = (struct ifreq *) data; int error = 0; switch (command) { case SIOCADDMULTI: case SIOCDELMULTI: break; default: KASSERT(IFNET_LOCKED(ifp)); } const int s = splnet(); switch (command) { case SIOCSIFMEDIA: mutex_enter(sc->sc_intr_lock); /* XXX Flow control is not supported for 1000BASE-SX */ if (sc->bge_flags & BGEF_FIBER_TBI) { ifr->ifr_media &= ~IFM_ETH_FMASK; sc->bge_flowflags = 0; } /* Flow control requires full-duplex mode. */ if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO || (ifr->ifr_media & IFM_FDX) == 0) { ifr->ifr_media &= ~IFM_ETH_FMASK; } if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) { if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) { /* We can do both TXPAUSE and RXPAUSE. */ ifr->ifr_media |= IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE; } sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK; } mutex_exit(sc->sc_intr_lock); if (sc->bge_flags & BGEF_FIBER_TBI) { error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia, command); } else { struct mii_data * const mii = &sc->bge_mii; error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); } break; default: if ((error = ether_ioctl(ifp, command, data)) != ENETRESET) break; error = 0; if (command == SIOCADDMULTI || command == SIOCDELMULTI) { mutex_enter(sc->sc_mcast_lock); if (sc->bge_if_flags & IFF_RUNNING) { bge_setmulti(sc); } mutex_exit(sc->sc_mcast_lock); } break; } splx(s); return error; } static bool bge_watchdog_check(struct bge_softc * const sc) { KASSERT(mutex_owned(sc->sc_intr_lock)); if (!sc->bge_tx_sending) return true; if (time_uptime - sc->bge_tx_lastsent <= bge_watchdog_timeout) return true; /* If pause frames are active then don't reset the hardware. */ if ((CSR_READ_4(sc, BGE_RX_MODE) & BGE_RXMODE_FLOWCTL_ENABLE) != 0) { const uint32_t status = CSR_READ_4(sc, BGE_RX_STS); if ((status & BGE_RXSTAT_REMOTE_XOFFED) != 0) { /* * If link partner has us in XOFF state then wait for * the condition to clear. */ CSR_WRITE_4(sc, BGE_RX_STS, status); sc->bge_tx_lastsent = time_uptime; return true; } else if ((status & BGE_RXSTAT_RCVD_XOFF) != 0 && (status & BGE_RXSTAT_RCVD_XON) != 0) { /* * If link partner has us in XOFF state then wait for * the condition to clear. */ CSR_WRITE_4(sc, BGE_RX_STS, status); sc->bge_tx_lastsent = time_uptime; return true; } /* * Any other condition is unexpected and the controller * should be reset. */ } return false; } static bool bge_watchdog_tick(struct ifnet *ifp) { struct bge_softc * const sc = ifp->if_softc; KASSERT(mutex_owned(sc->sc_intr_lock)); if (!sc->sc_trigger_reset && bge_watchdog_check(sc)) return true; if (atomic_swap_uint(&sc->sc_reset_pending, 1) == 0) workqueue_enqueue(sc->sc_reset_wq, &sc->sc_reset_work, NULL); return false; } /* * Perform an interface watchdog reset. */ static void bge_handle_reset_work(struct work *work, void *arg) { struct bge_softc * const sc = arg; struct ifnet * const ifp = &sc->ethercom.ec_if; printf("%s: watchdog timeout -- resetting\n", ifp->if_xname); /* Don't want ioctl operations to happen */ IFNET_LOCK(ifp); /* reset the interface. */ bge_init(ifp); IFNET_UNLOCK(ifp); /* * There are still some upper layer processing which call * ifp->if_start(). e.g. ALTQ or one CPU system */ /* Try to get more packets going. */ ifp->if_start(ifp); atomic_store_relaxed(&sc->sc_reset_pending, 0); } static void bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit) { int i; BGE_CLRBIT_FLUSH(sc, reg, bit); for (i = 0; i < 1000; i++) { delay(100); if ((CSR_READ_4(sc, reg) & bit) == 0) return; } /* * Doesn't print only when the register is BGE_SRS_MODE. It occurs * on some environment (and once after boot?) */ if (reg != BGE_SRS_MODE) aprint_error_dev(sc->bge_dev, "block failed to stop: reg 0x%lx, bit 0x%08x\n", (u_long)reg, bit); } /* * Stop the adapter and free any mbufs allocated to the * RX and TX lists. */ static void bge_stop(struct ifnet *ifp, int disable) { struct bge_softc * const sc = ifp->if_softc; ASSERT_SLEEPABLE(); KASSERT(IFNET_LOCKED(ifp)); mutex_enter(sc->sc_intr_lock); sc->bge_txrx_stopping = true; mutex_exit(sc->sc_intr_lock); callout_halt(&sc->bge_timeout, NULL); /* Disable host interrupts. */ BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR); bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1); /* * Tell firmware we're shutting down. */ bge_stop_fw(sc); bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN); /* * Disable all of the receiver blocks. */ bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE); bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE); bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE); if (BGE_IS_5700_FAMILY(sc)) bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE); bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE); bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE); bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE); /* * Disable all of the transmit blocks. */ bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE); bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE); bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE); bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE); bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE); if (BGE_IS_5700_FAMILY(sc)) bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE); bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE); BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB); delay(40); bge_stop_block(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE); /* * Shut down all of the memory managers and related * state machines. */ /* 5718 step 5a,5b */ bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE); bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE); if (BGE_IS_5700_FAMILY(sc)) bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE); /* 5718 step 5c,5d */ CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF); CSR_WRITE_4(sc, BGE_FTQ_RESET, 0); if (BGE_IS_5700_FAMILY(sc)) { bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE); bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE); } bge_reset(sc); bge_sig_legacy(sc, BGE_RESET_SHUTDOWN); bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN); /* * Keep the ASF firmware running if up. */ if (sc->bge_asf_mode & ASF_STACKUP) BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); else BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); /* Free the RX lists. */ bge_free_rx_ring_std(sc); /* Free jumbo RX list. */ if (BGE_IS_JUMBO_CAPABLE(sc)) bge_free_rx_ring_jumbo(sc); /* Free TX buffers. */ bge_free_tx_ring(sc, disable); /* * Isolate/power down the PHY. */ if (!(sc->bge_flags & BGEF_FIBER_TBI)) { mutex_enter(sc->sc_intr_lock); mii_down(&sc->bge_mii); mutex_exit(sc->sc_intr_lock); } sc->bge_tx_saved_considx = BGE_TXCONS_UNSET; /* Clear MAC's link state (PHY may still have link UP). */ BGE_STS_CLRBIT(sc, BGE_STS_LINK); ifp->if_flags &= ~IFF_RUNNING; mutex_enter(sc->sc_mcast_lock); sc->bge_if_flags = ifp->if_flags; mutex_exit(sc->sc_mcast_lock); } static void bge_link_upd(struct bge_softc *sc) { struct ifnet * const ifp = &sc->ethercom.ec_if; struct mii_data * const mii = &sc->bge_mii; uint32_t status; uint16_t phyval; int link; KASSERT(sc->sc_intr_lock); /* Clear 'pending link event' flag */ BGE_STS_CLRBIT(sc, BGE_STS_LINK_EVT); /* * Process link state changes. * Grrr. The link status word in the status block does * not work correctly on the BCM5700 rev AX and BX chips, * according to all available information. Hence, we have * to enable MII interrupts in order to properly obtain * async link changes. Unfortunately, this also means that * we have to read the MAC status register to detect link * changes, thereby adding an additional register access to * the interrupt handler. */ if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) { status = CSR_READ_4(sc, BGE_MAC_STS); if (status & BGE_MACSTAT_MI_INTERRUPT) { mii_pollstat(mii); if (!BGE_STS_BIT(sc, BGE_STS_LINK) && mii->mii_media_status & IFM_ACTIVE && IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) BGE_STS_SETBIT(sc, BGE_STS_LINK); else if (BGE_STS_BIT(sc, BGE_STS_LINK) && (!(mii->mii_media_status & IFM_ACTIVE) || IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) BGE_STS_CLRBIT(sc, BGE_STS_LINK); /* Clear the interrupt */ CSR_WRITE_4(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_MI_INTERRUPT); bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr, BRGPHY_MII_ISR, &phyval); bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr, BRGPHY_MII_IMR, BRGPHY_INTRS); } return; } if (sc->bge_flags & BGEF_FIBER_TBI) { status = CSR_READ_4(sc, BGE_MAC_STS); if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) { if (!BGE_STS_BIT(sc, BGE_STS_LINK)) { BGE_STS_SETBIT(sc, BGE_STS_LINK); if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) { BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE, BGE_MACMODE_TBI_SEND_CFGS); DELAY(40); } CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF); if_link_state_change(ifp, LINK_STATE_UP); } } else if (BGE_STS_BIT(sc, BGE_STS_LINK)) { BGE_STS_CLRBIT(sc, BGE_STS_LINK); if_link_state_change(ifp, LINK_STATE_DOWN); } } else if (BGE_STS_BIT(sc, BGE_STS_AUTOPOLL)) { /* * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED * bit in status word always set. Workaround this bug by * reading PHY link status directly. */ link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK)? BGE_STS_LINK : 0; if (BGE_STS_BIT(sc, BGE_STS_LINK) != link) { mii_pollstat(mii); if (!BGE_STS_BIT(sc, BGE_STS_LINK) && mii->mii_media_status & IFM_ACTIVE && IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) BGE_STS_SETBIT(sc, BGE_STS_LINK); else if (BGE_STS_BIT(sc, BGE_STS_LINK) && (!(mii->mii_media_status & IFM_ACTIVE) || IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) BGE_STS_CLRBIT(sc, BGE_STS_LINK); } } else { /* * For controllers that call mii_tick, we have to poll * link status. */ mii_pollstat(mii); } if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) { uint32_t reg, scale; reg = CSR_READ_4(sc, BGE_CPMU_CLCK_STAT) & BGE_CPMU_CLCK_STAT_MAC_CLCK_MASK; if (reg == BGE_CPMU_CLCK_STAT_MAC_CLCK_62_5) scale = 65; else if (reg == BGE_CPMU_CLCK_STAT_MAC_CLCK_6_25) scale = 6; else scale = 12; reg = CSR_READ_4(sc, BGE_MISC_CFG) & ~BGE_MISCCFG_TIMER_PRESCALER; reg |= scale << 1; CSR_WRITE_4(sc, BGE_MISC_CFG, reg); } /* Clear the attention */ CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED | BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE | BGE_MACSTAT_LINK_CHANGED); } static int bge_sysctl_verify(SYSCTLFN_ARGS) { int error, t; struct sysctlnode node; node = *rnode; t = *(int*)rnode->sysctl_data; node.sysctl_data = &t; error = sysctl_lookup(SYSCTLFN_CALL(&node)); if (error || newp == NULL) return error; #if 0 DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t, node.sysctl_num, rnode->sysctl_num)); #endif if (node.sysctl_num == bge_rxthresh_nodenum) { if (t < 0 || t >= NBGE_RX_THRESH) return EINVAL; bge_update_all_threshes(t); } else return EINVAL; *(int*)rnode->sysctl_data = t; return 0; } /* * Set up sysctl(3) MIB, hw.bge.*. */ static void bge_sysctl_init(struct bge_softc *sc) { int rc, bge_root_num; const struct sysctlnode *node; if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node, 0, CTLTYPE_NODE, "bge", SYSCTL_DESCR("BGE interface controls"), NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) { goto out; } bge_root_num = node->sysctl_num; /* BGE Rx interrupt mitigation level */ if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node, CTLFLAG_READWRITE, CTLTYPE_INT, "rx_lvl", SYSCTL_DESCR("BGE receive interrupt mitigation level"), bge_sysctl_verify, 0, &bge_rx_thresh_lvl, 0, CTL_HW, bge_root_num, CTL_CREATE, CTL_EOL)) != 0) { goto out; } bge_rxthresh_nodenum = node->sysctl_num; #ifdef BGE_DEBUG if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node, CTLFLAG_READWRITE, CTLTYPE_BOOL, "trigger_reset", SYSCTL_DESCR("Trigger an interface reset"), NULL, 0, &sc->sc_trigger_reset, 0, CTL_CREATE, CTL_EOL)) != 0) { goto out; } #endif return; out: aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc); } #ifdef BGE_DEBUG void bge_debug_info(struct bge_softc *sc) { printf("Hardware Flags:\n"); if (BGE_IS_57765_PLUS(sc)) printf(" - 57765 Plus\n"); if (BGE_IS_5717_PLUS(sc)) printf(" - 5717 Plus\n"); if (BGE_IS_5755_PLUS(sc)) printf(" - 5755 Plus\n"); if (BGE_IS_575X_PLUS(sc)) printf(" - 575X Plus\n"); if (BGE_IS_5705_PLUS(sc)) printf(" - 5705 Plus\n"); if (BGE_IS_5714_FAMILY(sc)) printf(" - 5714 Family\n"); if (BGE_IS_5700_FAMILY(sc)) printf(" - 5700 Family\n"); if (sc->bge_flags & BGEF_IS_5788) printf(" - 5788\n"); if (sc->bge_flags & BGEF_JUMBO_CAPABLE) printf(" - Supports Jumbo Frames\n"); if (sc->bge_flags & BGEF_NO_EEPROM) printf(" - No EEPROM\n"); if (sc->bge_flags & BGEF_PCIX) printf(" - PCI-X Bus\n"); if (sc->bge_flags & BGEF_PCIE) printf(" - PCI Express Bus\n"); if (sc->bge_flags & BGEF_RX_ALIGNBUG) printf(" - RX Alignment Bug\n"); if (sc->bge_flags & BGEF_APE) printf(" - APE\n"); if (sc->bge_flags & BGEF_CPMU_PRESENT) printf(" - CPMU\n"); if (sc->bge_flags & BGEF_TSO) printf(" - TSO\n"); if (sc->bge_flags & BGEF_TAGGED_STATUS) printf(" - TAGGED_STATUS\n"); /* PHY related */ if (sc->bge_phy_flags & BGEPHYF_NO_3LED) printf(" - No 3 LEDs\n"); if (sc->bge_phy_flags & BGEPHYF_CRC_BUG) printf(" - CRC bug\n"); if (sc->bge_phy_flags & BGEPHYF_ADC_BUG) printf(" - ADC bug\n"); if (sc->bge_phy_flags & BGEPHYF_5704_A0_BUG) printf(" - 5704 A0 bug\n"); if (sc->bge_phy_flags & BGEPHYF_JITTER_BUG) printf(" - jitter bug\n"); if (sc->bge_phy_flags & BGEPHYF_BER_BUG) printf(" - BER bug\n"); if (sc->bge_phy_flags & BGEPHYF_ADJUST_TRIM) printf(" - adjust trim\n"); if (sc->bge_phy_flags & BGEPHYF_NO_WIRESPEED) printf(" - no wirespeed\n"); /* ASF related */ if (sc->bge_asf_mode & ASF_ENABLE) printf(" - ASF enable\n"); if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) printf(" - ASF new handshake\n"); if (sc->bge_asf_mode & ASF_STACKUP) printf(" - ASF stackup\n"); } #endif /* BGE_DEBUG */ static int bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[]) { prop_dictionary_t dict; prop_data_t ea; if ((sc->bge_flags & BGEF_NO_EEPROM) == 0) return 1; dict = device_properties(sc->bge_dev); ea = prop_dictionary_get(dict, "mac-address"); if (ea != NULL) { KASSERT(prop_object_type(ea) == PROP_TYPE_DATA); KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN); memcpy(ether_addr, prop_data_value(ea), ETHER_ADDR_LEN); return 0; } return 1; } static int bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[]) { uint32_t mac_addr; mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB); if ((mac_addr >> 16) == 0x484b) { ether_addr[0] = (uint8_t)(mac_addr >> 8); ether_addr[1] = (uint8_t)mac_addr; mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB); ether_addr[2] = (uint8_t)(mac_addr >> 24); ether_addr[3] = (uint8_t)(mac_addr >> 16); ether_addr[4] = (uint8_t)(mac_addr >> 8); ether_addr[5] = (uint8_t)mac_addr; return 0; } return 1; } static int bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[]) { int mac_offset = BGE_EE_MAC_OFFSET; if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) mac_offset = BGE_EE_MAC_OFFSET_5906; return (bge_read_nvram(sc, ether_addr, mac_offset + 2, ETHER_ADDR_LEN)); } static int bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[]) { if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) return 1; return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)); } static int bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[]) { static const bge_eaddr_fcn_t bge_eaddr_funcs[] = { /* NOTE: Order is critical */ bge_get_eaddr_fw, bge_get_eaddr_mem, bge_get_eaddr_nvram, bge_get_eaddr_eeprom, NULL }; const bge_eaddr_fcn_t *func; for (func = bge_eaddr_funcs; *func != NULL; ++func) { if ((*func)(sc, eaddr) == 0) break; } return *func == NULL ? ENXIO : 0; }