/* $NetBSD: if_cas.c,v 1.48 2024/06/29 12:11:11 riastradh Exp $ */ /* $OpenBSD: if_cas.c,v 1.29 2009/11/29 16:19:38 kettenis Exp $ */ /* * * Copyright (C) 2007 Mark Kettenis. * Copyright (C) 2001 Eduardo Horvath. * All rights reserved. * * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * */ /* * Driver for Sun Cassini ethernet controllers. * * There are basically two variants of this chip: Cassini and * Cassini+. We can distinguish between the two by revision: 0x10 and * up are Cassini+. The most important difference is that Cassini+ * has a second RX descriptor ring. Cassini+ will not work without * configuring that second ring. However, since we don't use it we * don't actually fill the descriptors, and only hand off the first * four to the chip. */ #include __KERNEL_RCSID(0, "$NetBSD: if_cas.c,v 1.48 2024/06/29 12:11:11 riastradh Exp $"); #ifndef _MODULE #include "opt_inet.h" #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET #include #include #include #include #include #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #define TRIES 10000 static bool cas_estintr(struct cas_softc *sc, int); bool cas_shutdown(device_t, int); static bool cas_suspend(device_t, const pmf_qual_t *); static bool cas_resume(device_t, const pmf_qual_t *); static int cas_detach(device_t, int); static void cas_partial_detach(struct cas_softc *, enum cas_attach_stage); int cas_match(device_t, cfdata_t, void *); void cas_attach(device_t, device_t, void *); CFATTACH_DECL3_NEW(cas, sizeof(struct cas_softc), cas_match, cas_attach, cas_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN); int cas_pci_readvpd(struct cas_softc *, struct pci_attach_args *, uint8_t *); void cas_config(struct cas_softc *, const uint8_t *); void cas_start(struct ifnet *); void cas_stop(struct ifnet *, int); int cas_ioctl(struct ifnet *, u_long, void *); void cas_tick(void *); void cas_watchdog(struct ifnet *); int cas_init(struct ifnet *); void cas_init_regs(struct cas_softc *); int cas_ringsize(int); int cas_cringsize(int); int cas_meminit(struct cas_softc *); void cas_mifinit(struct cas_softc *); int cas_bitwait(struct cas_softc *, bus_space_handle_t, int, uint32_t, uint32_t); void cas_reset(struct cas_softc *); int cas_reset_rx(struct cas_softc *); int cas_reset_tx(struct cas_softc *); int cas_disable_rx(struct cas_softc *); int cas_disable_tx(struct cas_softc *); void cas_rxdrain(struct cas_softc *); int cas_add_rxbuf(struct cas_softc *, int); void cas_iff(struct cas_softc *); int cas_encap(struct cas_softc *, struct mbuf *, uint32_t *); /* MII methods & callbacks */ int cas_mii_readreg(device_t, int, int, uint16_t*); int cas_mii_writereg(device_t, int, int, uint16_t); void cas_mii_statchg(struct ifnet *); int cas_pcs_readreg(device_t, int, int, uint16_t *); int cas_pcs_writereg(device_t, int, int, uint16_t); int cas_mediachange(struct ifnet *); void cas_mediastatus(struct ifnet *, struct ifmediareq *); int cas_eint(struct cas_softc *, u_int); int cas_rint(struct cas_softc *); int cas_tint(struct cas_softc *, uint32_t); int cas_pint(struct cas_softc *); int cas_intr(void *); #ifdef CAS_DEBUG #define DPRINTF(sc, x) if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \ printf x #else #define DPRINTF(sc, x) /* nothing */ #endif static const struct device_compatible_entry compat_data[] = { { .id = PCI_ID_CODE(PCI_VENDOR_SUN, PCI_PRODUCT_SUN_CASSINI), .value = CAS_CAS }, { .id = PCI_ID_CODE(PCI_VENDOR_NS, PCI_PRODUCT_NS_SATURN), .value = CAS_SATURN }, PCI_COMPAT_EOL }; #define CAS_LOCAL_MAC_ADDRESS "local-mac-address" #define CAS_PHY_INTERFACE "phy-interface" #define CAS_PHY_TYPE "phy-type" #define CAS_PHY_TYPE_PCS "pcs" int cas_match(device_t parent, cfdata_t cf, void *aux) { struct pci_attach_args *pa = aux; return pci_compatible_match(pa, compat_data); } #define PROMHDR_PTR_DATA 0x18 #define PROMDATA_PTR_VPD 0x08 #define PROMDATA_DATA2 0x0a static const uint8_t cas_promhdr[] = { 0x55, 0xaa }; static const uint8_t cas_promdat[] = { 'P', 'C', 'I', 'R', PCI_VENDOR_SUN & 0xff, PCI_VENDOR_SUN >> 8, PCI_PRODUCT_SUN_CASSINI & 0xff, PCI_PRODUCT_SUN_CASSINI >> 8 }; static const uint8_t cas_promdat_ns[] = { 'P', 'C', 'I', 'R', PCI_VENDOR_NS & 0xff, PCI_VENDOR_NS >> 8, PCI_PRODUCT_NS_SATURN & 0xff, PCI_PRODUCT_NS_SATURN >> 8 }; static const uint8_t cas_promdat2[] = { 0x18, 0x00, /* structure length */ 0x00, /* structure revision */ 0x00, /* interface revision */ PCI_SUBCLASS_NETWORK_ETHERNET, /* subclass code */ PCI_CLASS_NETWORK /* class code */ }; #define CAS_LMA_MAXNUM 4 int cas_pci_readvpd(struct cas_softc *sc, struct pci_attach_args *pa, uint8_t *enaddr) { struct pci_vpd_largeres *res; struct pci_vpd *vpd; bus_space_handle_t romh; bus_space_tag_t romt; bus_size_t romsize = 0; uint8_t enaddrs[CAS_LMA_MAXNUM][ETHER_ADDR_LEN]; bool pcs[4] = {false, false, false, false}; uint8_t buf[32], *desc; pcireg_t address; int dataoff, vpdoff, len, lma = 0, phy = 0; int i, rv = -1; if (pci_mapreg_map(pa, PCI_MAPREG_ROM, PCI_MAPREG_TYPE_MEM, 0, &romt, &romh, NULL, &romsize)) return (-1); address = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_START); address |= PCI_MAPREG_ROM_ENABLE; pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_START, address); bus_space_read_region_1(romt, romh, 0, buf, sizeof(buf)); if (bcmp(buf, cas_promhdr, sizeof(cas_promhdr))) goto fail; dataoff = buf[PROMHDR_PTR_DATA] | (buf[PROMHDR_PTR_DATA + 1] << 8); if (dataoff < 0x1c) goto fail; bus_space_read_region_1(romt, romh, dataoff, buf, sizeof(buf)); if ((bcmp(buf, cas_promdat, sizeof(cas_promdat)) && bcmp(buf, cas_promdat_ns, sizeof(cas_promdat_ns))) || bcmp(buf + PROMDATA_DATA2, cas_promdat2, sizeof(cas_promdat2))) goto fail; vpdoff = buf[PROMDATA_PTR_VPD] | (buf[PROMDATA_PTR_VPD + 1] << 8); if (vpdoff < 0x1c) goto fail; next: bus_space_read_region_1(romt, romh, vpdoff, buf, sizeof(buf)); if (!PCI_VPDRES_ISLARGE(buf[0])) goto fail; res = (struct pci_vpd_largeres *)buf; vpdoff += sizeof(*res); len = ((res->vpdres_len_msb << 8) + res->vpdres_len_lsb); switch (PCI_VPDRES_LARGE_NAME(res->vpdres_byte0)) { case PCI_VPDRES_TYPE_IDENTIFIER_STRING: /* Skip identifier string. */ vpdoff += len; goto next; case PCI_VPDRES_TYPE_VPD: #ifdef CAS_DEBUG printf("\n"); for (i = 0; i < len; i++) { uint8_t byte; if (i % 16 == 0) printf("%04x :", i); byte = bus_space_read_1(romt, romh, vpdoff + i); printf(" %02x", byte); if (i % 16 == 15) printf("\n"); } printf("\n"); #endif while (len > 0) { bus_space_read_region_1(romt, romh, vpdoff, buf, sizeof(buf)); vpd = (struct pci_vpd *)buf; vpdoff += sizeof(*vpd) + vpd->vpd_len; len -= sizeof(*vpd) + vpd->vpd_len; /* * We're looking for an "Enhanced" VPD... */ if (vpd->vpd_key0 != 'Z') continue; desc = buf + sizeof(*vpd); /* * ...which is an instance property... */ if (desc[0] != 'I') continue; desc += 3; if (desc[0] == 'B' || desc[1] == ETHER_ADDR_LEN) { /* * ...that's a byte array with the proper * length for a MAC address... */ desc += 2; /* * ...named "local-mac-address". */ if (strcmp(desc, CAS_LOCAL_MAC_ADDRESS) != 0) continue; desc += sizeof(CAS_LOCAL_MAC_ADDRESS); if (lma == CAS_LMA_MAXNUM) continue; memcpy(enaddrs[lma], desc, ETHER_ADDR_LEN); lma++; rv = 0; continue; } else if (desc[0] == 'S') { size_t k; /* String */ desc += 2; #ifdef CAS_DEBUG /* ...named "pcs". */ printf("STR: \"%s\"\n", desc); if (strcmp(desc, CAS_PHY_TYPE_PCS) != 0) continue; desc += sizeof(CAS_PHY_TYPE_PCS); printf("STR: \"%s\"\n", desc); #endif /* ...named "phy-interface" or "phy-type". */ if (strcmp(desc, CAS_PHY_INTERFACE) == 0) k = sizeof(CAS_PHY_INTERFACE); else if (strcmp(desc, CAS_PHY_TYPE) == 0) k = sizeof(CAS_PHY_TYPE); else continue; desc += k; #ifdef CAS_DEBUG printf("STR: \"%s\"\n", desc); #endif if (strcmp(desc, CAS_PHY_TYPE_PCS) == 0) pcs[phy] = true; phy++; continue; } } break; default: goto fail; } /* * Multi port card has bridge chip. The device number is fixed: * e.g. * p0: 005:00:0 * p1: 005:01:0 * p2: 006:02:0 * p3: 006:03:0 */ if (enaddr != 0) { i = 0; if ((lma > 1) && (pa->pa_device < CAS_LMA_MAXNUM) && (pa->pa_device < lma)) i = pa->pa_device; memcpy(enaddr, enaddrs[i], ETHER_ADDR_LEN); } if (pcs[pa->pa_device]) sc->sc_flags |= CAS_SERDES; fail: if (romsize != 0) bus_space_unmap(romt, romh, romsize); address = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM); address &= ~PCI_MAPREG_ROM_ENABLE; pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM, address); return (rv); } void cas_attach(device_t parent, device_t self, void *aux) { struct pci_attach_args *pa = aux; const struct device_compatible_entry *dce; struct cas_softc *sc = device_private(self); prop_data_t data; uint8_t enaddr[ETHER_ADDR_LEN]; sc->sc_dev = self; pci_aprint_devinfo(pa, NULL); sc->sc_rev = PCI_REVISION(pa->pa_class); if (pci_dma64_available(pa)) sc->sc_dmatag = pa->pa_dmat64; else sc->sc_dmatag = pa->pa_dmat; dce = pci_compatible_lookup(pa, compat_data); KASSERT(dce != NULL); sc->sc_variant = (u_int)dce->value; aprint_debug_dev(sc->sc_dev, "variant = %d\n", sc->sc_variant); #define PCI_CAS_BASEADDR 0x10 if (pci_mapreg_map(pa, PCI_CAS_BASEADDR, PCI_MAPREG_TYPE_MEM, 0, &sc->sc_memt, &sc->sc_memh, NULL, &sc->sc_size) != 0) { aprint_error_dev(sc->sc_dev, "unable to map device registers\n"); return; } if ((data = prop_dictionary_get(device_properties(sc->sc_dev), "mac-address")) != NULL) memcpy(enaddr, prop_data_value(data), ETHER_ADDR_LEN); if (cas_pci_readvpd(sc, pa, (data == NULL) ? enaddr : 0) != 0) { aprint_error_dev(sc->sc_dev, "no Ethernet address found\n"); memset(enaddr, 0, sizeof(enaddr)); } sc->sc_burst = 16; /* XXX */ sc->sc_att_stage = CAS_ATT_BACKEND_0; if (pci_intr_map(pa, &sc->sc_handle) != 0) { aprint_error_dev(sc->sc_dev, "unable to map interrupt\n"); bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size); return; } sc->sc_pc = pa->pa_pc; if (!cas_estintr(sc, CAS_INTR_PCI)) { bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size); aprint_error_dev(sc->sc_dev, "unable to establish interrupt\n"); return; } sc->sc_att_stage = CAS_ATT_BACKEND_1; /* * call the main configure */ cas_config(sc, enaddr); if (pmf_device_register1(sc->sc_dev, cas_suspend, cas_resume, cas_shutdown)) pmf_class_network_register(sc->sc_dev, &sc->sc_ethercom.ec_if); else aprint_error_dev(sc->sc_dev, "could not establish power handlers\n"); sc->sc_att_stage = CAS_ATT_FINISHED; /*FALLTHROUGH*/ } /* * cas_config: * * Attach a Cassini interface to the system. */ void cas_config(struct cas_softc *sc, const uint8_t *enaddr) { struct ifnet *ifp = &sc->sc_ethercom.ec_if; struct mii_data *mii = &sc->sc_mii; struct mii_softc *child; uint32_t reg; int i, error; /* Make sure the chip is stopped. */ ifp->if_softc = sc; cas_reset(sc); /* * Allocate the control data structures, and create and load the * DMA map for it. */ if ((error = bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct cas_control_data), CAS_PAGE_SIZE, 0, &sc->sc_cdseg, 1, &sc->sc_cdnseg, 0)) != 0) { aprint_error_dev(sc->sc_dev, "unable to allocate control data, error = %d\n", error); cas_partial_detach(sc, CAS_ATT_0); } /* XXX should map this in with correct endianness */ if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg, sizeof(struct cas_control_data), (void **)&sc->sc_control_data, BUS_DMA_COHERENT)) != 0) { aprint_error_dev(sc->sc_dev, "unable to map control data, error = %d\n", error); cas_partial_detach(sc, CAS_ATT_1); } if ((error = bus_dmamap_create(sc->sc_dmatag, sizeof(struct cas_control_data), 1, sizeof(struct cas_control_data), 0, 0, &sc->sc_cddmamap)) != 0) { aprint_error_dev(sc->sc_dev, "unable to create control data DMA map, error = %d\n", error); cas_partial_detach(sc, CAS_ATT_2); } if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap, sc->sc_control_data, sizeof(struct cas_control_data), NULL, 0)) != 0) { aprint_error_dev(sc->sc_dev, "unable to load control data DMA map, error = %d\n", error); cas_partial_detach(sc, CAS_ATT_3); } memset(sc->sc_control_data, 0, sizeof(struct cas_control_data)); /* * Create the receive buffer DMA maps. */ for (i = 0; i < CAS_NRXDESC; i++) { bus_dma_segment_t seg; char *kva; int rseg; if ((error = bus_dmamem_alloc(sc->sc_dmatag, CAS_PAGE_SIZE, CAS_PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) { aprint_error_dev(sc->sc_dev, "unable to alloc rx DMA mem %d, error = %d\n", i, error); cas_partial_detach(sc, CAS_ATT_5); } sc->sc_rxsoft[i].rxs_dmaseg = seg; if ((error = bus_dmamem_map(sc->sc_dmatag, &seg, rseg, CAS_PAGE_SIZE, (void **)&kva, BUS_DMA_NOWAIT)) != 0) { aprint_error_dev(sc->sc_dev, "unable to alloc rx DMA mem %d, error = %d\n", i, error); cas_partial_detach(sc, CAS_ATT_5); } sc->sc_rxsoft[i].rxs_kva = kva; if ((error = bus_dmamap_create(sc->sc_dmatag, CAS_PAGE_SIZE, 1, CAS_PAGE_SIZE, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) { aprint_error_dev(sc->sc_dev, "unable to create rx DMA map %d, error = %d\n", i, error); cas_partial_detach(sc, CAS_ATT_5); } if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_rxsoft[i].rxs_dmamap, kva, CAS_PAGE_SIZE, NULL, BUS_DMA_NOWAIT)) != 0) { aprint_error_dev(sc->sc_dev, "unable to load rx DMA map %d, error = %d\n", i, error); cas_partial_detach(sc, CAS_ATT_5); } } /* * Create the transmit buffer DMA maps. */ for (i = 0; i < CAS_NTXDESC; i++) { if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES, CAS_NTXSEGS, MCLBYTES, 0, BUS_DMA_NOWAIT, &sc->sc_txd[i].sd_map)) != 0) { aprint_error_dev(sc->sc_dev, "unable to create tx DMA map %d, error = %d\n", i, error); cas_partial_detach(sc, CAS_ATT_6); } sc->sc_txd[i].sd_mbuf = NULL; } /* * From this point forward, the attachment cannot fail. A failure * before this point releases all resources that may have been * allocated. */ /* Announce ourselves. */ aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n", ether_sprintf(enaddr)); aprint_naive(": Ethernet controller\n"); /* Get RX FIFO size */ sc->sc_rxfifosize = 16 * 1024; /* Initialize ifnet structure. */ strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ); ifp->if_softc = sc; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_start = cas_start; ifp->if_ioctl = cas_ioctl; ifp->if_watchdog = cas_watchdog; ifp->if_stop = cas_stop; ifp->if_init = cas_init; IFQ_SET_MAXLEN(&ifp->if_snd, CAS_NTXDESC - 1); IFQ_SET_READY(&ifp->if_snd); /* Initialize ifmedia structures and MII info */ mii->mii_ifp = ifp; mii->mii_readreg = cas_mii_readreg; mii->mii_writereg = cas_mii_writereg; mii->mii_statchg = cas_mii_statchg; ifmedia_init(&mii->mii_media, 0, cas_mediachange, cas_mediastatus); sc->sc_ethercom.ec_mii = mii; bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_MII_DATAPATH_MODE, 0); cas_mifinit(sc); if (sc->sc_mif_config & (CAS_MIF_CONFIG_MDI1 | CAS_MIF_CONFIG_MDI0)) { if (sc->sc_mif_config & CAS_MIF_CONFIG_MDI1) { sc->sc_mif_config |= CAS_MIF_CONFIG_PHY_SEL; bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_MIF_CONFIG, sc->sc_mif_config); } /* Enable/unfreeze the GMII pins of Saturn. */ if (sc->sc_variant == CAS_SATURN) { reg = bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_SATURN_PCFG) & ~CAS_SATURN_PCFG_FSI; if ((sc->sc_mif_config & CAS_MIF_CONFIG_MDI0) != 0) reg |= CAS_SATURN_PCFG_FSI; bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_SATURN_PCFG, reg); /* Read to flush */ bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_SATURN_PCFG); DELAY(10000); } } mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY, MII_OFFSET_ANY, 0); child = LIST_FIRST(&mii->mii_phys); if (child == NULL && sc->sc_mif_config & (CAS_MIF_CONFIG_MDI0 | CAS_MIF_CONFIG_MDI1)) { /* * Try the external PCS SERDES if we didn't find any * MII devices. */ bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_MII_DATAPATH_MODE, CAS_MII_DATAPATH_SERDES); bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_MII_CONFIG, CAS_MII_CONFIG_ENABLE); mii->mii_readreg = cas_pcs_readreg; mii->mii_writereg = cas_pcs_writereg; mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY, MII_OFFSET_ANY, MIIF_NOISOLATE); } child = LIST_FIRST(&mii->mii_phys); if (child == NULL) { /* No PHY attached */ ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_MANUAL, 0, NULL); ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_MANUAL); } else { /* * Walk along the list of attached MII devices and * establish an `MII instance' to `phy number' * mapping. We'll use this mapping in media change * requests to determine which phy to use to program * the MIF configuration register. */ for (; child != NULL; child = LIST_NEXT(child, mii_list)) { /* * Note: we support just two PHYs: the built-in * internal device and an external on the MII * connector. */ if (child->mii_phy > 1 || child->mii_inst > 1) { aprint_error_dev(sc->sc_dev, "cannot accommodate MII device %s" " at phy %d, instance %d\n", device_xname(child->mii_dev), child->mii_phy, child->mii_inst); continue; } sc->sc_phys[child->mii_inst] = child->mii_phy; } /* * XXX - we can really do the following ONLY if the * phy indeed has the auto negotiation capability!! */ ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_AUTO); } /* claim 802.1q capability */ sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU; /* Attach the interface. */ if_attach(ifp); if_deferred_start_init(ifp, NULL); ether_ifattach(ifp, enaddr); rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev), RND_TYPE_NET, RND_FLAG_DEFAULT); evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR, NULL, device_xname(sc->sc_dev), "interrupts"); callout_init(&sc->sc_tick_ch, 0); callout_setfunc(&sc->sc_tick_ch, cas_tick, sc); return; } int cas_detach(device_t self, int flags) { int i; struct cas_softc *sc = device_private(self); bus_space_tag_t t = sc->sc_memt; bus_space_handle_t h = sc->sc_memh; struct ifnet *ifp = &sc->sc_ethercom.ec_if; /* * Free any resources we've allocated during the failed attach * attempt. Do this in reverse order and fall through. */ switch (sc->sc_att_stage) { case CAS_ATT_FINISHED: bus_space_write_4(t, h, CAS_INTMASK, ~(uint32_t)0); pmf_device_deregister(self); cas_stop(&sc->sc_ethercom.ec_if, 1); evcnt_detach(&sc->sc_ev_intr); rnd_detach_source(&sc->rnd_source); ether_ifdetach(ifp); if_detach(ifp); callout_destroy(&sc->sc_tick_ch); mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY); ifmedia_fini(&sc->sc_mii.mii_media); /*FALLTHROUGH*/ case CAS_ATT_MII: case CAS_ATT_7: case CAS_ATT_6: for (i = 0; i < CAS_NTXDESC; i++) { if (sc->sc_txd[i].sd_map != NULL) bus_dmamap_destroy(sc->sc_dmatag, sc->sc_txd[i].sd_map); } /*FALLTHROUGH*/ case CAS_ATT_5: for (i = 0; i < CAS_NRXDESC; i++) { if (sc->sc_rxsoft[i].rxs_dmamap != NULL) bus_dmamap_unload(sc->sc_dmatag, sc->sc_rxsoft[i].rxs_dmamap); if (sc->sc_rxsoft[i].rxs_dmamap != NULL) bus_dmamap_destroy(sc->sc_dmatag, sc->sc_rxsoft[i].rxs_dmamap); if (sc->sc_rxsoft[i].rxs_kva != NULL) bus_dmamem_unmap(sc->sc_dmatag, sc->sc_rxsoft[i].rxs_kva, CAS_PAGE_SIZE); /* XXX need to check that bus_dmamem_alloc suceeded if (sc->sc_rxsoft[i].rxs_dmaseg != NULL) */ bus_dmamem_free(sc->sc_dmatag, &(sc->sc_rxsoft[i].rxs_dmaseg), 1); } bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap); /*FALLTHROUGH*/ case CAS_ATT_4: case CAS_ATT_3: bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap); /*FALLTHROUGH*/ case CAS_ATT_2: bus_dmamem_unmap(sc->sc_dmatag, sc->sc_control_data, sizeof(struct cas_control_data)); /*FALLTHROUGH*/ case CAS_ATT_1: bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg); /*FALLTHROUGH*/ case CAS_ATT_0: sc->sc_att_stage = CAS_ATT_0; /*FALLTHROUGH*/ case CAS_ATT_BACKEND_2: case CAS_ATT_BACKEND_1: if (sc->sc_ih != NULL) { pci_intr_disestablish(sc->sc_pc, sc->sc_ih); sc->sc_ih = NULL; } bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size); /*FALLTHROUGH*/ case CAS_ATT_BACKEND_0: break; } return 0; } static void cas_partial_detach(struct cas_softc *sc, enum cas_attach_stage stage) { cfattach_t ca = device_cfattach(sc->sc_dev); sc->sc_att_stage = stage; (*ca->ca_detach)(sc->sc_dev, 0); } void cas_tick(void *arg) { struct cas_softc *sc = arg; struct ifnet *ifp = &sc->sc_ethercom.ec_if; bus_space_tag_t t = sc->sc_memt; bus_space_handle_t mac = sc->sc_memh; int s; uint32_t v; net_stat_ref_t nsr = IF_STAT_GETREF(ifp); /* unload collisions counters */ v = bus_space_read_4(t, mac, CAS_MAC_EXCESS_COLL_CNT) + bus_space_read_4(t, mac, CAS_MAC_LATE_COLL_CNT); if_statadd_ref(ifp, nsr, if_collisions, v + bus_space_read_4(t, mac, CAS_MAC_NORM_COLL_CNT) + bus_space_read_4(t, mac, CAS_MAC_FIRST_COLL_CNT)); if_statadd_ref(ifp, nsr, if_oerrors, v); /* read error counters */ if_statadd_ref(ifp, nsr, if_ierrors, bus_space_read_4(t, mac, CAS_MAC_RX_LEN_ERR_CNT) + bus_space_read_4(t, mac, CAS_MAC_RX_ALIGN_ERR) + bus_space_read_4(t, mac, CAS_MAC_RX_CRC_ERR_CNT) + bus_space_read_4(t, mac, CAS_MAC_RX_CODE_VIOL)); IF_STAT_PUTREF(ifp); /* clear the hardware counters */ bus_space_write_4(t, mac, CAS_MAC_NORM_COLL_CNT, 0); bus_space_write_4(t, mac, CAS_MAC_FIRST_COLL_CNT, 0); bus_space_write_4(t, mac, CAS_MAC_EXCESS_COLL_CNT, 0); bus_space_write_4(t, mac, CAS_MAC_LATE_COLL_CNT, 0); bus_space_write_4(t, mac, CAS_MAC_RX_LEN_ERR_CNT, 0); bus_space_write_4(t, mac, CAS_MAC_RX_ALIGN_ERR, 0); bus_space_write_4(t, mac, CAS_MAC_RX_CRC_ERR_CNT, 0); bus_space_write_4(t, mac, CAS_MAC_RX_CODE_VIOL, 0); s = splnet(); mii_tick(&sc->sc_mii); splx(s); callout_schedule(&sc->sc_tick_ch, hz); } int cas_bitwait(struct cas_softc *sc, bus_space_handle_t h, int r, uint32_t clr, uint32_t set) { int i; uint32_t reg; for (i = TRIES; i--; DELAY(100)) { reg = bus_space_read_4(sc->sc_memt, h, r); if ((reg & clr) == 0 && (reg & set) == set) return (1); } return (0); } void cas_reset(struct cas_softc *sc) { bus_space_tag_t t = sc->sc_memt; bus_space_handle_t h = sc->sc_memh; int s; s = splnet(); DPRINTF(sc, ("%s: cas_reset\n", device_xname(sc->sc_dev))); cas_reset_rx(sc); cas_reset_tx(sc); /* Disable interrupts */ bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_INTMASK, ~(uint32_t)0); /* Do a full reset */ bus_space_write_4(t, h, CAS_RESET, CAS_RESET_RX | CAS_RESET_TX | CAS_RESET_BLOCK_PCS); if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_RX | CAS_RESET_TX, 0)) aprint_error_dev(sc->sc_dev, "cannot reset device\n"); splx(s); } /* * cas_rxdrain: * * Drain the receive queue. */ void cas_rxdrain(struct cas_softc *sc) { /* Nothing to do yet. */ } /* * Reset the whole thing. */ void cas_stop(struct ifnet *ifp, int disable) { struct cas_softc *sc = (struct cas_softc *)ifp->if_softc; struct cas_sxd *sd; uint32_t i; DPRINTF(sc, ("%s: cas_stop\n", device_xname(sc->sc_dev))); callout_stop(&sc->sc_tick_ch); /* * Mark the interface down and cancel the watchdog timer. */ ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); ifp->if_timer = 0; mii_down(&sc->sc_mii); cas_reset_rx(sc); cas_reset_tx(sc); /* * Release any queued transmit buffers. */ for (i = 0; i < CAS_NTXDESC; i++) { sd = &sc->sc_txd[i]; if (sd->sd_mbuf != NULL) { bus_dmamap_sync(sc->sc_dmatag, sd->sd_map, 0, sd->sd_map->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmatag, sd->sd_map); m_freem(sd->sd_mbuf); sd->sd_mbuf = NULL; } } sc->sc_tx_cnt = sc->sc_tx_prod = sc->sc_tx_cons = 0; if (disable) cas_rxdrain(sc); } /* * Reset the receiver */ int cas_reset_rx(struct cas_softc *sc) { bus_space_tag_t t = sc->sc_memt; bus_space_handle_t h = sc->sc_memh; /* * Resetting while DMA is in progress can cause a bus hang, so we * disable DMA first. */ cas_disable_rx(sc); bus_space_write_4(t, h, CAS_RX_CONFIG, 0); /* Wait till it finishes */ if (!cas_bitwait(sc, h, CAS_RX_CONFIG, 1, 0)) aprint_error_dev(sc->sc_dev, "cannot disable rx dma\n"); /* Wait 5ms extra. */ delay(5000); /* Finally, reset the ERX */ bus_space_write_4(t, h, CAS_RESET, CAS_RESET_RX); /* Wait till it finishes */ if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_RX, 0)) { aprint_error_dev(sc->sc_dev, "cannot reset receiver\n"); return (1); } return (0); } /* * Reset the transmitter */ int cas_reset_tx(struct cas_softc *sc) { bus_space_tag_t t = sc->sc_memt; bus_space_handle_t h = sc->sc_memh; /* * Resetting while DMA is in progress can cause a bus hang, so we * disable DMA first. */ cas_disable_tx(sc); bus_space_write_4(t, h, CAS_TX_CONFIG, 0); /* Wait till it finishes */ if (!cas_bitwait(sc, h, CAS_TX_CONFIG, 1, 0)) aprint_error_dev(sc->sc_dev, "cannot disable tx dma\n"); /* Wait 5ms extra. */ delay(5000); /* Finally, reset the ETX */ bus_space_write_4(t, h, CAS_RESET, CAS_RESET_TX); /* Wait till it finishes */ if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_TX, 0)) { aprint_error_dev(sc->sc_dev, "cannot reset transmitter\n"); return (1); } return (0); } /* * Disable receiver. */ int cas_disable_rx(struct cas_softc *sc) { bus_space_tag_t t = sc->sc_memt; bus_space_handle_t h = sc->sc_memh; uint32_t cfg; /* Flip the enable bit */ cfg = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG); cfg &= ~CAS_MAC_RX_ENABLE; bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, cfg); /* Wait for it to finish */ return (cas_bitwait(sc, h, CAS_MAC_RX_CONFIG, CAS_MAC_RX_ENABLE, 0)); } /* * Disable transmitter. */ int cas_disable_tx(struct cas_softc *sc) { bus_space_tag_t t = sc->sc_memt; bus_space_handle_t h = sc->sc_memh; uint32_t cfg; /* Flip the enable bit */ cfg = bus_space_read_4(t, h, CAS_MAC_TX_CONFIG); cfg &= ~CAS_MAC_TX_ENABLE; bus_space_write_4(t, h, CAS_MAC_TX_CONFIG, cfg); /* Wait for it to finish */ return (cas_bitwait(sc, h, CAS_MAC_TX_CONFIG, CAS_MAC_TX_ENABLE, 0)); } /* * Initialize interface. */ int cas_meminit(struct cas_softc *sc) { int i; /* * Initialize the transmit descriptor ring. */ for (i = 0; i < CAS_NTXDESC; i++) { sc->sc_txdescs[i].cd_flags = 0; sc->sc_txdescs[i].cd_addr = 0; } CAS_CDTXSYNC(sc, 0, CAS_NTXDESC, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); /* * Initialize the receive descriptor and receive job * descriptor rings. */ for (i = 0; i < CAS_NRXDESC; i++) CAS_INIT_RXDESC(sc, i, i); sc->sc_rxdptr = 0; sc->sc_rxptr = 0; /* * Initialize the receive completion ring. */ for (i = 0; i < CAS_NRXCOMP; i++) { sc->sc_rxcomps[i].cc_word[0] = 0; sc->sc_rxcomps[i].cc_word[1] = 0; sc->sc_rxcomps[i].cc_word[2] = 0; sc->sc_rxcomps[i].cc_word[3] = CAS_DMA_WRITE(CAS_RC3_OWN); CAS_CDRXCSYNC(sc, i, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); } return (0); } int cas_ringsize(int sz) { switch (sz) { case 32: return CAS_RING_SZ_32; case 64: return CAS_RING_SZ_64; case 128: return CAS_RING_SZ_128; case 256: return CAS_RING_SZ_256; case 512: return CAS_RING_SZ_512; case 1024: return CAS_RING_SZ_1024; case 2048: return CAS_RING_SZ_2048; case 4096: return CAS_RING_SZ_4096; case 8192: return CAS_RING_SZ_8192; default: aprint_error("cas: invalid Receive Descriptor ring size %d\n", sz); return CAS_RING_SZ_32; } } int cas_cringsize(int sz) { int i; for (i = 0; i < 9; i++) if (sz == (128 << i)) return i; aprint_error("cas: invalid completion ring size %d\n", sz); return 128; } /* * Initialization of interface; set up initialization block * and transmit/receive descriptor rings. */ int cas_init(struct ifnet *ifp) { struct cas_softc *sc = (struct cas_softc *)ifp->if_softc; bus_space_tag_t t = sc->sc_memt; bus_space_handle_t h = sc->sc_memh; int s; u_int max_frame_size; uint32_t v; s = splnet(); DPRINTF(sc, ("%s: cas_init: calling stop\n", device_xname(sc->sc_dev))); /* * Initialization sequence. The numbered steps below correspond * to the sequence outlined in section 6.3.5.1 in the Ethernet * Channel Engine manual (part of the PCIO manual). * See also the STP2002-STQ document from Sun Microsystems. */ /* step 1 & 2. Reset the Ethernet Channel */ cas_stop(ifp, 0); cas_reset(sc); DPRINTF(sc, ("%s: cas_init: restarting\n", device_xname(sc->sc_dev))); /* Re-initialize the MIF */ cas_mifinit(sc); /* step 3. Setup data structures in host memory */ cas_meminit(sc); /* step 4. TX MAC registers & counters */ cas_init_regs(sc); max_frame_size = ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN; v = (max_frame_size) | (0x2000 << 16) /* Burst size */; bus_space_write_4(t, h, CAS_MAC_MAC_MAX_FRAME, v); /* step 5. RX MAC registers & counters */ cas_iff(sc); /* step 6 & 7. Program Descriptor Ring Base Addresses */ KASSERT((CAS_CDTXADDR(sc, 0) & 0x1fff) == 0); bus_space_write_4(t, h, CAS_TX_RING_PTR_HI, BUS_ADDR_HI32(CAS_CDTXADDR(sc, 0))); bus_space_write_4(t, h, CAS_TX_RING_PTR_LO, BUS_ADDR_LO32(CAS_CDTXADDR(sc, 0))); KASSERT((CAS_CDRXADDR(sc, 0) & 0x1fff) == 0); bus_space_write_4(t, h, CAS_RX_DRING_PTR_HI, BUS_ADDR_HI32(CAS_CDRXADDR(sc, 0))); bus_space_write_4(t, h, CAS_RX_DRING_PTR_LO, BUS_ADDR_LO32(CAS_CDRXADDR(sc, 0))); KASSERT((CAS_CDRXCADDR(sc, 0) & 0x1fff) == 0); bus_space_write_4(t, h, CAS_RX_CRING_PTR_HI, BUS_ADDR_HI32(CAS_CDRXCADDR(sc, 0))); bus_space_write_4(t, h, CAS_RX_CRING_PTR_LO, BUS_ADDR_LO32(CAS_CDRXCADDR(sc, 0))); if (CAS_PLUS(sc)) { KASSERT((CAS_CDRXADDR2(sc, 0) & 0x1fff) == 0); bus_space_write_4(t, h, CAS_RX_DRING_PTR_HI2, BUS_ADDR_HI32(CAS_CDRXADDR2(sc, 0))); bus_space_write_4(t, h, CAS_RX_DRING_PTR_LO2, BUS_ADDR_LO32(CAS_CDRXADDR2(sc, 0))); } /* step 8. Global Configuration & Interrupt Mask */ cas_estintr(sc, CAS_INTR_REG); /* step 9. ETX Configuration: use mostly default values */ /* Enable DMA */ v = cas_ringsize(CAS_NTXDESC /*XXX*/) << 10; bus_space_write_4(t, h, CAS_TX_CONFIG, v | CAS_TX_CONFIG_TXDMA_EN | (1 << 24) | (1 << 29)); bus_space_write_4(t, h, CAS_TX_KICK, 0); /* step 10. ERX Configuration */ /* Encode Receive Descriptor ring size */ v = cas_ringsize(CAS_NRXDESC) << CAS_RX_CONFIG_RXDRNG_SZ_SHIFT; if (CAS_PLUS(sc)) v |= cas_ringsize(32) << CAS_RX_CONFIG_RXDRNG2_SZ_SHIFT; /* Encode Receive Completion ring size */ v |= cas_cringsize(CAS_NRXCOMP) << CAS_RX_CONFIG_RXCRNG_SZ_SHIFT; /* Enable DMA */ bus_space_write_4(t, h, CAS_RX_CONFIG, v|(2<sc_rxfifosize / 256) | ((sc->sc_rxfifosize / 256) << 12)); bus_space_write_4(t, h, CAS_RX_BLANKING, (6 << 12) | 6); /* step 11. Configure Media */ mii_ifmedia_change(&sc->sc_mii); /* step 12. RX_MAC Configuration Register */ v = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG); v |= CAS_MAC_RX_ENABLE | CAS_MAC_RX_STRIP_CRC; bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, v); /* step 14. Issue Transmit Pending command */ /* step 15. Give the receiver a swift kick */ bus_space_write_4(t, h, CAS_RX_KICK, CAS_NRXDESC-4); if (CAS_PLUS(sc)) bus_space_write_4(t, h, CAS_RX_KICK2, 4); /* Start the one second timer. */ callout_schedule(&sc->sc_tick_ch, hz); ifp->if_flags |= IFF_RUNNING; ifp->if_flags &= ~IFF_OACTIVE; ifp->if_timer = 0; splx(s); return (0); } void cas_init_regs(struct cas_softc *sc) { struct ifnet *ifp = &sc->sc_ethercom.ec_if; bus_space_tag_t t = sc->sc_memt; bus_space_handle_t h = sc->sc_memh; const u_char *laddr = CLLADDR(ifp->if_sadl); uint32_t v, r; /* These regs are not cleared on reset */ sc->sc_inited = 0; if (!sc->sc_inited) { /* Load recommended values */ bus_space_write_4(t, h, CAS_MAC_IPG0, 0x00); bus_space_write_4(t, h, CAS_MAC_IPG1, 0x08); bus_space_write_4(t, h, CAS_MAC_IPG2, 0x04); bus_space_write_4(t, h, CAS_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN); /* Max frame and max burst size */ v = ETHER_MAX_LEN | (0x2000 << 16) /* Burst size */; bus_space_write_4(t, h, CAS_MAC_MAC_MAX_FRAME, v); bus_space_write_4(t, h, CAS_MAC_PREAMBLE_LEN, 0x07); bus_space_write_4(t, h, CAS_MAC_JAM_SIZE, 0x04); bus_space_write_4(t, h, CAS_MAC_ATTEMPT_LIMIT, 0x10); bus_space_write_4(t, h, CAS_MAC_CONTROL_TYPE, 0x8088); bus_space_write_4(t, h, CAS_MAC_RANDOM_SEED, ((laddr[5]<<8)|laddr[4])&0x3ff); /* Secondary MAC addresses set to 0:0:0:0:0:0 */ for (r = CAS_MAC_ADDR3; r < CAS_MAC_ADDR42; r += 4) bus_space_write_4(t, h, r, 0); /* MAC control addr set to 0:1:c2:0:1:80 */ bus_space_write_4(t, h, CAS_MAC_ADDR42, 0x0001); bus_space_write_4(t, h, CAS_MAC_ADDR43, 0xc200); bus_space_write_4(t, h, CAS_MAC_ADDR44, 0x0180); /* MAC filter addr set to 0:0:0:0:0:0 */ bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER0, 0); bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER1, 0); bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER2, 0); bus_space_write_4(t, h, CAS_MAC_ADR_FLT_MASK1_2, 0); bus_space_write_4(t, h, CAS_MAC_ADR_FLT_MASK0, 0); /* Hash table initialized to 0 */ for (r = CAS_MAC_HASH0; r <= CAS_MAC_HASH15; r += 4) bus_space_write_4(t, h, r, 0); sc->sc_inited = 1; } /* Counters need to be zeroed */ bus_space_write_4(t, h, CAS_MAC_NORM_COLL_CNT, 0); bus_space_write_4(t, h, CAS_MAC_FIRST_COLL_CNT, 0); bus_space_write_4(t, h, CAS_MAC_EXCESS_COLL_CNT, 0); bus_space_write_4(t, h, CAS_MAC_LATE_COLL_CNT, 0); bus_space_write_4(t, h, CAS_MAC_DEFER_TMR_CNT, 0); bus_space_write_4(t, h, CAS_MAC_PEAK_ATTEMPTS, 0); bus_space_write_4(t, h, CAS_MAC_RX_FRAME_COUNT, 0); bus_space_write_4(t, h, CAS_MAC_RX_LEN_ERR_CNT, 0); bus_space_write_4(t, h, CAS_MAC_RX_ALIGN_ERR, 0); bus_space_write_4(t, h, CAS_MAC_RX_CRC_ERR_CNT, 0); bus_space_write_4(t, h, CAS_MAC_RX_CODE_VIOL, 0); /* Un-pause stuff */ bus_space_write_4(t, h, CAS_MAC_SEND_PAUSE_CMD, 0); /* * Set the station address. */ bus_space_write_4(t, h, CAS_MAC_ADDR0, (laddr[4]<<8) | laddr[5]); bus_space_write_4(t, h, CAS_MAC_ADDR1, (laddr[2]<<8) | laddr[3]); bus_space_write_4(t, h, CAS_MAC_ADDR2, (laddr[0]<<8) | laddr[1]); } /* * Receive interrupt. */ int cas_rint(struct cas_softc *sc) { struct ifnet *ifp = &sc->sc_ethercom.ec_if; bus_space_tag_t t = sc->sc_memt; bus_space_handle_t h = sc->sc_memh; struct cas_rxsoft *rxs; struct mbuf *m; uint64_t word[4]; int len, off, idx; int i, skip; void *cp; for (i = sc->sc_rxptr;; i = CAS_NEXTRX(i + skip)) { CAS_CDRXCSYNC(sc, i, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); word[0] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[0]); word[1] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[1]); word[2] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[2]); word[3] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[3]); /* Stop if the hardware still owns the descriptor. */ if ((word[0] & CAS_RC0_TYPE) == 0 || word[3] & CAS_RC3_OWN) break; len = CAS_RC1_HDR_LEN(word[1]); if (len > 0) { off = CAS_RC1_HDR_OFF(word[1]); idx = CAS_RC1_HDR_IDX(word[1]); rxs = &sc->sc_rxsoft[idx]; DPRINTF(sc, ("hdr at idx %d, off %d, len %d\n", idx, off, len)); bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0, rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD); cp = rxs->rxs_kva + off * 256 + ETHER_ALIGN; m = m_devget(cp, len, 0, ifp); if (word[0] & CAS_RC0_RELEASE_HDR) cas_add_rxbuf(sc, idx); if (m != NULL) { /* * Pass this up to any BPF listeners, but only * pass it up the stack if its for us. */ m->m_pkthdr.csum_flags = 0; if_percpuq_enqueue(ifp->if_percpuq, m); } else if_statinc(ifp, if_ierrors); } len = CAS_RC0_DATA_LEN(word[0]); if (len > 0) { off = CAS_RC0_DATA_OFF(word[0]); idx = CAS_RC0_DATA_IDX(word[0]); rxs = &sc->sc_rxsoft[idx]; DPRINTF(sc, ("data at idx %d, off %d, len %d\n", idx, off, len)); bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0, rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD); /* XXX We should not be copying the packet here. */ cp = rxs->rxs_kva + off + ETHER_ALIGN; m = m_devget(cp, len, 0, ifp); if (word[0] & CAS_RC0_RELEASE_DATA) cas_add_rxbuf(sc, idx); if (m != NULL) { /* * Pass this up to any BPF listeners, but only * pass it up the stack if its for us. */ m->m_pkthdr.csum_flags = 0; if_percpuq_enqueue(ifp->if_percpuq, m); } else if_statinc(ifp, if_ierrors); } if (word[0] & CAS_RC0_SPLIT) aprint_error_dev(sc->sc_dev, "split packet\n"); skip = CAS_RC0_SKIP(word[0]); } while (sc->sc_rxptr != i) { sc->sc_rxcomps[sc->sc_rxptr].cc_word[0] = 0; sc->sc_rxcomps[sc->sc_rxptr].cc_word[1] = 0; sc->sc_rxcomps[sc->sc_rxptr].cc_word[2] = 0; sc->sc_rxcomps[sc->sc_rxptr].cc_word[3] = CAS_DMA_WRITE(CAS_RC3_OWN); CAS_CDRXCSYNC(sc, sc->sc_rxptr, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); sc->sc_rxptr = CAS_NEXTRX(sc->sc_rxptr); } bus_space_write_4(t, h, CAS_RX_COMP_TAIL, sc->sc_rxptr); DPRINTF(sc, ("cas_rint: done sc->rxptr %d, complete %d\n", sc->sc_rxptr, bus_space_read_4(t, h, CAS_RX_COMPLETION))); return (1); } /* * cas_add_rxbuf: * * Add a receive buffer to the indicated descriptor. */ int cas_add_rxbuf(struct cas_softc *sc, int idx) { bus_space_tag_t t = sc->sc_memt; bus_space_handle_t h = sc->sc_memh; CAS_INIT_RXDESC(sc, sc->sc_rxdptr, idx); if ((sc->sc_rxdptr % 4) == 0) bus_space_write_4(t, h, CAS_RX_KICK, sc->sc_rxdptr); if (++sc->sc_rxdptr == CAS_NRXDESC) sc->sc_rxdptr = 0; return (0); } int cas_eint(struct cas_softc *sc, u_int status) { char bits[128]; if ((status & CAS_INTR_MIF) != 0) { DPRINTF(sc, ("%s: link status changed\n", device_xname(sc->sc_dev))); return (1); } snprintb(bits, sizeof(bits), CAS_INTR_BITS, status); printf("%s: status=%s\n", device_xname(sc->sc_dev), bits); return (1); } int cas_pint(struct cas_softc *sc) { bus_space_tag_t t = sc->sc_memt; bus_space_handle_t seb = sc->sc_memh; uint32_t status; status = bus_space_read_4(t, seb, CAS_MII_INTERRUP_STATUS); status |= bus_space_read_4(t, seb, CAS_MII_INTERRUP_STATUS); #ifdef CAS_DEBUG if (status) printf("%s: link status changed\n", device_xname(sc->sc_dev)); #endif return (1); } int cas_intr(void *v) { struct cas_softc *sc = (struct cas_softc *)v; struct ifnet *ifp = &sc->sc_ethercom.ec_if; bus_space_tag_t t = sc->sc_memt; bus_space_handle_t seb = sc->sc_memh; uint32_t status; int r = 0; #ifdef CAS_DEBUG char bits[128]; #endif sc->sc_ev_intr.ev_count++; status = bus_space_read_4(t, seb, CAS_STATUS); #ifdef CAS_DEBUG snprintb(bits, sizeof(bits), CAS_INTR_BITS, status); #endif DPRINTF(sc, ("%s: cas_intr: cplt %x status %s\n", device_xname(sc->sc_dev), (status>>19), bits)); if ((status & CAS_INTR_PCS) != 0) r |= cas_pint(sc); if ((status & (CAS_INTR_TX_TAG_ERR | CAS_INTR_RX_TAG_ERR | CAS_INTR_RX_COMP_FULL | CAS_INTR_BERR)) != 0) r |= cas_eint(sc, status); if ((status & (CAS_INTR_TX_EMPTY | CAS_INTR_TX_INTME)) != 0) r |= cas_tint(sc, status); if ((status & (CAS_INTR_RX_DONE | CAS_INTR_RX_NOBUF)) != 0) r |= cas_rint(sc); /* We should eventually do more than just print out error stats. */ if (status & CAS_INTR_TX_MAC) { int txstat = bus_space_read_4(t, seb, CAS_MAC_TX_STATUS); #ifdef CAS_DEBUG if (txstat & ~CAS_MAC_TX_XMIT_DONE) printf("%s: MAC tx fault, status %x\n", device_xname(sc->sc_dev), txstat); #endif if (txstat & (CAS_MAC_TX_UNDERRUN | CAS_MAC_TX_PKT_TOO_LONG)) cas_init(ifp); } if (status & CAS_INTR_RX_MAC) { int rxstat = bus_space_read_4(t, seb, CAS_MAC_RX_STATUS); #ifdef CAS_DEBUG if (rxstat & ~CAS_MAC_RX_DONE) printf("%s: MAC rx fault, status %x\n", device_xname(sc->sc_dev), rxstat); #endif /* * On some chip revisions CAS_MAC_RX_OVERFLOW happen often * due to a silicon bug so handle them silently. */ if (rxstat & CAS_MAC_RX_OVERFLOW) { if_statinc(ifp, if_ierrors); cas_init(ifp); } #ifdef CAS_DEBUG else if (rxstat & ~(CAS_MAC_RX_DONE | CAS_MAC_RX_FRAME_CNT)) printf("%s: MAC rx fault, status %x\n", device_xname(sc->sc_dev), rxstat); #endif } rnd_add_uint32(&sc->rnd_source, status); return (r); } void cas_watchdog(struct ifnet *ifp) { struct cas_softc *sc = ifp->if_softc; DPRINTF(sc, ("cas_watchdog: CAS_RX_CONFIG %x CAS_MAC_RX_STATUS %x " "CAS_MAC_RX_CONFIG %x\n", bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_RX_CONFIG), bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_MAC_RX_STATUS), bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_MAC_RX_CONFIG))); log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev)); if_statinc(ifp, if_oerrors); /* Try to get more packets going. */ cas_init(ifp); } /* * Initialize the MII Management Interface */ void cas_mifinit(struct cas_softc *sc) { bus_space_tag_t t = sc->sc_memt; bus_space_handle_t mif = sc->sc_memh; /* Configure the MIF in frame mode */ sc->sc_mif_config = bus_space_read_4(t, mif, CAS_MIF_CONFIG); sc->sc_mif_config &= ~CAS_MIF_CONFIG_BB_ENA; bus_space_write_4(t, mif, CAS_MIF_CONFIG, sc->sc_mif_config); } /* * MII interface * * The Cassini MII interface supports at least three different operating modes: * * Bitbang mode is implemented using data, clock and output enable registers. * * Frame mode is implemented by loading a complete frame into the frame * register and polling the valid bit for completion. * * Polling mode uses the frame register but completion is indicated by * an interrupt. * */ int cas_mii_readreg(device_t self, int phy, int reg, uint16_t *val) { struct cas_softc *sc = device_private(self); bus_space_tag_t t = sc->sc_memt; bus_space_handle_t mif = sc->sc_memh; int n; uint32_t v; #ifdef CAS_DEBUG if (sc->sc_debug) printf("cas_mii_readreg: phy %d reg %d\n", phy, reg); #endif /* Construct the frame command */ v = (reg << CAS_MIF_REG_SHIFT) | (phy << CAS_MIF_PHY_SHIFT) | CAS_MIF_FRAME_READ; bus_space_write_4(t, mif, CAS_MIF_FRAME, v); for (n = 0; n < 100; n++) { DELAY(1); v = bus_space_read_4(t, mif, CAS_MIF_FRAME); if (v & CAS_MIF_FRAME_TA0) { *val = v & CAS_MIF_FRAME_DATA; return 0; } } printf("%s: mii_read timeout\n", device_xname(sc->sc_dev)); return ETIMEDOUT; } int cas_mii_writereg(device_t self, int phy, int reg, uint16_t val) { struct cas_softc *sc = device_private(self); bus_space_tag_t t = sc->sc_memt; bus_space_handle_t mif = sc->sc_memh; int n; uint32_t v; #ifdef CAS_DEBUG if (sc->sc_debug) printf("cas_mii_writereg: phy %d reg %d val %x\n", phy, reg, val); #endif /* Construct the frame command */ v = CAS_MIF_FRAME_WRITE | (phy << CAS_MIF_PHY_SHIFT) | (reg << CAS_MIF_REG_SHIFT) | (val & CAS_MIF_FRAME_DATA); bus_space_write_4(t, mif, CAS_MIF_FRAME, v); for (n = 0; n < 100; n++) { DELAY(1); v = bus_space_read_4(t, mif, CAS_MIF_FRAME); if (v & CAS_MIF_FRAME_TA0) return 0; } printf("%s: mii_write timeout\n", device_xname(sc->sc_dev)); return ETIMEDOUT; } void cas_mii_statchg(struct ifnet *ifp) { struct cas_softc *sc = ifp->if_softc; #ifdef CAS_DEBUG int instance = IFM_INST(sc->sc_media.ifm_cur->ifm_media); #endif bus_space_tag_t t = sc->sc_memt; bus_space_handle_t mac = sc->sc_memh; uint32_t v; #ifdef CAS_DEBUG if (sc->sc_debug) printf("cas_mii_statchg: status change: phy = %d\n", sc->sc_phys[instance]); #endif /* Set tx full duplex options */ bus_space_write_4(t, mac, CAS_MAC_TX_CONFIG, 0); delay(10000); /* reg must be cleared and delay before changing. */ v = CAS_MAC_TX_ENA_IPG0 | CAS_MAC_TX_NGU | CAS_MAC_TX_NGU_LIMIT | CAS_MAC_TX_ENABLE; if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) { v |= CAS_MAC_TX_IGN_CARRIER | CAS_MAC_TX_IGN_COLLIS; } bus_space_write_4(t, mac, CAS_MAC_TX_CONFIG, v); /* XIF Configuration */ v = CAS_MAC_XIF_TX_MII_ENA; v |= CAS_MAC_XIF_LINK_LED; /* MII needs echo disable if half duplex. */ if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) /* turn on full duplex LED */ v |= CAS_MAC_XIF_FDPLX_LED; else /* half duplex -- disable echo */ v |= CAS_MAC_XIF_ECHO_DISABL; switch (IFM_SUBTYPE(sc->sc_mii.mii_media_active)) { case IFM_1000_T: /* Gigabit using GMII interface */ case IFM_1000_SX: v |= CAS_MAC_XIF_GMII_MODE; break; default: v &= ~CAS_MAC_XIF_GMII_MODE; } bus_space_write_4(t, mac, CAS_MAC_XIF_CONFIG, v); } int cas_pcs_readreg(device_t self, int phy, int reg, uint16_t *val) { struct cas_softc *sc = device_private(self); bus_space_tag_t t = sc->sc_memt; bus_space_handle_t pcs = sc->sc_memh; #ifdef CAS_DEBUG if (sc->sc_debug) printf("cas_pcs_readreg: phy %d reg %d\n", phy, reg); #endif if (phy != CAS_PHYAD_EXTERNAL) return -1; switch (reg) { case MII_BMCR: reg = CAS_MII_CONTROL; break; case MII_BMSR: reg = CAS_MII_STATUS; break; case MII_ANAR: reg = CAS_MII_ANAR; break; case MII_ANLPAR: reg = CAS_MII_ANLPAR; break; case MII_EXTSR: *val = EXTSR_1000XFDX | EXTSR_1000XHDX; return 0; default: return (0); } *val = bus_space_read_4(t, pcs, reg) & 0xffff; return 0; } int cas_pcs_writereg(device_t self, int phy, int reg, uint16_t val) { struct cas_softc *sc = device_private(self); bus_space_tag_t t = sc->sc_memt; bus_space_handle_t pcs = sc->sc_memh; int reset = 0; #ifdef CAS_DEBUG if (sc->sc_debug) printf("cas_pcs_writereg: phy %d reg %d val %x\n", phy, reg, val); #endif if (phy != CAS_PHYAD_EXTERNAL) return -1; if (reg == MII_ANAR) bus_space_write_4(t, pcs, CAS_MII_CONFIG, 0); switch (reg) { case MII_BMCR: reset = (val & CAS_MII_CONTROL_RESET); reg = CAS_MII_CONTROL; break; case MII_BMSR: reg = CAS_MII_STATUS; break; case MII_ANAR: reg = CAS_MII_ANAR; break; case MII_ANLPAR: reg = CAS_MII_ANLPAR; break; default: return 0; } bus_space_write_4(t, pcs, reg, val); if (reset) cas_bitwait(sc, pcs, CAS_MII_CONTROL, CAS_MII_CONTROL_RESET, 0); if (reg == CAS_MII_ANAR || reset) bus_space_write_4(t, pcs, CAS_MII_CONFIG, CAS_MII_CONFIG_ENABLE); return 0; } int cas_mediachange(struct ifnet *ifp) { struct cas_softc *sc = ifp->if_softc; struct mii_data *mii = &sc->sc_mii; if (mii->mii_instance) { struct mii_softc *miisc; LIST_FOREACH(miisc, &mii->mii_phys, mii_list) mii_phy_reset(miisc); } return (mii_mediachg(&sc->sc_mii)); } void cas_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr) { struct cas_softc *sc = ifp->if_softc; mii_pollstat(&sc->sc_mii); ifmr->ifm_active = sc->sc_mii.mii_media_active; ifmr->ifm_status = sc->sc_mii.mii_media_status; } /* * Process an ioctl request. */ int cas_ioctl(struct ifnet *ifp, u_long cmd, void *data) { struct cas_softc *sc = ifp->if_softc; int s, error = 0; s = splnet(); if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) { error = 0; if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI) ; else if (ifp->if_flags & IFF_RUNNING) { /* * Multicast list has changed; set the hardware filter * accordingly. */ cas_iff(sc); } } splx(s); return (error); } static bool cas_suspend(device_t self, const pmf_qual_t *qual) { struct cas_softc *sc = device_private(self); bus_space_tag_t t = sc->sc_memt; bus_space_handle_t h = sc->sc_memh; bus_space_write_4(t, h, CAS_INTMASK, ~(uint32_t)0); if (sc->sc_ih != NULL) { pci_intr_disestablish(sc->sc_pc, sc->sc_ih); sc->sc_ih = NULL; } return true; } static bool cas_resume(device_t self, const pmf_qual_t *qual) { struct cas_softc *sc = device_private(self); return cas_estintr(sc, CAS_INTR_PCI | CAS_INTR_REG); } static bool cas_estintr(struct cas_softc *sc, int what) { bus_space_tag_t t = sc->sc_memt; bus_space_handle_t h = sc->sc_memh; const char *intrstr = NULL; char intrbuf[PCI_INTRSTR_LEN]; /* PCI interrupts */ if (what & CAS_INTR_PCI) { intrstr = pci_intr_string(sc->sc_pc, sc->sc_handle, intrbuf, sizeof(intrbuf)); sc->sc_ih = pci_intr_establish_xname(sc->sc_pc, sc->sc_handle, IPL_NET, cas_intr, sc, device_xname(sc->sc_dev)); if (sc->sc_ih == NULL) { aprint_error_dev(sc->sc_dev, "unable to establish interrupt"); if (intrstr != NULL) aprint_error(" at %s", intrstr); aprint_error("\n"); return false; } aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr); } /* Interrupt register */ if (what & CAS_INTR_REG) { bus_space_write_4(t, h, CAS_INTMASK, ~(CAS_INTR_TX_INTME | CAS_INTR_TX_EMPTY | CAS_INTR_TX_TAG_ERR | CAS_INTR_RX_DONE | CAS_INTR_RX_NOBUF | CAS_INTR_RX_TAG_ERR | CAS_INTR_RX_COMP_FULL | CAS_INTR_PCS | CAS_INTR_MAC_CONTROL | CAS_INTR_MIF | CAS_INTR_BERR)); bus_space_write_4(t, h, CAS_MAC_RX_MASK, CAS_MAC_RX_DONE | CAS_MAC_RX_FRAME_CNT); bus_space_write_4(t, h, CAS_MAC_TX_MASK, CAS_MAC_TX_XMIT_DONE); bus_space_write_4(t, h, CAS_MAC_CONTROL_MASK, 0); /* XXXX */ } return true; } bool cas_shutdown(device_t self, int howto) { struct cas_softc *sc = device_private(self); struct ifnet *ifp = &sc->sc_ethercom.ec_if; cas_stop(ifp, 1); return true; } void cas_iff(struct cas_softc *sc) { struct ifnet *ifp = &sc->sc_ethercom.ec_if; struct ethercom *ec = &sc->sc_ethercom; struct ether_multi *enm; struct ether_multistep step; bus_space_tag_t t = sc->sc_memt; bus_space_handle_t h = sc->sc_memh; uint32_t crc, hash[16], rxcfg; int i; rxcfg = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG); rxcfg &= ~(CAS_MAC_RX_HASH_FILTER | CAS_MAC_RX_PROMISCUOUS | CAS_MAC_RX_PROMISC_GRP); ifp->if_flags &= ~IFF_ALLMULTI; if ((ifp->if_flags & IFF_PROMISC) != 0) goto update; /* * Set up multicast address filter by passing all multicast * addresses through a crc generator, and then using the * high order 8 bits as an index into the 256 bit logical * address filter. The high order 4 bits selects the word, * while the other 4 bits select the bit within the word * (where bit 0 is the MSB). */ /* Clear hash table */ for (i = 0; i < 16; i++) hash[i] = 0; ETHER_LOCK(ec); ETHER_FIRST_MULTI(step, ec, enm); while (enm != NULL) { if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) { /* XXX Use ETHER_F_ALLMULTI in future. */ ifp->if_flags |= IFF_ALLMULTI; ETHER_UNLOCK(ec); goto update; } crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN); /* Just want the 8 most significant bits. */ crc >>= 24; /* Set the corresponding bit in the filter. */ hash[crc >> 4] |= 1 << (15 - (crc & 15)); ETHER_NEXT_MULTI(step, enm); } ETHER_UNLOCK(ec); rxcfg |= CAS_MAC_RX_HASH_FILTER; /* Now load the hash table into the chip (if we are using it) */ for (i = 0; i < 16; i++) { bus_space_write_4(t, h, CAS_MAC_HASH0 + i * (CAS_MAC_HASH1 - CAS_MAC_HASH0), hash[i]); } update: if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) { if (ifp->if_flags & IFF_PROMISC) { rxcfg |= CAS_MAC_RX_PROMISCUOUS; /* XXX Use ETHER_F_ALLMULTI in future. */ ifp->if_flags |= IFF_ALLMULTI; } else rxcfg |= CAS_MAC_RX_PROMISC_GRP; } bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, rxcfg); } int cas_encap(struct cas_softc *sc, struct mbuf *mhead, uint32_t *bixp) { uint64_t flags; uint32_t cur, frag, i; bus_dmamap_t map; cur = frag = *bixp; map = sc->sc_txd[cur].sd_map; if (bus_dmamap_load_mbuf(sc->sc_dmatag, map, mhead, BUS_DMA_NOWAIT) != 0) { return (ENOBUFS); } if ((sc->sc_tx_cnt + map->dm_nsegs) > (CAS_NTXDESC - 2)) { bus_dmamap_unload(sc->sc_dmatag, map); return (ENOBUFS); } bus_dmamap_sync(sc->sc_dmatag, map, 0, map->dm_mapsize, BUS_DMASYNC_PREWRITE); for (i = 0; i < map->dm_nsegs; i++) { sc->sc_txdescs[frag].cd_addr = CAS_DMA_WRITE(map->dm_segs[i].ds_addr); flags = (map->dm_segs[i].ds_len & CAS_TD_BUFSIZE) | (i == 0 ? CAS_TD_START_OF_PACKET : 0) | ((i == (map->dm_nsegs - 1)) ? CAS_TD_END_OF_PACKET : 0); sc->sc_txdescs[frag].cd_flags = CAS_DMA_WRITE(flags); bus_dmamap_sync(sc->sc_dmatag, sc->sc_cddmamap, CAS_CDTXOFF(frag), sizeof(struct cas_desc), BUS_DMASYNC_PREWRITE); cur = frag; if (++frag == CAS_NTXDESC) frag = 0; } sc->sc_tx_cnt += map->dm_nsegs; sc->sc_txd[*bixp].sd_map = sc->sc_txd[cur].sd_map; sc->sc_txd[cur].sd_map = map; sc->sc_txd[cur].sd_mbuf = mhead; bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_TX_KICK, frag); *bixp = frag; /* sync descriptors */ return (0); } /* * Transmit interrupt. */ int cas_tint(struct cas_softc *sc, uint32_t status) { struct ifnet *ifp = &sc->sc_ethercom.ec_if; struct cas_sxd *sd; uint32_t cons, comp; comp = bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_TX_COMPLETION); cons = sc->sc_tx_cons; while (cons != comp) { sd = &sc->sc_txd[cons]; if (sd->sd_mbuf != NULL) { bus_dmamap_sync(sc->sc_dmatag, sd->sd_map, 0, sd->sd_map->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmatag, sd->sd_map); m_freem(sd->sd_mbuf); sd->sd_mbuf = NULL; if_statinc(ifp, if_opackets); } sc->sc_tx_cnt--; if (++cons == CAS_NTXDESC) cons = 0; } sc->sc_tx_cons = cons; if (sc->sc_tx_cnt < CAS_NTXDESC - 2) ifp->if_flags &= ~IFF_OACTIVE; if (sc->sc_tx_cnt == 0) ifp->if_timer = 0; if_schedule_deferred_start(ifp); return (1); } void cas_start(struct ifnet *ifp) { struct cas_softc *sc = ifp->if_softc; struct mbuf *m; uint32_t bix; if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) return; bix = sc->sc_tx_prod; while (sc->sc_txd[bix].sd_mbuf == NULL) { IFQ_POLL(&ifp->if_snd, m); if (m == NULL) break; /* * If BPF is listening on this interface, let it see the * packet before we commit it to the wire. */ bpf_mtap(ifp, m, BPF_D_OUT); /* * Encapsulate this packet and start it going... * or fail... */ if (cas_encap(sc, m, &bix)) { ifp->if_flags |= IFF_OACTIVE; break; } IFQ_DEQUEUE(&ifp->if_snd, m); ifp->if_timer = 5; } sc->sc_tx_prod = bix; } MODULE(MODULE_CLASS_DRIVER, if_cas, "pci"); #ifdef _MODULE #include "ioconf.c" #endif static int if_cas_modcmd(modcmd_t cmd, void *opaque) { int error = 0; switch (cmd) { case MODULE_CMD_INIT: #ifdef _MODULE error = config_init_component(cfdriver_ioconf_cas, cfattach_ioconf_cas, cfdata_ioconf_cas); #endif return error; case MODULE_CMD_FINI: #ifdef _MODULE error = config_fini_component(cfdriver_ioconf_cas, cfattach_ioconf_cas, cfdata_ioconf_cas); #endif return error; default: return ENOTTY; } }