/* $NetBSD: udf_subr.c,v 1.176 2024/02/10 09:21:53 andvar Exp $ */ /* * Copyright (c) 2006, 2008 Reinoud Zandijk * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #include #ifndef lint __KERNEL_RCSID(0, "$NetBSD: udf_subr.c,v 1.176 2024/02/10 09:21:53 andvar Exp $"); #endif /* not lint */ #if defined(_KERNEL_OPT) #include "opt_compat_netbsd.h" #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "udf.h" #include "udf_subr.h" #include "udf_bswap.h" #define VTOI(vnode) ((struct udf_node *) (vnode)->v_data) #define UDF_SET_SYSTEMFILE(vp) \ /* XXXAD Is the vnode locked? */ \ (vp)->v_vflag |= VV_SYSTEM; \ vref((vp)); \ vput((vp)); \ extern int syncer_maxdelay; /* maximum delay time */ extern int (**udf_vnodeop_p)(void *); /* --------------------------------------------------------------------- */ //#ifdef DEBUG #if 1 #if 0 static void udf_dumpblob(boid *blob, uint32_t dlen) { int i, j; printf("blob = %p\n", blob); printf("dump of %d bytes\n", dlen); for (i = 0; i < dlen; i+ = 16) { printf("%04x ", i); for (j = 0; j < 16; j++) { if (i+j < dlen) { printf("%02x ", blob[i+j]); } else { printf(" "); } } for (j = 0; j < 16; j++) { if (i+j < dlen) { if (blob[i+j]>32 && blob[i+j]! = 127) { printf("%c", blob[i+j]); } else { printf("."); } } } printf("\n"); } printf("\n"); Debugger(); } #endif static void udf_dump_discinfo(struct udf_mount *ump) { char bits[128]; struct mmc_discinfo *di = &ump->discinfo; if ((udf_verbose & UDF_DEBUG_VOLUMES) == 0) return; printf("Device/media info :\n"); printf("\tMMC profile 0x%02x\n", di->mmc_profile); printf("\tderived class %d\n", di->mmc_class); printf("\tsector size %d\n", di->sector_size); printf("\tdisc state %d\n", di->disc_state); printf("\tlast ses state %d\n", di->last_session_state); printf("\tbg format state %d\n", di->bg_format_state); printf("\tfrst track %d\n", di->first_track); printf("\tfst on last ses %d\n", di->first_track_last_session); printf("\tlst on last ses %d\n", di->last_track_last_session); printf("\tlink block penalty %d\n", di->link_block_penalty); snprintb(bits, sizeof(bits), MMC_DFLAGS_FLAGBITS, di->disc_flags); printf("\tdisc flags %s\n", bits); printf("\tdisc id %x\n", di->disc_id); printf("\tdisc barcode %"PRIx64"\n", di->disc_barcode); printf("\tnum sessions %d\n", di->num_sessions); printf("\tnum tracks %d\n", di->num_tracks); snprintb(bits, sizeof(bits), MMC_CAP_FLAGBITS, di->mmc_cur); printf("\tcapabilities cur %s\n", bits); snprintb(bits, sizeof(bits), MMC_CAP_FLAGBITS, di->mmc_cap); printf("\tcapabilities cap %s\n", bits); } static void udf_dump_trackinfo(struct mmc_trackinfo *trackinfo) { char bits[128]; if ((udf_verbose & UDF_DEBUG_VOLUMES) == 0) return; printf("Trackinfo for track %d:\n", trackinfo->tracknr); printf("\tsessionnr %d\n", trackinfo->sessionnr); printf("\ttrack mode %d\n", trackinfo->track_mode); printf("\tdata mode %d\n", trackinfo->data_mode); snprintb(bits, sizeof(bits), MMC_TRACKINFO_FLAGBITS, trackinfo->flags); printf("\tflags %s\n", bits); printf("\ttrack start %d\n", trackinfo->track_start); printf("\tnext_writable %d\n", trackinfo->next_writable); printf("\tfree_blocks %d\n", trackinfo->free_blocks); printf("\tpacket_size %d\n", trackinfo->packet_size); printf("\ttrack size %d\n", trackinfo->track_size); printf("\tlast recorded block %d\n", trackinfo->last_recorded); } #else #define udf_dump_discinfo(a); #define udf_dump_trackinfo(a); #endif /* --------------------------------------------------------------------- */ /* not called often */ int udf_update_discinfo(struct udf_mount *ump) { struct vnode *devvp = ump->devvp; uint64_t psize; unsigned secsize; struct mmc_discinfo *di; int error; DPRINTF(VOLUMES, ("read/update disc info\n")); di = &ump->discinfo; memset(di, 0, sizeof(struct mmc_discinfo)); /* check if we're on a MMC capable device, i.e. CD/DVD */ error = VOP_IOCTL(devvp, MMCGETDISCINFO, di, FKIOCTL, NOCRED); if (error == 0) { udf_dump_discinfo(ump); return 0; } /* disc partition support */ error = getdisksize(devvp, &psize, &secsize); if (error) return error; /* set up a disc info profile for partitions */ di->mmc_profile = 0x01; /* disc type */ di->mmc_class = MMC_CLASS_DISC; di->disc_state = MMC_STATE_CLOSED; di->last_session_state = MMC_STATE_CLOSED; di->bg_format_state = MMC_BGFSTATE_COMPLETED; di->link_block_penalty = 0; di->mmc_cur = MMC_CAP_RECORDABLE | MMC_CAP_REWRITABLE | MMC_CAP_ZEROLINKBLK | MMC_CAP_HW_DEFECTFREE; di->mmc_cap = di->mmc_cur; di->disc_flags = MMC_DFLAGS_UNRESTRICTED; /* TODO problem with last_possible_lba on resizable VND; request */ di->last_possible_lba = psize; di->sector_size = secsize; di->num_sessions = 1; di->num_tracks = 1; di->first_track = 1; di->first_track_last_session = di->last_track_last_session = 1; udf_dump_discinfo(ump); return 0; } int udf_update_trackinfo(struct udf_mount *ump, struct mmc_trackinfo *ti) { struct vnode *devvp = ump->devvp; struct mmc_discinfo *di = &ump->discinfo; int error, class; DPRINTF(VOLUMES, ("read track info\n")); class = di->mmc_class; if (class != MMC_CLASS_DISC) { /* tracknr specified in struct ti */ error = VOP_IOCTL(devvp, MMCGETTRACKINFO, ti, FKIOCTL, NOCRED); return error; } /* disc partition support */ if (ti->tracknr != 1) return EIO; /* create fake ti (TODO check for resized vnds) */ ti->sessionnr = 1; ti->track_mode = 0; /* XXX */ ti->data_mode = 0; /* XXX */ ti->flags = MMC_TRACKINFO_LRA_VALID | MMC_TRACKINFO_NWA_VALID; ti->track_start = 0; ti->packet_size = 1; /* TODO support for resizable vnd */ ti->track_size = di->last_possible_lba; ti->next_writable = di->last_possible_lba; ti->last_recorded = ti->next_writable; ti->free_blocks = 0; return 0; } int udf_setup_writeparams(struct udf_mount *ump) { struct mmc_writeparams mmc_writeparams; int error; if (ump->discinfo.mmc_class == MMC_CLASS_DISC) return 0; /* * only CD burning normally needs setting up, but other disc types * might need other settings to be made. The MMC framework will set up * the necessary recording parameters according to the disc * characteristics read in. Modifications can be made in the discinfo * structure passed to change the nature of the disc. */ memset(&mmc_writeparams, 0, sizeof(struct mmc_writeparams)); mmc_writeparams.mmc_class = ump->discinfo.mmc_class; mmc_writeparams.mmc_cur = ump->discinfo.mmc_cur; /* * UDF dictates first track to determine track mode for the whole * disc. [UDF 1.50/6.10.1.1, UDF 1.50/6.10.2.1] * To prevent problems with a `reserved' track in front we start with * the 2nd track and if that is not valid, go for the 1st. */ mmc_writeparams.tracknr = 2; mmc_writeparams.data_mode = MMC_DATAMODE_DEFAULT; /* XA disc */ mmc_writeparams.track_mode = MMC_TRACKMODE_DEFAULT; /* data */ error = VOP_IOCTL(ump->devvp, MMCSETUPWRITEPARAMS, &mmc_writeparams, FKIOCTL, NOCRED); if (error) { mmc_writeparams.tracknr = 1; error = VOP_IOCTL(ump->devvp, MMCSETUPWRITEPARAMS, &mmc_writeparams, FKIOCTL, NOCRED); } return error; } void udf_mmc_synchronise_caches(struct udf_mount *ump) { struct mmc_op mmc_op; DPRINTF(CALL, ("udf_mcc_synchronise_caches()\n")); if (ump->vfs_mountp->mnt_flag & MNT_RDONLY) return; /* discs are done now */ if (ump->discinfo.mmc_class == MMC_CLASS_DISC) return; memset(&mmc_op, 0, sizeof(struct mmc_op)); mmc_op.operation = MMC_OP_SYNCHRONISECACHE; /* ignore return code */ (void) VOP_IOCTL(ump->devvp, MMCOP, &mmc_op, FKIOCTL, NOCRED); } /* --------------------------------------------------------------------- */ /* track/session searching for mounting */ int udf_search_tracks(struct udf_mount *ump, struct udf_args *args, int *first_tracknr, int *last_tracknr) { struct mmc_trackinfo trackinfo; uint32_t tracknr, start_track, num_tracks; int error; /* if negative, sessionnr is relative to last session */ if (args->sessionnr < 0) { args->sessionnr += ump->discinfo.num_sessions; } /* sanity */ if (args->sessionnr < 0) args->sessionnr = 0; if (args->sessionnr > ump->discinfo.num_sessions) args->sessionnr = ump->discinfo.num_sessions; /* search the tracks for this session, zero session nr indicates last */ if (args->sessionnr == 0) args->sessionnr = ump->discinfo.num_sessions; if (ump->discinfo.last_session_state == MMC_STATE_EMPTY) args->sessionnr--; /* sanity again */ if (args->sessionnr < 0) args->sessionnr = 0; /* search the first and last track of the specified session */ num_tracks = ump->discinfo.num_tracks; start_track = ump->discinfo.first_track; /* search for first track of this session */ for (tracknr = start_track; tracknr <= num_tracks; tracknr++) { /* get track info */ trackinfo.tracknr = tracknr; error = udf_update_trackinfo(ump, &trackinfo); if (error) return error; if (trackinfo.sessionnr == args->sessionnr) break; } *first_tracknr = tracknr; /* search for last track of this session */ for (;tracknr <= num_tracks; tracknr++) { /* get track info */ trackinfo.tracknr = tracknr; error = udf_update_trackinfo(ump, &trackinfo); if (error || (trackinfo.sessionnr != args->sessionnr)) { tracknr--; break; } } if (tracknr > num_tracks) tracknr--; *last_tracknr = tracknr; if (*last_tracknr < *first_tracknr) { printf( "udf_search_tracks: sanity check on drive+disc failed, " "drive returned garbage\n"); return EINVAL; } assert(*last_tracknr >= *first_tracknr); return 0; } /* * NOTE: this is the only routine in this file that directly peeks into the * metadata file but since its at a larval state of the mount it can't hurt. * * XXX candidate for udf_allocation.c * XXX clean me up!, change to new node reading code. */ static void udf_check_track_metadata_overlap(struct udf_mount *ump, struct mmc_trackinfo *trackinfo) { struct part_desc *part; struct file_entry *fe; struct extfile_entry *efe; struct short_ad *s_ad; struct long_ad *l_ad; uint32_t track_start, track_end; uint32_t phys_part_start, phys_part_end, part_start, part_end; uint32_t sector_size, len, alloclen, plb_num; uint8_t *pos; int addr_type, icblen, icbflags; /* get our track extents */ track_start = trackinfo->track_start; track_end = track_start + trackinfo->track_size; /* get our base partition extent */ KASSERT(ump->node_part == ump->fids_part); part = ump->partitions[ump->vtop[ump->node_part]]; phys_part_start = udf_rw32(part->start_loc); phys_part_end = phys_part_start + udf_rw32(part->part_len); /* no use if its outside the physical partition */ if ((phys_part_start >= track_end) || (phys_part_end < track_start)) return; /* * now follow all extents in the fe/efe to see if they refer to this * track */ sector_size = ump->discinfo.sector_size; /* XXX should we claim exclusive access to the metafile ? */ /* TODO: move to new node read code */ fe = ump->metadata_node->fe; efe = ump->metadata_node->efe; if (fe) { alloclen = udf_rw32(fe->l_ad); pos = &fe->data[0] + udf_rw32(fe->l_ea); icbflags = udf_rw16(fe->icbtag.flags); } else { assert(efe); alloclen = udf_rw32(efe->l_ad); pos = &efe->data[0] + udf_rw32(efe->l_ea); icbflags = udf_rw16(efe->icbtag.flags); } addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK; while (alloclen) { if (addr_type == UDF_ICB_SHORT_ALLOC) { icblen = sizeof(struct short_ad); s_ad = (struct short_ad *) pos; len = udf_rw32(s_ad->len); plb_num = udf_rw32(s_ad->lb_num); } else { /* should not be present, but why not */ icblen = sizeof(struct long_ad); l_ad = (struct long_ad *) pos; len = udf_rw32(l_ad->len); plb_num = udf_rw32(l_ad->loc.lb_num); /* pvpart_num = udf_rw16(l_ad->loc.part_num); */ } /* process extent */ len = UDF_EXT_LEN(len); part_start = phys_part_start + plb_num; part_end = part_start + (len / sector_size); if ((part_start >= track_start) && (part_end <= track_end)) { /* extent is enclosed within this track */ ump->metadata_track = *trackinfo; return; } pos += icblen; alloclen -= icblen; } } int udf_search_writing_tracks(struct udf_mount *ump) { struct vnode *devvp = ump->devvp; struct mmc_trackinfo trackinfo; struct mmc_op mmc_op; struct part_desc *part; uint32_t tracknr, start_track, num_tracks; uint32_t track_start, track_end, part_start, part_end; int node_alloc, error; /* * in the CD/(HD)DVD/BD recordable device model a few tracks within * the last session might be open but in the UDF device model at most * three tracks can be open: a reserved track for delayed ISO VRS * writing, a data track and a metadata track. We search here for the * data track and the metadata track. Note that the reserved track is * troublesome but can be detected by its small size of < 512 sectors. */ /* update discinfo since it might have changed */ error = udf_update_discinfo(ump); if (error) return error; num_tracks = ump->discinfo.num_tracks; start_track = ump->discinfo.first_track; /* fetch info on first and possibly only track */ trackinfo.tracknr = start_track; error = udf_update_trackinfo(ump, &trackinfo); if (error) return error; /* copy results to our mount point */ ump->data_track = trackinfo; ump->metadata_track = trackinfo; /* if not sequential, we're done */ if (num_tracks == 1) return 0; for (tracknr = start_track;tracknr <= num_tracks; tracknr++) { /* get track info */ trackinfo.tracknr = tracknr; error = udf_update_trackinfo(ump, &trackinfo); if (error) return error; /* * If this track is marked damaged, ask for repair. This is an * optional command, so ignore its error but report warning. */ if (trackinfo.flags & MMC_TRACKINFO_DAMAGED) { memset(&mmc_op, 0, sizeof(mmc_op)); mmc_op.operation = MMC_OP_REPAIRTRACK; mmc_op.mmc_profile = ump->discinfo.mmc_profile; mmc_op.tracknr = tracknr; error = VOP_IOCTL(devvp, MMCOP, &mmc_op, FKIOCTL, NOCRED); if (error) (void)printf("Drive can't explicitly repair " "damaged track %d, but it might " "autorepair\n", tracknr); /* reget track info */ error = udf_update_trackinfo(ump, &trackinfo); if (error) return error; } if ((trackinfo.flags & MMC_TRACKINFO_NWA_VALID) == 0) continue; track_start = trackinfo.track_start; track_end = track_start + trackinfo.track_size; /* check for overlap on data partition */ part = ump->partitions[ump->data_part]; part_start = udf_rw32(part->start_loc); part_end = part_start + udf_rw32(part->part_len); if ((part_start < track_end) && (part_end > track_start)) { ump->data_track = trackinfo; /* TODO check if UDF partition data_part is writable */ } /* check for overlap on metadata partition */ node_alloc = ump->vtop_alloc[ump->node_part]; if ((node_alloc == UDF_ALLOC_METASEQUENTIAL) || (node_alloc == UDF_ALLOC_METABITMAP)) { udf_check_track_metadata_overlap(ump, &trackinfo); } else { ump->metadata_track = trackinfo; } } if ((ump->data_track.flags & MMC_TRACKINFO_NWA_VALID) == 0) return EROFS; if ((ump->metadata_track.flags & MMC_TRACKINFO_NWA_VALID) == 0) return EROFS; return 0; } /* --------------------------------------------------------------------- */ /* * Check if the blob starts with a good UDF tag. Tags are protected by a * checksum over the header except one byte at position 4 that is the checksum * itself. */ int udf_check_tag(void *blob) { struct desc_tag *tag = blob; uint8_t *pos, sum, cnt; /* check TAG header checksum */ pos = (uint8_t *) tag; sum = 0; for(cnt = 0; cnt < 16; cnt++) { if (cnt != 4) sum += *pos; pos++; } if (sum != tag->cksum) { /* bad tag header checksum; this is not a valid tag */ return EINVAL; } return 0; } /* * check tag payload will check descriptor CRC as specified. * If the descriptor is too long, it will return EIO otherwise EINVAL. */ int udf_check_tag_payload(void *blob, uint32_t max_length) { struct desc_tag *tag = blob; uint16_t crc, crc_len; crc_len = udf_rw16(tag->desc_crc_len); /* check payload CRC if applicable */ if (crc_len == 0) return 0; if (crc_len > max_length) return EIO; crc = udf_cksum(((uint8_t *) tag) + UDF_DESC_TAG_LENGTH, crc_len); if (crc != udf_rw16(tag->desc_crc)) { /* bad payload CRC; this is a broken tag */ return EINVAL; } return 0; } void udf_validate_tag_sum(void *blob) { struct desc_tag *tag = blob; uint8_t *pos, sum, cnt; /* calculate TAG header checksum */ pos = (uint8_t *) tag; sum = 0; for(cnt = 0; cnt < 16; cnt++) { if (cnt != 4) sum += *pos; pos++; } tag->cksum = sum; /* 8 bit */ } /* assumes sector number of descriptor to be saved already present */ void udf_validate_tag_and_crc_sums(void *blob) { struct desc_tag *tag = blob; uint8_t *btag = (uint8_t *) tag; uint16_t crc, crc_len; crc_len = udf_rw16(tag->desc_crc_len); /* check payload CRC if applicable */ if (crc_len > 0) { crc = udf_cksum(btag + UDF_DESC_TAG_LENGTH, crc_len); tag->desc_crc = udf_rw16(crc); } /* calculate TAG header checksum */ udf_validate_tag_sum(blob); } /* --------------------------------------------------------------------- */ /* * XXX note the different semantics from udfclient: for FIDs it still rounds * up to sectors. Use udf_fidsize() for a correct length. */ int udf_tagsize(union dscrptr *dscr, uint32_t lb_size) { uint32_t size, tag_id, num_lb, elmsz; tag_id = udf_rw16(dscr->tag.id); switch (tag_id) { case TAGID_LOGVOL : size = sizeof(struct logvol_desc) - 1; size += udf_rw32(dscr->lvd.mt_l); break; case TAGID_UNALLOC_SPACE : elmsz = sizeof(struct extent_ad); size = sizeof(struct unalloc_sp_desc) - elmsz; size += udf_rw32(dscr->usd.alloc_desc_num) * elmsz; break; case TAGID_FID : size = UDF_FID_SIZE + dscr->fid.l_fi + udf_rw16(dscr->fid.l_iu); size = (size + 3) & ~3; break; case TAGID_LOGVOL_INTEGRITY : size = sizeof(struct logvol_int_desc) - sizeof(uint32_t); size += udf_rw32(dscr->lvid.l_iu); size += (2 * udf_rw32(dscr->lvid.num_part) * sizeof(uint32_t)); break; case TAGID_SPACE_BITMAP : size = sizeof(struct space_bitmap_desc) - 1; size += udf_rw32(dscr->sbd.num_bytes); break; case TAGID_SPARING_TABLE : elmsz = sizeof(struct spare_map_entry); size = sizeof(struct udf_sparing_table) - elmsz; size += udf_rw16(dscr->spt.rt_l) * elmsz; break; case TAGID_FENTRY : size = sizeof(struct file_entry); size += udf_rw32(dscr->fe.l_ea) + udf_rw32(dscr->fe.l_ad)-1; break; case TAGID_EXTFENTRY : size = sizeof(struct extfile_entry); size += udf_rw32(dscr->efe.l_ea) + udf_rw32(dscr->efe.l_ad)-1; break; case TAGID_FSD : size = sizeof(struct fileset_desc); break; default : size = sizeof(union dscrptr); break; } if ((size == 0) || (lb_size == 0)) return 0; if (lb_size == 1) return size; /* round up in sectors */ num_lb = (size + lb_size -1) / lb_size; return num_lb * lb_size; } int udf_fidsize(struct fileid_desc *fid) { uint32_t size; if (udf_rw16(fid->tag.id) != TAGID_FID) panic("got udf_fidsize on non FID\n"); size = UDF_FID_SIZE + fid->l_fi + udf_rw16(fid->l_iu); size = (size + 3) & ~3; return size; } /* --------------------------------------------------------------------- */ void udf_lock_node(struct udf_node *udf_node, int flag, char const *fname, const int lineno) { int ret; mutex_enter(&udf_node->node_mutex); /* wait until free */ while (udf_node->i_flags & IN_LOCKED) { ret = cv_timedwait(&udf_node->node_lock, &udf_node->node_mutex, hz/8); /* TODO check if we should return error; abort */ if (ret == EWOULDBLOCK) { DPRINTF(LOCKING, ( "udf_lock_node: udf_node %p would block " "wanted at %s:%d, previously locked at %s:%d\n", udf_node, fname, lineno, udf_node->lock_fname, udf_node->lock_lineno)); } } /* grab */ udf_node->i_flags |= IN_LOCKED | flag; /* debug */ udf_node->lock_fname = fname; udf_node->lock_lineno = lineno; mutex_exit(&udf_node->node_mutex); } void udf_unlock_node(struct udf_node *udf_node, int flag) { mutex_enter(&udf_node->node_mutex); udf_node->i_flags &= ~(IN_LOCKED | flag); cv_broadcast(&udf_node->node_lock); mutex_exit(&udf_node->node_mutex); } /* --------------------------------------------------------------------- */ static int udf_read_anchor(struct udf_mount *ump, uint32_t sector, struct anchor_vdp **dst) { int error; error = udf_read_phys_dscr(ump, sector, M_UDFVOLD, (union dscrptr **) dst); if (!error) { /* blank terminator blocks are not allowed here */ if (*dst == NULL) return ENOENT; if (udf_rw16((*dst)->tag.id) != TAGID_ANCHOR) { error = ENOENT; free(*dst, M_UDFVOLD); *dst = NULL; DPRINTF(VOLUMES, ("Not an anchor\n")); } } return error; } int udf_read_anchors(struct udf_mount *ump) { struct udf_args *args = &ump->mount_args; struct mmc_trackinfo first_track; struct mmc_trackinfo second_track; struct mmc_trackinfo last_track; struct anchor_vdp **anchorsp; uint32_t track_start; uint32_t track_end; uint32_t positions[4]; int first_tracknr, last_tracknr; int error, anch, ok, first_anchor; /* search the first and last track of the specified session */ error = udf_search_tracks(ump, args, &first_tracknr, &last_tracknr); if (!error) { first_track.tracknr = first_tracknr; error = udf_update_trackinfo(ump, &first_track); } if (!error) { last_track.tracknr = last_tracknr; error = udf_update_trackinfo(ump, &last_track); } if ((!error) && (first_tracknr != last_tracknr)) { second_track.tracknr = first_tracknr+1; error = udf_update_trackinfo(ump, &second_track); } if (error) { printf("UDF mount: reading disc geometry failed\n"); return 0; } track_start = first_track.track_start; /* `end' is not as straitforward as start. */ track_end = last_track.track_start + last_track.track_size - last_track.free_blocks - 1; if (ump->discinfo.mmc_cur & MMC_CAP_SEQUENTIAL) { /* end of track is not straitforward here */ if (last_track.flags & MMC_TRACKINFO_LRA_VALID) track_end = last_track.last_recorded; else if (last_track.flags & MMC_TRACKINFO_NWA_VALID) track_end = last_track.next_writable - ump->discinfo.link_block_penalty; } /* its no use reading a blank track */ first_anchor = 0; if (first_track.flags & MMC_TRACKINFO_BLANK) first_anchor = 1; /* get our packet size */ ump->packet_size = first_track.packet_size; if (first_track.flags & MMC_TRACKINFO_BLANK) ump->packet_size = second_track.packet_size; if (ump->packet_size <= 1) { /* take max, but not bigger than 64 */ ump->packet_size = MAXPHYS / ump->discinfo.sector_size; ump->packet_size = MIN(ump->packet_size, 64); } KASSERT(ump->packet_size >= 1); /* read anchors start+256, start+512, end-256, end */ positions[0] = track_start+256; positions[1] = track_end-256; positions[2] = track_end; positions[3] = track_start+512; /* [UDF 2.60/6.11.2] */ /* XXX shouldn't +512 be preferred over +256 for compat with Roxio CD */ ok = 0; anchorsp = ump->anchors; for (anch = first_anchor; anch < 4; anch++) { DPRINTF(VOLUMES, ("Read anchor %d at sector %d\n", anch, positions[anch])); error = udf_read_anchor(ump, positions[anch], anchorsp); if (!error) { anchorsp++; ok++; } } /* VATs are only recorded on sequential media, but initialise */ ump->first_possible_vat_location = track_start + 2; ump->last_possible_vat_location = track_end; return ok; } /* --------------------------------------------------------------------- */ int udf_get_c_type(struct udf_node *udf_node) { int isdir, what; isdir = (udf_node->vnode->v_type == VDIR); what = isdir ? UDF_C_FIDS : UDF_C_USERDATA; if (udf_node->ump) if (udf_node == udf_node->ump->metadatabitmap_node) what = UDF_C_METADATA_SBM; return what; } int udf_get_record_vpart(struct udf_mount *ump, int udf_c_type) { int vpart_num; vpart_num = ump->data_part; if (udf_c_type == UDF_C_NODE) vpart_num = ump->node_part; if (udf_c_type == UDF_C_FIDS) vpart_num = ump->fids_part; return vpart_num; } /* * BUGALERT: some rogue implementations use random physical partition * numbers to break other implementations so lookup the number. */ static uint16_t udf_find_raw_phys(struct udf_mount *ump, uint16_t raw_phys_part) { struct part_desc *part; uint16_t phys_part; for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) { part = ump->partitions[phys_part]; if (part == NULL) break; if (udf_rw16(part->part_num) == raw_phys_part) break; } return phys_part; } /* --------------------------------------------------------------------- */ /* we dont try to be smart; we just record the parts */ #define UDF_UPDATE_DSCR(name, dscr) \ if (name) \ free(name, M_UDFVOLD); \ name = dscr; static int udf_process_vds_descriptor(struct udf_mount *ump, union dscrptr *dscr) { uint16_t phys_part, raw_phys_part; DPRINTF(VOLUMES, ("\tprocessing VDS descr %d\n", udf_rw16(dscr->tag.id))); switch (udf_rw16(dscr->tag.id)) { case TAGID_PRI_VOL : /* primary partition */ UDF_UPDATE_DSCR(ump->primary_vol, &dscr->pvd); break; case TAGID_LOGVOL : /* logical volume */ UDF_UPDATE_DSCR(ump->logical_vol, &dscr->lvd); break; case TAGID_UNALLOC_SPACE : /* unallocated space */ UDF_UPDATE_DSCR(ump->unallocated, &dscr->usd); break; case TAGID_IMP_VOL : /* implementation */ /* XXX do we care about multiple impl. descr ? */ UDF_UPDATE_DSCR(ump->implementation, &dscr->ivd); break; case TAGID_PARTITION : /* physical partition */ /* not much use if its not allocated */ if ((udf_rw16(dscr->pd.flags) & UDF_PART_FLAG_ALLOCATED) == 0) { free(dscr, M_UDFVOLD); break; } /* * BUGALERT: some rogue implementations use random physical * partition numbers to break other implementations so lookup * the number. */ raw_phys_part = udf_rw16(dscr->pd.part_num); phys_part = udf_find_raw_phys(ump, raw_phys_part); if (phys_part == UDF_PARTITIONS) { free(dscr, M_UDFVOLD); return EINVAL; } UDF_UPDATE_DSCR(ump->partitions[phys_part], &dscr->pd); break; case TAGID_VOL : /* volume space extender; rare */ DPRINTF(VOLUMES, ("VDS extender ignored\n")); free(dscr, M_UDFVOLD); break; default : DPRINTF(VOLUMES, ("Unhandled VDS type %d\n", udf_rw16(dscr->tag.id))); free(dscr, M_UDFVOLD); } return 0; } #undef UDF_UPDATE_DSCR /* --------------------------------------------------------------------- */ static int udf_read_vds_extent(struct udf_mount *ump, uint32_t loc, uint32_t len) { union dscrptr *dscr; uint32_t sector_size, dscr_size; int error; sector_size = ump->discinfo.sector_size; /* loc is sectornr, len is in bytes */ error = EIO; while (len) { error = udf_read_phys_dscr(ump, loc, M_UDFVOLD, &dscr); if (error) return error; /* blank block is a terminator */ if (dscr == NULL) return 0; /* TERM descriptor is a terminator */ if (udf_rw16(dscr->tag.id) == TAGID_TERM) { free(dscr, M_UDFVOLD); return 0; } /* process all others */ dscr_size = udf_tagsize(dscr, sector_size); error = udf_process_vds_descriptor(ump, dscr); if (error) { free(dscr, M_UDFVOLD); break; } assert((dscr_size % sector_size) == 0); len -= dscr_size; loc += dscr_size / sector_size; } return error; } int udf_read_vds_space(struct udf_mount *ump) { /* struct udf_args *args = &ump->mount_args; */ struct anchor_vdp *anchor, *anchor2; size_t size; uint32_t main_loc, main_len; uint32_t reserve_loc, reserve_len; int error; /* * read in VDS space provided by the anchors; if one descriptor read * fails, try the mirror sector. * * check if 2nd anchor is different from 1st; if so, go for 2nd. This * avoids the `compatibility features' of DirectCD that may confuse * stuff completely. */ anchor = ump->anchors[0]; anchor2 = ump->anchors[1]; assert(anchor); if (anchor2) { size = sizeof(struct extent_ad); if (memcmp(&anchor->main_vds_ex, &anchor2->main_vds_ex, size)) anchor = anchor2; /* reserve is specified to be a literal copy of main */ } main_loc = udf_rw32(anchor->main_vds_ex.loc); main_len = udf_rw32(anchor->main_vds_ex.len); reserve_loc = udf_rw32(anchor->reserve_vds_ex.loc); reserve_len = udf_rw32(anchor->reserve_vds_ex.len); error = udf_read_vds_extent(ump, main_loc, main_len); if (error) { printf("UDF mount: reading in reserve VDS extent\n"); error = udf_read_vds_extent(ump, reserve_loc, reserve_len); } return error; } /* --------------------------------------------------------------------- */ /* * Read in the logical volume integrity sequence pointed to by our logical * volume descriptor. Its a sequence that can be extended using fields in the * integrity descriptor itself. On sequential media only one is found, on * rewritable media a sequence of descriptors can be found as a form of * history keeping and on non sequential write-once media the chain is vital * to allow more and more descriptors to be written. The last descriptor * written in an extent needs to claim space for a new extent. */ static int udf_retrieve_lvint(struct udf_mount *ump) { union dscrptr *dscr; struct logvol_int_desc *lvint; struct udf_lvintq *trace; uint32_t lb_size, lbnum, len; int dscr_type, error, trace_len; lb_size = udf_rw32(ump->logical_vol->lb_size); len = udf_rw32(ump->logical_vol->integrity_seq_loc.len); lbnum = udf_rw32(ump->logical_vol->integrity_seq_loc.loc); /* clean trace */ memset(ump->lvint_trace, 0, UDF_LVDINT_SEGMENTS * sizeof(struct udf_lvintq)); trace_len = 0; trace = ump->lvint_trace; trace->start = lbnum; trace->end = lbnum + len/lb_size; trace->pos = 0; trace->wpos = 0; lvint = NULL; dscr = NULL; error = 0; while (len) { trace->pos = lbnum - trace->start; trace->wpos = trace->pos + 1; /* read in our integrity descriptor */ error = udf_read_phys_dscr(ump, lbnum, M_UDFVOLD, &dscr); if (!error) { if (dscr == NULL) { trace->wpos = trace->pos; break; /* empty terminates */ } dscr_type = udf_rw16(dscr->tag.id); if (dscr_type == TAGID_TERM) { trace->wpos = trace->pos; break; /* clean terminator */ } if (dscr_type != TAGID_LOGVOL_INTEGRITY) { /* fatal... corrupt disc */ error = ENOENT; break; } if (lvint) free(lvint, M_UDFVOLD); lvint = &dscr->lvid; dscr = NULL; } /* else hope for the best... maybe the next is ok */ DPRINTFIF(VOLUMES, lvint, ("logvol integrity read, state %s\n", udf_rw32(lvint->integrity_type) ? "CLOSED" : "OPEN")); /* proceed sequential */ lbnum += 1; len -= lb_size; /* are we linking to a new piece? */ if (dscr && lvint->next_extent.len) { len = udf_rw32(lvint->next_extent.len); lbnum = udf_rw32(lvint->next_extent.loc); if (trace_len >= UDF_LVDINT_SEGMENTS-1) { /* IEK! segment link full... */ DPRINTF(VOLUMES, ("lvdint segments full\n")); error = EINVAL; } else { trace++; trace_len++; trace->start = lbnum; trace->end = lbnum + len/lb_size; trace->pos = 0; trace->wpos = 0; } } } /* clean up the mess, esp. when there is an error */ if (dscr) free(dscr, M_UDFVOLD); if (error && lvint) { free(lvint, M_UDFVOLD); lvint = NULL; } if (!lvint) error = ENOENT; ump->logvol_integrity = lvint; return error; } static int udf_loose_lvint_history(struct udf_mount *ump) { union dscrptr **bufs, *dscr, *last_dscr; struct udf_lvintq *trace, *in_trace, *out_trace; struct logvol_int_desc *lvint; uint32_t in_ext, in_pos, in_len; uint32_t out_ext, out_wpos, out_len; uint32_t lb_num; uint32_t len, start; int ext, sumext, extlen, cnt, cpy_len, dscr_type; int losing; int error; DPRINTF(VOLUMES, ("need to lose some lvint history\n")); /* search smallest extent */ trace = &ump->lvint_trace[0]; sumext = trace->end - trace->start; for (ext = 1; ext < UDF_LVDINT_SEGMENTS; ext++) { trace = &ump->lvint_trace[ext]; extlen = trace->end - trace->start; if (extlen == 0) break; sumext += extlen; } /* just one element? its not legal but be bug compatible */ if (sumext == 1) { /* overwrite the only entry */ DPRINTF(VOLUMES, ("\tLinux bugcompat overwriting sole entry\n")); trace = &ump->lvint_trace[0]; trace->wpos = 0; return 0; } losing = MIN(sumext, UDF_LVINT_LOSSAGE); /* no sense wiping too much */ if (sumext == UDF_LVINT_LOSSAGE) losing = UDF_LVINT_LOSSAGE/2; DPRINTF(VOLUMES, ("\tlosing %d entries\n", losing)); /* get buffer for pieces */ bufs = malloc(UDF_LVDINT_SEGMENTS * sizeof(void *), M_TEMP, M_WAITOK); in_ext = 0; in_pos = losing; in_trace = &ump->lvint_trace[in_ext]; in_len = in_trace->end - in_trace->start; out_ext = 0; out_wpos = 0; out_trace = &ump->lvint_trace[out_ext]; out_len = out_trace->end - out_trace->start; last_dscr = NULL; for(;;) { out_trace->pos = out_wpos; out_trace->wpos = out_trace->pos; if (in_pos >= in_len) { in_ext++; in_pos = 0; in_trace = &ump->lvint_trace[in_ext]; in_len = in_trace->end - in_trace->start; } if (out_wpos >= out_len) { out_ext++; out_wpos = 0; out_trace = &ump->lvint_trace[out_ext]; out_len = out_trace->end - out_trace->start; } /* copy overlap contents */ cpy_len = MIN(in_len - in_pos, out_len - out_wpos); cpy_len = MIN(cpy_len, in_len - in_trace->pos); if (cpy_len == 0) break; /* copy */ DPRINTF(VOLUMES, ("\treading %d lvid descriptors\n", cpy_len)); for (cnt = 0; cnt < cpy_len; cnt++) { /* read in our integrity descriptor */ lb_num = in_trace->start + in_pos + cnt; error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr); if (error) { /* copy last one */ dscr = last_dscr; } bufs[cnt] = dscr; if (!error) { if (dscr == NULL) { out_trace->pos = out_wpos + cnt; out_trace->wpos = out_trace->pos; break; /* empty terminates */ } dscr_type = udf_rw16(dscr->tag.id); if (dscr_type == TAGID_TERM) { out_trace->pos = out_wpos + cnt; out_trace->wpos = out_trace->pos; break; /* clean terminator */ } if (dscr_type != TAGID_LOGVOL_INTEGRITY) { panic( "UDF integrity sequence " "corrupted while mounted!\n"); } last_dscr = dscr; } } /* patch up if first entry was on error */ if (bufs[0] == NULL) { for (cnt = 0; cnt < cpy_len; cnt++) if (bufs[cnt] != NULL) break; last_dscr = bufs[cnt]; for (; cnt > 0; cnt--) { bufs[cnt] = last_dscr; } } /* glue + write out */ DPRINTF(VOLUMES, ("\twriting %d lvid descriptors\n", cpy_len)); for (cnt = 0; cnt < cpy_len; cnt++) { lb_num = out_trace->start + out_wpos + cnt; lvint = &bufs[cnt]->lvid; /* set continuation */ len = 0; start = 0; if (out_wpos + cnt == out_len) { /* get continuation */ trace = &ump->lvint_trace[out_ext+1]; len = trace->end - trace->start; start = trace->start; } lvint->next_extent.len = udf_rw32(len); lvint->next_extent.loc = udf_rw32(start); lb_num = trace->start + trace->wpos; error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR, bufs[cnt], lb_num, lb_num); DPRINTFIF(VOLUMES, error, ("error writing lvint lb_num\n")); } /* free non repeating descriptors */ last_dscr = NULL; for (cnt = 0; cnt < cpy_len; cnt++) { if (bufs[cnt] != last_dscr) free(bufs[cnt], M_UDFVOLD); last_dscr = bufs[cnt]; } /* advance */ in_pos += cpy_len; out_wpos += cpy_len; } free(bufs, M_TEMP); return 0; } static int udf_writeout_lvint(struct udf_mount *ump, int lvflag) { struct udf_lvintq *trace; struct timeval now_v; struct timespec now_s; uint32_t sector; int logvol_integrity; int space, error; DPRINTF(VOLUMES, ("writing out logvol integrity descriptor\n")); /* get free space in last chunk */ trace = ump->lvint_trace; while (trace->wpos > (trace->end - trace->start)) { DPRINTF(VOLUMES, ("skip : start = %d, end = %d, pos = %d, " "wpos = %d\n", trace->start, trace->end, trace->pos, trace->wpos)); trace++; } /* check if there is space to append */ space = (trace->end - trace->start) - trace->wpos; DPRINTF(VOLUMES, ("write start = %d, end = %d, pos = %d, wpos = %d, " "space = %d\n", trace->start, trace->end, trace->pos, trace->wpos, space)); /* get state */ logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type); if (logvol_integrity == UDF_INTEGRITY_CLOSED) { if ((space < 3) && (lvflag & UDF_APPENDONLY_LVINT)) { /* TODO extent LVINT space if possible */ return EROFS; } } if (space < 1) { if (lvflag & UDF_APPENDONLY_LVINT) return EROFS; /* loose history by re-writing extents */ error = udf_loose_lvint_history(ump); if (error) return error; trace = ump->lvint_trace; while (trace->wpos > (trace->end - trace->start)) trace++; space = (trace->end - trace->start) - trace->wpos; DPRINTF(VOLUMES, ("new try: write start = %d, end = %d, " "pos = %d, wpos = %d, " "space = %d\n", trace->start, trace->end, trace->pos, trace->wpos, space)); } /* update our integrity descriptor to identify us and timestamp it */ DPRINTF(VOLUMES, ("updating integrity descriptor\n")); microtime(&now_v); TIMEVAL_TO_TIMESPEC(&now_v, &now_s); udf_timespec_to_timestamp(&now_s, &ump->logvol_integrity->time); udf_set_regid(&ump->logvol_info->impl_id, IMPL_NAME); udf_add_impl_regid(ump, &ump->logvol_info->impl_id); /* writeout integrity descriptor */ sector = trace->start + trace->wpos; error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR, (union dscrptr *) ump->logvol_integrity, sector, sector); DPRINTF(VOLUMES, ("writeout lvint : error = %d\n", error)); if (error) return error; /* advance write position */ trace->wpos++; space--; if (space >= 1) { /* append terminator */ sector = trace->start + trace->wpos; error = udf_write_terminator(ump, sector); DPRINTF(VOLUMES, ("write terminator : error = %d\n", error)); } space = (trace->end - trace->start) - trace->wpos; DPRINTF(VOLUMES, ("write start = %d, end = %d, pos = %d, wpos = %d, " "space = %d\n", trace->start, trace->end, trace->pos, trace->wpos, space)); DPRINTF(VOLUMES, ("finished writing out logvol integrity descriptor " "successfully\n")); return error; } /* --------------------------------------------------------------------- */ static int udf_read_physical_partition_spacetables(struct udf_mount *ump) { union dscrptr *dscr; /* struct udf_args *args = &ump->mount_args; */ struct part_desc *partd; struct part_hdr_desc *parthdr; struct udf_bitmap *bitmap; uint32_t phys_part; uint32_t lb_num, len; int error, dscr_type; /* unallocated space map */ for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) { partd = ump->partitions[phys_part]; if (partd == NULL) continue; parthdr = &partd->_impl_use.part_hdr; lb_num = udf_rw32(partd->start_loc); lb_num += udf_rw32(parthdr->unalloc_space_bitmap.lb_num); len = udf_rw32(parthdr->unalloc_space_bitmap.len); if (len == 0) continue; DPRINTF(VOLUMES, ("Read unalloc. space bitmap %d\n", lb_num)); error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr); if (!error && dscr) { /* analyse */ dscr_type = udf_rw16(dscr->tag.id); if (dscr_type == TAGID_SPACE_BITMAP) { DPRINTF(VOLUMES, ("Accepting space bitmap\n")); ump->part_unalloc_dscr[phys_part] = &dscr->sbd; /* fill in ump->part_unalloc_bits */ bitmap = &ump->part_unalloc_bits[phys_part]; bitmap->blob = (uint8_t *) dscr; bitmap->bits = dscr->sbd.data; bitmap->max_offset = udf_rw32(dscr->sbd.num_bits); bitmap->pages = NULL; /* TODO */ bitmap->data_pos = 0; bitmap->metadata_pos = 0; } else { free(dscr, M_UDFVOLD); printf( "UDF mount: error reading unallocated " "space bitmap\n"); return EROFS; } } else { /* blank not allowed */ printf("UDF mount: blank unallocated space bitmap\n"); return EROFS; } } /* unallocated space table (not supported) */ for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) { partd = ump->partitions[phys_part]; if (partd == NULL) continue; parthdr = &partd->_impl_use.part_hdr; len = udf_rw32(parthdr->unalloc_space_table.len); if (len) { printf("UDF mount: space tables not supported\n"); return EROFS; } } /* freed space map */ for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) { partd = ump->partitions[phys_part]; if (partd == NULL) continue; parthdr = &partd->_impl_use.part_hdr; /* freed space map */ lb_num = udf_rw32(partd->start_loc); lb_num += udf_rw32(parthdr->freed_space_bitmap.lb_num); len = udf_rw32(parthdr->freed_space_bitmap.len); if (len == 0) continue; DPRINTF(VOLUMES, ("Read unalloc. space bitmap %d\n", lb_num)); error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr); if (!error && dscr) { /* analyse */ dscr_type = udf_rw16(dscr->tag.id); if (dscr_type == TAGID_SPACE_BITMAP) { DPRINTF(VOLUMES, ("Accepting space bitmap\n")); ump->part_freed_dscr[phys_part] = &dscr->sbd; /* fill in ump->part_freed_bits */ bitmap = &ump->part_unalloc_bits[phys_part]; bitmap->blob = (uint8_t *) dscr; bitmap->bits = dscr->sbd.data; bitmap->max_offset = udf_rw32(dscr->sbd.num_bits); bitmap->pages = NULL; /* TODO */ bitmap->data_pos = 0; bitmap->metadata_pos = 0; } else { free(dscr, M_UDFVOLD); printf( "UDF mount: error reading freed " "space bitmap\n"); return EROFS; } } else { /* blank not allowed */ printf("UDF mount: blank freed space bitmap\n"); return EROFS; } } /* freed space table (not supported) */ for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) { partd = ump->partitions[phys_part]; if (partd == NULL) continue; parthdr = &partd->_impl_use.part_hdr; len = udf_rw32(parthdr->freed_space_table.len); if (len) { printf("UDF mount: space tables not supported\n"); return EROFS; } } return 0; } /* TODO implement async writeout */ int udf_write_physical_partition_spacetables(struct udf_mount *ump, int waitfor) { union dscrptr *dscr; /* struct udf_args *args = &ump->mount_args; */ struct part_desc *partd; struct part_hdr_desc *parthdr; uint32_t phys_part; uint32_t lb_num, len, ptov; int error_all, error; error_all = 0; /* unallocated space map */ for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) { partd = ump->partitions[phys_part]; if (partd == NULL) continue; parthdr = &partd->_impl_use.part_hdr; ptov = udf_rw32(partd->start_loc); lb_num = udf_rw32(parthdr->unalloc_space_bitmap.lb_num); len = udf_rw32(parthdr->unalloc_space_bitmap.len); if (len == 0) continue; DPRINTF(VOLUMES, ("Write unalloc. space bitmap %d\n", lb_num + ptov)); dscr = (union dscrptr *) ump->part_unalloc_dscr[phys_part]; /* force a sane minimum for descriptors CRC length */ /* see UDF 2.3.1.2 and 2.3.8.1 */ KASSERT(udf_rw16(dscr->sbd.tag.id) == TAGID_SPACE_BITMAP); if (udf_rw16(dscr->sbd.tag.desc_crc_len) == 0) dscr->sbd.tag.desc_crc_len = udf_rw16(8); /* write out space bitmap */ error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR, (union dscrptr *) dscr, ptov + lb_num, lb_num); if (error) { DPRINTF(VOLUMES, ("\tfailed!! (error %d)\n", error)); error_all = error; } } /* freed space map */ for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) { partd = ump->partitions[phys_part]; if (partd == NULL) continue; parthdr = &partd->_impl_use.part_hdr; /* freed space map */ ptov = udf_rw32(partd->start_loc); lb_num = udf_rw32(parthdr->freed_space_bitmap.lb_num); len = udf_rw32(parthdr->freed_space_bitmap.len); if (len == 0) continue; DPRINTF(VOLUMES, ("Write freed space bitmap %d\n", lb_num + ptov)); dscr = (union dscrptr *) ump->part_freed_dscr[phys_part]; /* force a sane minimum for descriptors CRC length */ /* see UDF 2.3.1.2 and 2.3.8.1 */ KASSERT(udf_rw16(dscr->sbd.tag.id) == TAGID_SPACE_BITMAP); if (udf_rw16(dscr->sbd.tag.desc_crc_len) == 0) dscr->sbd.tag.desc_crc_len = udf_rw16(8); /* write out space bitmap */ error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR, (union dscrptr *) dscr, ptov + lb_num, lb_num); if (error) { DPRINTF(VOLUMES, ("\tfailed!! (error %d)\n", error)); error_all = error; } } return error_all; } static int udf_read_metadata_partition_spacetable(struct udf_mount *ump) { struct udf_node *bitmap_node; union dscrptr *dscr; struct udf_bitmap *bitmap; uint64_t inflen; int error, dscr_type; bitmap_node = ump->metadatabitmap_node; /* only read in when metadata bitmap node is read in */ if (bitmap_node == NULL) return 0; if (bitmap_node->fe) { inflen = udf_rw64(bitmap_node->fe->inf_len); } else { KASSERT(bitmap_node->efe); inflen = udf_rw64(bitmap_node->efe->inf_len); } DPRINTF(VOLUMES, ("Reading metadata space bitmap for " "%"PRIu64" bytes\n", inflen)); /* allocate space for bitmap */ dscr = malloc(inflen, M_UDFVOLD, M_WAITOK); if (!dscr) return ENOMEM; /* set vnode type to regular file or we can't read from it! */ bitmap_node->vnode->v_type = VREG; /* read in complete metadata bitmap file */ error = vn_rdwr(UIO_READ, bitmap_node->vnode, dscr, inflen, 0, UIO_SYSSPACE, IO_SYNC | IO_ALTSEMANTICS, FSCRED, NULL, NULL); if (error) { DPRINTF(VOLUMES, ("Error reading metadata space bitmap\n")); goto errorout; } /* analyse */ dscr_type = udf_rw16(dscr->tag.id); if (dscr_type == TAGID_SPACE_BITMAP) { DPRINTF(VOLUMES, ("Accepting metadata space bitmap\n")); ump->metadata_unalloc_dscr = &dscr->sbd; /* fill in bitmap bits */ bitmap = &ump->metadata_unalloc_bits; bitmap->blob = (uint8_t *) dscr; bitmap->bits = dscr->sbd.data; bitmap->max_offset = udf_rw32(dscr->sbd.num_bits); bitmap->pages = NULL; /* TODO */ bitmap->data_pos = 0; bitmap->metadata_pos = 0; } else { DPRINTF(VOLUMES, ("No valid bitmap found!\n")); goto errorout; } return 0; errorout: free(dscr, M_UDFVOLD); printf( "UDF mount: error reading unallocated " "space bitmap for metadata partition\n"); return EROFS; } int udf_write_metadata_partition_spacetable(struct udf_mount *ump, int waitfor) { struct udf_node *bitmap_node; union dscrptr *dscr; uint64_t new_inflen; int dummy, error; bitmap_node = ump->metadatabitmap_node; /* only write out when metadata bitmap node is known */ if (bitmap_node == NULL) return 0; if (!bitmap_node->fe) { KASSERT(bitmap_node->efe); } /* reduce length to zero */ dscr = (union dscrptr *) ump->metadata_unalloc_dscr; new_inflen = udf_tagsize(dscr, 1); DPRINTF(VOLUMES, ("Resize and write out metadata space bitmap " " for %"PRIu64" bytes\n", new_inflen)); error = udf_resize_node(bitmap_node, new_inflen, &dummy); if (error) printf("Error resizing metadata space bitmap\n"); error = vn_rdwr(UIO_WRITE, bitmap_node->vnode, dscr, new_inflen, 0, UIO_SYSSPACE, IO_ALTSEMANTICS, FSCRED, NULL, NULL); bitmap_node->i_flags |= IN_MODIFIED; error = vflushbuf(bitmap_node->vnode, FSYNC_WAIT); if (error == 0) error = VOP_FSYNC(bitmap_node->vnode, FSCRED, FSYNC_WAIT, 0, 0); if (error) printf( "Error writing out metadata partition unalloced " "space bitmap!\n"); return error; } /* --------------------------------------------------------------------- */ /* * Checks if ump's vds information is correct and complete */ int udf_process_vds(struct udf_mount *ump) { union udf_pmap *mapping; /* struct udf_args *args = &ump->mount_args; */ struct logvol_int_desc *lvint; struct udf_logvol_info *lvinfo; uint32_t n_pm; uint8_t *pmap_pos; char *domain_name, *map_name; const char *check_name; char bits[128]; int pmap_stype, pmap_size; int pmap_type, log_part, phys_part, raw_phys_part, maps_on; int n_phys, n_virt, n_spar, n_meta; int len; if (ump == NULL) return ENOENT; /* we need at least an anchor (trivial, but for safety) */ if (ump->anchors[0] == NULL) return EINVAL; /* we need at least one primary and one logical volume descriptor */ if ((ump->primary_vol == NULL) || (ump->logical_vol) == NULL) return EINVAL; /* we need at least one partition descriptor */ if (ump->partitions[0] == NULL) return EINVAL; /* check logical volume sector size verses device sector size */ if (udf_rw32(ump->logical_vol->lb_size) != ump->discinfo.sector_size) { printf("UDF mount: format violation, lb_size != sector size\n"); return EINVAL; } /* check domain name */ domain_name = ump->logical_vol->domain_id.id; if (strncmp(domain_name, "*OSTA UDF Compliant", 20)) { printf("mount_udf: disc not OSTA UDF Compliant, aborting\n"); return EINVAL; } /* retrieve logical volume integrity sequence */ (void)udf_retrieve_lvint(ump); /* * We need at least one logvol integrity descriptor recorded. Note * that its OK to have an open logical volume integrity here. The VAT * will close/update the integrity. */ if (ump->logvol_integrity == NULL) return EINVAL; /* process derived structures */ n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */ lvint = ump->logvol_integrity; lvinfo = (struct udf_logvol_info *) (&lvint->tables[2 * n_pm]); ump->logvol_info = lvinfo; /* TODO check udf versions? */ /* * check logvol mappings: effective virt->log partmap translation * check and recording of the mapping results. Saves expensive * strncmp() in tight places. */ DPRINTF(VOLUMES, ("checking logvol mappings\n")); n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */ pmap_pos = ump->logical_vol->maps; if (n_pm > UDF_PMAPS) { printf("UDF mount: too many mappings\n"); return EINVAL; } /* count types and set partition numbers */ ump->data_part = ump->node_part = ump->fids_part = 0; n_phys = n_virt = n_spar = n_meta = 0; for (log_part = 0; log_part < n_pm; log_part++) { mapping = (union udf_pmap *) pmap_pos; pmap_stype = pmap_pos[0]; pmap_size = pmap_pos[1]; switch (pmap_stype) { case 1: /* physical mapping */ /* volseq = udf_rw16(mapping->pm1.vol_seq_num); */ raw_phys_part = udf_rw16(mapping->pm1.part_num); pmap_type = UDF_VTOP_TYPE_PHYS; n_phys++; ump->data_part = log_part; ump->node_part = log_part; ump->fids_part = log_part; break; case 2: /* virtual/sparable/meta mapping */ map_name = mapping->pm2.part_id.id; /* volseq = udf_rw16(mapping->pm2.vol_seq_num); */ raw_phys_part = udf_rw16(mapping->pm2.part_num); pmap_type = UDF_VTOP_TYPE_UNKNOWN; len = UDF_REGID_ID_SIZE; check_name = "*UDF Virtual Partition"; if (strncmp(map_name, check_name, len) == 0) { pmap_type = UDF_VTOP_TYPE_VIRT; n_virt++; ump->node_part = log_part; break; } check_name = "*UDF Sparable Partition"; if (strncmp(map_name, check_name, len) == 0) { pmap_type = UDF_VTOP_TYPE_SPARABLE; n_spar++; ump->data_part = log_part; ump->node_part = log_part; ump->fids_part = log_part; break; } check_name = "*UDF Metadata Partition"; if (strncmp(map_name, check_name, len) == 0) { pmap_type = UDF_VTOP_TYPE_META; n_meta++; ump->node_part = log_part; ump->fids_part = log_part; break; } break; default: return EINVAL; } /* * BUGALERT: some rogue implementations use random physical * partition numbers to break other implementations so lookup * the number. */ phys_part = udf_find_raw_phys(ump, raw_phys_part); DPRINTF(VOLUMES, ("\t%d -> %d(%d) type %d\n", log_part, raw_phys_part, phys_part, pmap_type)); if (phys_part == UDF_PARTITIONS) return EINVAL; if (pmap_type == UDF_VTOP_TYPE_UNKNOWN) return EINVAL; ump->vtop [log_part] = phys_part; ump->vtop_tp[log_part] = pmap_type; pmap_pos += pmap_size; } /* not winning the beauty contest */ ump->vtop_tp[UDF_VTOP_RAWPART] = UDF_VTOP_TYPE_RAW; /* test some basic UDF assertions/requirements */ if ((n_virt > 1) || (n_spar > 1) || (n_meta > 1)) return EINVAL; if (n_virt) { if ((n_phys == 0) || n_spar || n_meta) return EINVAL; } if (n_spar + n_phys == 0) return EINVAL; /* select allocation type for each logical partition */ for (log_part = 0; log_part < n_pm; log_part++) { maps_on = ump->vtop[log_part]; switch (ump->vtop_tp[log_part]) { case UDF_VTOP_TYPE_PHYS : assert(maps_on == log_part); ump->vtop_alloc[log_part] = UDF_ALLOC_SPACEMAP; break; case UDF_VTOP_TYPE_VIRT : ump->vtop_alloc[log_part] = UDF_ALLOC_VAT; ump->vtop_alloc[maps_on] = UDF_ALLOC_SEQUENTIAL; break; case UDF_VTOP_TYPE_SPARABLE : assert(maps_on == log_part); ump->vtop_alloc[log_part] = UDF_ALLOC_SPACEMAP; break; case UDF_VTOP_TYPE_META : ump->vtop_alloc[log_part] = UDF_ALLOC_METABITMAP; if (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE) { /* special case for UDF 2.60 */ ump->vtop_alloc[log_part] = UDF_ALLOC_METASEQUENTIAL; ump->vtop_alloc[maps_on] = UDF_ALLOC_SEQUENTIAL; } break; default: panic("bad allocation type in udf's ump->vtop\n"); } } /* determine logical volume open/closure actions */ if (n_virt) { ump->lvopen = 0; if (ump->discinfo.last_session_state == MMC_STATE_EMPTY) ump->lvopen |= UDF_OPEN_SESSION ; ump->lvclose = UDF_WRITE_VAT; if (ump->mount_args.udfmflags & UDFMNT_CLOSESESSION) ump->lvclose |= UDF_CLOSE_SESSION; } else { /* `normal' rewritable or non sequential media */ ump->lvopen = UDF_WRITE_LVINT; ump->lvclose = UDF_WRITE_LVINT; if ((ump->discinfo.mmc_cur & MMC_CAP_REWRITABLE) == 0) ump->lvopen |= UDF_APPENDONLY_LVINT; if ((ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE)) ump->lvopen &= ~UDF_APPENDONLY_LVINT; } /* * Determine scheduler error behaviour. For virtual partitions, update * the trackinfo; for sparable partitions replace a whole block on the * sparable table. Always requeue. */ ump->lvreadwrite = 0; if (n_virt) ump->lvreadwrite = UDF_UPDATE_TRACKINFO; if (n_spar) ump->lvreadwrite = UDF_REMAP_BLOCK; /* * Select our scheduler */ ump->strategy = &udf_strat_rmw; if (n_virt || (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE)) ump->strategy = &udf_strat_sequential; if ((ump->discinfo.mmc_class == MMC_CLASS_DISC) || (ump->discinfo.mmc_class == MMC_CLASS_UNKN)) ump->strategy = &udf_strat_direct; if (n_spar) ump->strategy = &udf_strat_rmw; #if 0 /* read-only access won't benefit from the other schedulers */ if (ump->vfs_mountp->mnt_flag & MNT_RDONLY) ump->strategy = &udf_strat_direct; #endif /* print results */ DPRINTF(VOLUMES, ("\tdata partition %d\n", ump->data_part)); DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->data_part])); DPRINTF(VOLUMES, ("\tnode partition %d\n", ump->node_part)); DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->node_part])); DPRINTF(VOLUMES, ("\tfids partition %d\n", ump->fids_part)); DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->fids_part])); snprintb(bits, sizeof(bits), UDFLOGVOL_BITS, ump->lvopen); DPRINTF(VOLUMES, ("\tactions on logvol open %s\n", bits)); snprintb(bits, sizeof(bits), UDFLOGVOL_BITS, ump->lvclose); DPRINTF(VOLUMES, ("\tactions on logvol close %s\n", bits)); snprintb(bits, sizeof(bits), UDFONERROR_BITS, ump->lvreadwrite); DPRINTF(VOLUMES, ("\tactions on logvol errors %s\n", bits)); DPRINTF(VOLUMES, ("\tselected scheduler `%s`\n", (ump->strategy == &udf_strat_direct) ? "Direct" : (ump->strategy == &udf_strat_sequential) ? "Sequential" : (ump->strategy == &udf_strat_rmw) ? "RMW" : "UNKNOWN!")); /* signal its OK for now */ return 0; } /* --------------------------------------------------------------------- */ /* * Update logical volume name in all structures that keep a record of it. We * use memmove since each of them might be specified as a source. * * Note that it doesn't update the VAT structure! */ static void udf_update_logvolname(struct udf_mount *ump, char *logvol_id) { struct logvol_desc *lvd = NULL; struct fileset_desc *fsd = NULL; struct udf_lv_info *lvi = NULL; DPRINTF(VOLUMES, ("Updating logical volume name\n")); lvd = ump->logical_vol; fsd = ump->fileset_desc; if (ump->implementation) lvi = &ump->implementation->_impl_use.lv_info; /* logvol's id might be specified as original so use memmove here */ memmove(lvd->logvol_id, logvol_id, 128); if (fsd) memmove(fsd->logvol_id, logvol_id, 128); if (lvi) memmove(lvi->logvol_id, logvol_id, 128); } /* --------------------------------------------------------------------- */ void udf_inittag(struct udf_mount *ump, struct desc_tag *tag, int tagid, uint32_t sector) { assert(ump->logical_vol); tag->id = udf_rw16(tagid); tag->descriptor_ver = ump->logical_vol->tag.descriptor_ver; tag->cksum = 0; tag->reserved = 0; tag->serial_num = ump->logical_vol->tag.serial_num; tag->tag_loc = udf_rw32(sector); } uint64_t udf_advance_uniqueid(struct udf_mount *ump) { uint64_t unique_id; mutex_enter(&ump->logvol_mutex); unique_id = udf_rw64(ump->logvol_integrity->lvint_next_unique_id); if (unique_id < 0x10) unique_id = 0x10; ump->logvol_integrity->lvint_next_unique_id = udf_rw64(unique_id + 1); mutex_exit(&ump->logvol_mutex); return unique_id; } static void udf_adjust_filecount(struct udf_node *udf_node, int sign) { struct udf_mount *ump = udf_node->ump; uint32_t num_dirs, num_files; int udf_file_type; /* get file type */ if (udf_node->fe) { udf_file_type = udf_node->fe->icbtag.file_type; } else { udf_file_type = udf_node->efe->icbtag.file_type; } /* adjust file count */ mutex_enter(&ump->allocate_mutex); if (udf_file_type == UDF_ICB_FILETYPE_DIRECTORY) { num_dirs = udf_rw32(ump->logvol_info->num_directories); ump->logvol_info->num_directories = udf_rw32((num_dirs + sign)); } else { num_files = udf_rw32(ump->logvol_info->num_files); ump->logvol_info->num_files = udf_rw32((num_files + sign)); } mutex_exit(&ump->allocate_mutex); } void udf_osta_charset(struct charspec *charspec) { memset(charspec, 0, sizeof(struct charspec)); charspec->type = 0; strcpy((char *) charspec->inf, "OSTA Compressed Unicode"); } /* first call udf_set_regid and then the suffix */ void udf_set_regid(struct regid *regid, char const *name) { memset(regid, 0, sizeof(struct regid)); regid->flags = 0; /* not dirty and not protected */ strcpy((char *) regid->id, name); } void udf_add_domain_regid(struct udf_mount *ump, struct regid *regid) { uint16_t *ver; ver = (uint16_t *) regid->id_suffix; *ver = ump->logvol_info->min_udf_readver; } void udf_add_udf_regid(struct udf_mount *ump, struct regid *regid) { uint16_t *ver; ver = (uint16_t *) regid->id_suffix; *ver = ump->logvol_info->min_udf_readver; regid->id_suffix[2] = 4; /* unix */ regid->id_suffix[3] = 8; /* NetBSD */ } void udf_add_impl_regid(struct udf_mount *ump, struct regid *regid) { regid->id_suffix[0] = 4; /* unix */ regid->id_suffix[1] = 8; /* NetBSD */ } void udf_add_app_regid(struct udf_mount *ump, struct regid *regid) { regid->id_suffix[0] = APP_VERSION_MAIN; regid->id_suffix[1] = APP_VERSION_SUB; } static int udf_create_parentfid(struct udf_mount *ump, struct fileid_desc *fid, struct long_ad *parent, uint64_t unique_id) { /* the size of an empty FID is 38 but needs to be a multiple of 4 */ int fidsize = 40; udf_inittag(ump, &fid->tag, TAGID_FID, udf_rw32(parent->loc.lb_num)); fid->file_version_num = udf_rw16(1); /* UDF 2.3.4.1 */ fid->file_char = UDF_FILE_CHAR_DIR | UDF_FILE_CHAR_PAR; fid->icb = *parent; fid->icb.longad_uniqueid = udf_rw32((uint32_t) unique_id); fid->tag.desc_crc_len = udf_rw16(fidsize - UDF_DESC_TAG_LENGTH); (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid); return fidsize; } /* --------------------------------------------------------------------- */ /* * Extended attribute support. UDF knows of 3 places for extended attributes: * * (a) inside the file's (e)fe in the length of the extended attribute area * before the allocation descriptors/filedata * * (b) in a file referenced by (e)fe->ext_attr_icb and * * (c) in the e(fe)'s associated stream directory that can hold various * sub-files. In the stream directory a few fixed named subfiles are reserved * for NT/Unix ACL's and OS/2 attributes. * * NOTE: Extended attributes are read randomly but always written * *atomically*. For ACL's this interface is probably different but not known * to me yet. * * Order of extended attributes in a space: * ECMA 167 EAs * Non block aligned Implementation Use EAs * Block aligned Implementation Use EAs * Application Use EAs */ static int udf_impl_extattr_check(struct impl_extattr_entry *implext) { uint16_t *spos; if (strncmp(implext->imp_id.id, "*UDF", 4) == 0) { /* checksum valid? */ DPRINTF(EXTATTR, ("checking UDF impl. attr checksum\n")); spos = (uint16_t *) implext->data; if (udf_rw16(*spos) != udf_ea_cksum((uint8_t *) implext)) return EINVAL; } return 0; } static void udf_calc_impl_extattr_checksum(struct impl_extattr_entry *implext) { uint16_t *spos; if (strncmp(implext->imp_id.id, "*UDF", 4) == 0) { /* set checksum */ spos = (uint16_t *) implext->data; *spos = udf_rw16(udf_ea_cksum((uint8_t *) implext)); } } int udf_extattr_search_intern(struct udf_node *node, uint32_t sattr, char const *sattrname, uint32_t *offsetp, uint32_t *lengthp) { struct extattrhdr_desc *eahdr; struct extattr_entry *attrhdr; struct impl_extattr_entry *implext; uint32_t offset, a_l, sector_size; int32_t l_ea; uint8_t *pos; int error; /* get mountpoint */ sector_size = node->ump->discinfo.sector_size; /* get information from fe/efe */ if (node->fe) { l_ea = udf_rw32(node->fe->l_ea); eahdr = (struct extattrhdr_desc *) node->fe->data; } else { assert(node->efe); l_ea = udf_rw32(node->efe->l_ea); eahdr = (struct extattrhdr_desc *) node->efe->data; } /* something recorded here? */ if (l_ea == 0) return ENOENT; /* check extended attribute tag; what to do if it fails? */ error = udf_check_tag(eahdr); if (error) return EINVAL; if (udf_rw16(eahdr->tag.id) != TAGID_EXTATTR_HDR) return EINVAL; error = udf_check_tag_payload(eahdr, sizeof(struct extattrhdr_desc)); if (error) return EINVAL; DPRINTF(EXTATTR, ("Found %d bytes of extended attributes\n", l_ea)); /* looking for Ecma-167 attributes? */ offset = sizeof(struct extattrhdr_desc); /* looking for either implementation use or application use */ if (sattr == 2048) { /* [4/48.10.8] */ offset = udf_rw32(eahdr->impl_attr_loc); if (offset == UDF_IMPL_ATTR_LOC_NOT_PRESENT) return ENOENT; } if (sattr == 65536) { /* [4/48.10.9] */ offset = udf_rw32(eahdr->appl_attr_loc); if (offset == UDF_APPL_ATTR_LOC_NOT_PRESENT) return ENOENT; } /* paranoia check offset and l_ea */ if (l_ea + offset >= sector_size - sizeof(struct extattr_entry)) return EINVAL; DPRINTF(EXTATTR, ("Starting at offset %d\n", offset)); /* find our extended attribute */ l_ea -= offset; pos = (uint8_t *) eahdr + offset; while (l_ea >= sizeof(struct extattr_entry)) { DPRINTF(EXTATTR, ("%d extended attr bytes left\n", l_ea)); attrhdr = (struct extattr_entry *) pos; implext = (struct impl_extattr_entry *) pos; /* get complete attribute length and check for roque values */ a_l = udf_rw32(attrhdr->a_l); DPRINTF(EXTATTR, ("attribute %d:%d, len %d/%d\n", udf_rw32(attrhdr->type), attrhdr->subtype, a_l, l_ea)); if ((a_l == 0) || (a_l > l_ea)) return EINVAL; if (udf_rw32(attrhdr->type) != sattr) goto next_attribute; /* we might have found it! */ if (udf_rw32(attrhdr->type) < 2048) { /* Ecma-167 attribute */ *offsetp = offset; *lengthp = a_l; return 0; /* success */ } /* * Implementation use and application use extended attributes * have a name to identify. They share the same structure only * UDF implementation use extended attributes have a checksum * we need to check */ DPRINTF(EXTATTR, ("named attribute %s\n", implext->imp_id.id)); if (strcmp(implext->imp_id.id, sattrname) == 0) { /* we have found our appl/implementation attribute */ *offsetp = offset; *lengthp = a_l; return 0; /* success */ } next_attribute: /* next attribute */ pos += a_l; l_ea -= a_l; offset += a_l; } /* not found */ return ENOENT; } static void udf_extattr_insert_internal(struct udf_mount *ump, union dscrptr *dscr, struct extattr_entry *extattr) { struct file_entry *fe; struct extfile_entry *efe; struct extattrhdr_desc *extattrhdr; struct impl_extattr_entry *implext; uint32_t impl_attr_loc, appl_attr_loc, l_ea, a_l, exthdr_len; uint32_t *l_eap, l_ad; uint16_t *spos; uint8_t *bpos, *data; if (udf_rw16(dscr->tag.id) == TAGID_FENTRY) { fe = &dscr->fe; data = fe->data; l_eap = &fe->l_ea; l_ad = udf_rw32(fe->l_ad); } else if (udf_rw16(dscr->tag.id) == TAGID_EXTFENTRY) { efe = &dscr->efe; data = efe->data; l_eap = &efe->l_ea; l_ad = udf_rw32(efe->l_ad); } else { panic("Bad tag passed to udf_extattr_insert_internal"); } /* can't append already written to file descriptors yet */ assert(l_ad == 0); __USE(l_ad); /* should have a header! */ extattrhdr = (struct extattrhdr_desc *) data; l_ea = udf_rw32(*l_eap); if (l_ea == 0) { /* create empty extended attribute header */ exthdr_len = sizeof(struct extattrhdr_desc); udf_inittag(ump, &extattrhdr->tag, TAGID_EXTATTR_HDR, /* loc */ 0); extattrhdr->impl_attr_loc = udf_rw32(exthdr_len); extattrhdr->appl_attr_loc = udf_rw32(exthdr_len); extattrhdr->tag.desc_crc_len = udf_rw16(8); /* record extended attribute header length */ l_ea = exthdr_len; *l_eap = udf_rw32(l_ea); } /* extract locations */ impl_attr_loc = udf_rw32(extattrhdr->impl_attr_loc); appl_attr_loc = udf_rw32(extattrhdr->appl_attr_loc); if (impl_attr_loc == UDF_IMPL_ATTR_LOC_NOT_PRESENT) impl_attr_loc = l_ea; if (appl_attr_loc == UDF_IMPL_ATTR_LOC_NOT_PRESENT) appl_attr_loc = l_ea; /* Ecma 167 EAs */ if (udf_rw32(extattr->type) < 2048) { assert(impl_attr_loc == l_ea); assert(appl_attr_loc == l_ea); } /* implementation use extended attributes */ if (udf_rw32(extattr->type) == 2048) { assert(appl_attr_loc == l_ea); /* calculate and write extended attribute header checksum */ implext = (struct impl_extattr_entry *) extattr; assert(udf_rw32(implext->iu_l) == 4); /* [UDF 3.3.4.5] */ spos = (uint16_t *) implext->data; *spos = udf_rw16(udf_ea_cksum((uint8_t *) implext)); } /* application use extended attributes */ assert(udf_rw32(extattr->type) != 65536); assert(appl_attr_loc == l_ea); /* append the attribute at the end of the current space */ bpos = data + udf_rw32(*l_eap); a_l = udf_rw32(extattr->a_l); /* update impl. attribute locations */ if (udf_rw32(extattr->type) < 2048) { impl_attr_loc = l_ea + a_l; appl_attr_loc = l_ea + a_l; } if (udf_rw32(extattr->type) == 2048) { appl_attr_loc = l_ea + a_l; } /* copy and advance */ memcpy(bpos, extattr, a_l); l_ea += a_l; *l_eap = udf_rw32(l_ea); /* do the `dance` again backwards */ if (udf_rw16(ump->logical_vol->tag.descriptor_ver) != 2) { if (impl_attr_loc == l_ea) impl_attr_loc = UDF_IMPL_ATTR_LOC_NOT_PRESENT; if (appl_attr_loc == l_ea) appl_attr_loc = UDF_APPL_ATTR_LOC_NOT_PRESENT; } /* store offsets */ extattrhdr->impl_attr_loc = udf_rw32(impl_attr_loc); extattrhdr->appl_attr_loc = udf_rw32(appl_attr_loc); } /* --------------------------------------------------------------------- */ static int udf_update_lvid_from_vat_extattr(struct udf_node *vat_node) { struct udf_mount *ump; struct udf_logvol_info *lvinfo; struct impl_extattr_entry *implext; struct vatlvext_extattr_entry lvext; const char *extstr = "*UDF VAT LVExtension"; uint64_t vat_uniqueid; uint32_t offset, a_l; uint8_t *ea_start, *lvextpos; int error; /* get mountpoint and lvinfo */ ump = vat_node->ump; lvinfo = ump->logvol_info; /* get information from fe/efe */ if (vat_node->fe) { vat_uniqueid = udf_rw64(vat_node->fe->unique_id); ea_start = vat_node->fe->data; } else { vat_uniqueid = udf_rw64(vat_node->efe->unique_id); ea_start = vat_node->efe->data; } error = udf_extattr_search_intern(vat_node, 2048, extstr, &offset, &a_l); if (error) return error; implext = (struct impl_extattr_entry *) (ea_start + offset); error = udf_impl_extattr_check(implext); if (error) return error; /* paranoia */ if (a_l != sizeof(*implext) -2 + udf_rw32(implext->iu_l) + sizeof(lvext)) { DPRINTF(VOLUMES, ("VAT LVExtension size doesn't compute\n")); return EINVAL; } /* * we have found our "VAT LVExtension attribute. BUT due to a * bug in the specification it might not be word aligned so * copy first to avoid panics on some machines (!!) */ DPRINTF(VOLUMES, ("Found VAT LVExtension attr\n")); lvextpos = implext->data + udf_rw32(implext->iu_l); memcpy(&lvext, lvextpos, sizeof(lvext)); /* check if it was updated the last time */ if (udf_rw64(lvext.unique_id_chk) == vat_uniqueid) { lvinfo->num_files = lvext.num_files; lvinfo->num_directories = lvext.num_directories; udf_update_logvolname(ump, lvext.logvol_id); } else { DPRINTF(VOLUMES, ("VAT LVExtension out of date\n")); /* replace VAT LVExt by free space EA */ memset(implext->imp_id.id, 0, UDF_REGID_ID_SIZE); strcpy(implext->imp_id.id, "*UDF FreeEASpace"); udf_calc_impl_extattr_checksum(implext); } return 0; } static int udf_update_vat_extattr_from_lvid(struct udf_node *vat_node) { struct udf_mount *ump; struct udf_logvol_info *lvinfo; struct impl_extattr_entry *implext; struct vatlvext_extattr_entry lvext; const char *extstr = "*UDF VAT LVExtension"; uint64_t vat_uniqueid; uint32_t offset, a_l; uint8_t *ea_start; uintptr_t lvextpos; int error; /* get mountpoint and lvinfo */ ump = vat_node->ump; lvinfo = ump->logvol_info; /* get information from fe/efe */ if (vat_node->fe) { vat_uniqueid = udf_rw64(vat_node->fe->unique_id); ea_start = vat_node->fe->data; } else { vat_uniqueid = udf_rw64(vat_node->efe->unique_id); ea_start = vat_node->efe->data; } error = udf_extattr_search_intern(vat_node, 2048, extstr, &offset, &a_l); if (error) return error; /* found, it existed */ /* paranoia */ implext = (struct impl_extattr_entry *) (ea_start + offset); error = udf_impl_extattr_check(implext); if (error) { DPRINTF(VOLUMES, ("VAT LVExtension bad on update\n")); return error; } /* it is correct */ /* * we have found our "VAT LVExtension attribute. BUT due to a * bug in the specification it might not be word aligned so * copy first to avoid panics on some machines (!!) */ DPRINTF(VOLUMES, ("Updating VAT LVExtension attr\n")); lvextpos = (uintptr_t)implext->data + udf_rw32(implext->iu_l); lvext.unique_id_chk = vat_uniqueid; lvext.num_files = lvinfo->num_files; lvext.num_directories = lvinfo->num_directories; memmove(lvext.logvol_id, ump->logical_vol->logvol_id, 128); memcpy((void *)lvextpos, &lvext, sizeof(lvext)); return 0; } /* --------------------------------------------------------------------- */ int udf_vat_read(struct udf_node *vat_node, uint8_t *blob, int size, uint32_t offset) { struct udf_mount *ump = vat_node->ump; if (offset + size > ump->vat_offset + ump->vat_entries * 4) return EINVAL; memcpy(blob, ump->vat_table + offset, size); return 0; } int udf_vat_write(struct udf_node *vat_node, uint8_t *blob, int size, uint32_t offset) { struct udf_mount *ump = vat_node->ump; uint32_t offset_high; uint8_t *new_vat_table; /* extent VAT allocation if needed */ offset_high = offset + size; if (offset_high >= ump->vat_table_alloc_len) { /* realloc */ new_vat_table = realloc(ump->vat_table, ump->vat_table_alloc_len + UDF_VAT_CHUNKSIZE, M_UDFVOLD, M_WAITOK); if (!new_vat_table) { printf("udf_vat_write: can't extent VAT, out of mem\n"); return ENOMEM; } ump->vat_table = new_vat_table; ump->vat_table_alloc_len += UDF_VAT_CHUNKSIZE; } ump->vat_table_len = MAX(ump->vat_table_len, offset_high); memcpy(ump->vat_table + offset, blob, size); return 0; } /* --------------------------------------------------------------------- */ /* TODO support previous VAT location writeout */ static int udf_update_vat_descriptor(struct udf_mount *ump) { struct udf_node *vat_node = ump->vat_node; struct udf_logvol_info *lvinfo = ump->logvol_info; struct icb_tag *icbtag; struct udf_oldvat_tail *oldvat_tl; struct udf_vat *vat; struct regid *regid; uint64_t unique_id; uint32_t lb_size; uint8_t *raw_vat; int vat_length, impl_use_len, filetype, error; KASSERT(vat_node); KASSERT(lvinfo); lb_size = udf_rw32(ump->logical_vol->lb_size); /* get our new unique_id */ unique_id = udf_advance_uniqueid(ump); /* get information from fe/efe */ if (vat_node->fe) { icbtag = &vat_node->fe->icbtag; vat_node->fe->unique_id = udf_rw64(unique_id); } else { icbtag = &vat_node->efe->icbtag; vat_node->efe->unique_id = udf_rw64(unique_id); } /* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */ filetype = icbtag->file_type; KASSERT((filetype == 0) || (filetype == UDF_ICB_FILETYPE_VAT)); /* allocate piece to process head or tail of VAT file */ raw_vat = malloc(lb_size, M_TEMP, M_WAITOK); if (filetype == 0) { /* * Update "*UDF VAT LVExtension" extended attribute from the * lvint if present. */ udf_update_vat_extattr_from_lvid(vat_node); /* setup identifying regid */ oldvat_tl = (struct udf_oldvat_tail *) raw_vat; memset(oldvat_tl, 0, sizeof(struct udf_oldvat_tail)); udf_set_regid(&oldvat_tl->id, "*UDF Virtual Alloc Tbl"); udf_add_udf_regid(ump, &oldvat_tl->id); oldvat_tl->prev_vat = udf_rw32(0xffffffff); /* write out new tail of virtual allocation table file */ error = udf_vat_write(vat_node, raw_vat, sizeof(struct udf_oldvat_tail), ump->vat_entries * 4); } else { /* compose the VAT2 header */ vat_length = sizeof(struct udf_vat); vat = (struct udf_vat *) raw_vat; error = udf_vat_read(vat_node, raw_vat, vat_length, 0); if (error) goto errout; impl_use_len = udf_rw16(vat->impl_use_len); vat_length += impl_use_len; error = udf_vat_read(vat_node, raw_vat, vat_length, 0); if (error) goto errout; memmove(vat->logvol_id, ump->logical_vol->logvol_id, 128); vat->prev_vat = udf_rw32(0xffffffff); vat->num_files = lvinfo->num_files; vat->num_directories = lvinfo->num_directories; vat->min_udf_readver = lvinfo->min_udf_readver; vat->min_udf_writever = lvinfo->min_udf_writever; vat->max_udf_writever = lvinfo->max_udf_writever; if (impl_use_len >= sizeof(struct regid)) { /* insert our implementation identification */ memset(vat->data, 0, impl_use_len); regid = (struct regid *) vat->data; udf_set_regid(regid, IMPL_NAME); udf_add_app_regid(ump, regid); } else { if (impl_use_len) memset(vat->data, 0, impl_use_len); vat->impl_use_len = 0; } error = udf_vat_write(vat_node, raw_vat, vat_length, 0); } errout: free(raw_vat, M_TEMP); return error; /* success! */ } int udf_writeout_vat(struct udf_mount *ump) { struct udf_node *vat_node = ump->vat_node; int error; KASSERT(vat_node); DPRINTF(CALL, ("udf_writeout_vat\n")); // mutex_enter(&ump->allocate_mutex); udf_update_vat_descriptor(ump); /* write out the VAT contents ; TODO intelligent writing */ error = vn_rdwr(UIO_WRITE, vat_node->vnode, ump->vat_table, ump->vat_table_len, 0, UIO_SYSSPACE, 0, FSCRED, NULL, NULL); if (error) { printf("udf_writeout_vat: failed to write out VAT contents\n"); goto out; } // mutex_exit(&ump->allocate_mutex); error = vflushbuf(ump->vat_node->vnode, FSYNC_WAIT); if (error) goto out; error = VOP_FSYNC(ump->vat_node->vnode, FSCRED, FSYNC_WAIT, 0, 0); if (error) printf("udf_writeout_vat: error writing VAT node!\n"); out: return error; } /* --------------------------------------------------------------------- */ /* * Read in relevant pieces of VAT file and check if its indeed a VAT file * descriptor. If OK, read in complete VAT file. */ static int udf_check_for_vat(struct udf_node *vat_node) { struct udf_mount *ump; struct icb_tag *icbtag; struct timestamp *mtime; struct udf_vat *vat; struct udf_oldvat_tail *oldvat_tl; struct udf_logvol_info *lvinfo; uint64_t unique_id; uint32_t vat_length; uint32_t vat_offset, vat_entries, vat_table_alloc_len; uint32_t sector_size; uint32_t *raw_vat; uint8_t *vat_table; char *regid_name; int filetype; int error; /* vat_length is really 64 bits though impossible */ DPRINTF(VOLUMES, ("Checking for VAT\n")); if (!vat_node) return ENOENT; /* get mount info */ ump = vat_node->ump; sector_size = udf_rw32(ump->logical_vol->lb_size); /* check assertions */ assert(vat_node->fe || vat_node->efe); assert(ump->logvol_integrity); /* set vnode type to regular file or we can't read from it! */ vat_node->vnode->v_type = VREG; /* get information from fe/efe */ if (vat_node->fe) { vat_length = udf_rw64(vat_node->fe->inf_len); icbtag = &vat_node->fe->icbtag; mtime = &vat_node->fe->mtime; unique_id = udf_rw64(vat_node->fe->unique_id); } else { vat_length = udf_rw64(vat_node->efe->inf_len); icbtag = &vat_node->efe->icbtag; mtime = &vat_node->efe->mtime; unique_id = udf_rw64(vat_node->efe->unique_id); } /* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */ filetype = icbtag->file_type; if ((filetype != 0) && (filetype != UDF_ICB_FILETYPE_VAT)) return ENOENT; DPRINTF(VOLUMES, ("\tPossible VAT length %d\n", vat_length)); vat_table_alloc_len = ((vat_length + UDF_VAT_CHUNKSIZE-1) / UDF_VAT_CHUNKSIZE) * UDF_VAT_CHUNKSIZE; vat_table = malloc(vat_table_alloc_len, M_UDFVOLD, M_WAITOK); if (vat_table == NULL) { printf("allocation of %d bytes failed for VAT\n", vat_table_alloc_len); return ENOMEM; } /* allocate piece to read in head or tail of VAT file */ raw_vat = malloc(sector_size, M_TEMP, M_WAITOK); /* * check contents of the file if its the old 1.50 VAT table format. * Its notoriously broken and allthough some implementations support an * extension as defined in the UDF 1.50 errata document, its doubtful * to be useable since a lot of implementations don't maintain it. */ lvinfo = ump->logvol_info; if (filetype == 0) { /* definition */ vat_offset = 0; vat_entries = (vat_length-36)/4; /* read in tail of virtual allocation table file */ error = vn_rdwr(UIO_READ, vat_node->vnode, (uint8_t *) raw_vat, sizeof(struct udf_oldvat_tail), vat_entries * 4, UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED, NULL, NULL); if (error) goto out; /* check 1.50 VAT */ oldvat_tl = (struct udf_oldvat_tail *) raw_vat; regid_name = (char *) oldvat_tl->id.id; error = strncmp(regid_name, "*UDF Virtual Alloc Tbl", 22); if (error) { DPRINTF(VOLUMES, ("VAT format 1.50 rejected\n")); error = ENOENT; goto out; } /* * update LVID from "*UDF VAT LVExtension" extended attribute * if present. */ udf_update_lvid_from_vat_extattr(vat_node); } else { /* read in head of virtual allocation table file */ error = vn_rdwr(UIO_READ, vat_node->vnode, (uint8_t *) raw_vat, sizeof(struct udf_vat), 0, UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED, NULL, NULL); if (error) goto out; /* definition */ vat = (struct udf_vat *) raw_vat; vat_offset = udf_rw16(vat->header_len); vat_entries = (vat_length - vat_offset)/4; assert(lvinfo); lvinfo->num_files = vat->num_files; lvinfo->num_directories = vat->num_directories; lvinfo->min_udf_readver = vat->min_udf_readver; lvinfo->min_udf_writever = vat->min_udf_writever; lvinfo->max_udf_writever = vat->max_udf_writever; udf_update_logvolname(ump, vat->logvol_id); } /* read in complete VAT file */ error = vn_rdwr(UIO_READ, vat_node->vnode, vat_table, vat_length, 0, UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED, NULL, NULL); if (error) printf("read in of complete VAT file failed (error %d)\n", error); if (error) goto out; DPRINTF(VOLUMES, ("VAT format accepted, marking it closed\n")); ump->logvol_integrity->lvint_next_unique_id = udf_rw64(unique_id); ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED); ump->logvol_integrity->time = *mtime; /* if we're updating, free old allocated space */ if (ump->vat_table) free(ump->vat_table, M_UDFVOLD); ump->vat_table_len = vat_length; ump->vat_table_alloc_len = vat_table_alloc_len; ump->vat_table = vat_table; ump->vat_offset = vat_offset; ump->vat_entries = vat_entries; ump->vat_last_free_lb = 0; /* start at beginning */ out: if (error) { if (vat_table) free(vat_table, M_UDFVOLD); } free(raw_vat, M_TEMP); return error; } /* --------------------------------------------------------------------- */ static int udf_search_vat(struct udf_mount *ump, union udf_pmap *mapping) { struct udf_node *vat_node, *accepted_vat_node; struct long_ad icb_loc; uint32_t early_vat_loc, late_vat_loc, vat_loc; int error; /* mapping info not needed */ mapping = mapping; DPRINTF(VOLUMES, ("Searching VAT\n")); /* * Start reading forward in blocks from the first possible vat * location. If not found in this block, start again a bit before * until we get a hit. */ late_vat_loc = ump->last_possible_vat_location; early_vat_loc = MAX(late_vat_loc - 64, ump->first_possible_vat_location); DPRINTF(VOLUMES, ("\tfull range %d to %d\n", early_vat_loc, late_vat_loc)); accepted_vat_node = NULL; do { vat_loc = early_vat_loc; DPRINTF(VOLUMES, ("\tchecking range %d to %d\n", early_vat_loc, late_vat_loc)); do { DPRINTF(VOLUMES, ("\t\tChecking for VAT at sector %d\n", vat_loc)); icb_loc.loc.part_num = udf_rw16(UDF_VTOP_RAWPART); icb_loc.loc.lb_num = udf_rw32(vat_loc); error = udf_get_node(ump, &icb_loc, &vat_node, LK_EXCLUSIVE); if (!error) { error = udf_check_for_vat(vat_node); vat_node->i_flags = 0; /* reset access */ } if (!error) { DPRINTFIF(VOLUMES, !error, ("VAT candidate accepted at %d\n", vat_loc)); if (accepted_vat_node) vput(accepted_vat_node->vnode); accepted_vat_node = vat_node; accepted_vat_node->i_flags |= IN_NO_DELETE; vat_node = NULL; } if (vat_node) vput(vat_node->vnode); vat_loc++; /* walk forward */ } while (vat_loc <= late_vat_loc); if (accepted_vat_node) break; early_vat_loc = MAX(early_vat_loc - 64, ump->first_possible_vat_location); late_vat_loc = MIN(early_vat_loc + 64, ump->last_possible_vat_location); } while (late_vat_loc > ump->first_possible_vat_location); /* keep our last accepted VAT node around */ if (accepted_vat_node) { /* revert no delete flag again to avoid potential side effects */ accepted_vat_node->i_flags &= ~IN_NO_DELETE; UDF_SET_SYSTEMFILE(accepted_vat_node->vnode); ump->vat_node = accepted_vat_node; return 0; } return error; } /* --------------------------------------------------------------------- */ static int udf_read_sparables(struct udf_mount *ump, union udf_pmap *mapping) { union dscrptr *dscr; struct part_map_spare *pms = &mapping->pms; uint32_t lb_num; int spar, error; /* * The partition mapping passed on to us specifies the information we * need to locate and initialise the sparable partition mapping * information we need. */ DPRINTF(VOLUMES, ("Read sparable table\n")); ump->sparable_packet_size = udf_rw16(pms->packet_len); KASSERT(ump->sparable_packet_size >= ump->packet_size); /* XXX */ for (spar = 0; spar < pms->n_st; spar++) { lb_num = pms->st_loc[spar]; DPRINTF(VOLUMES, ("Checking for sparing table %d\n", lb_num)); error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr); if (!error && dscr) { if (udf_rw16(dscr->tag.id) == TAGID_SPARING_TABLE) { if (ump->sparing_table) free(ump->sparing_table, M_UDFVOLD); ump->sparing_table = &dscr->spt; dscr = NULL; DPRINTF(VOLUMES, ("Sparing table accepted (%d entries)\n", udf_rw16(ump->sparing_table->rt_l))); break; /* we're done */ } } if (dscr) free(dscr, M_UDFVOLD); } if (ump->sparing_table) return 0; return ENOENT; } /* --------------------------------------------------------------------- */ static int udf_read_metadata_nodes(struct udf_mount *ump, union udf_pmap *mapping) { struct part_map_meta *pmm = &mapping->pmm; struct long_ad icb_loc; struct vnode *vp; uint16_t raw_phys_part, phys_part; int error; /* * BUGALERT: some rogue implementations use random physical * partition numbers to break other implementations so lookup * the number. */ /* extract our allocation parameters set up on format */ ump->metadata_alloc_unit_size = udf_rw32(mapping->pmm.alloc_unit_size); ump->metadata_alignment_unit_size = udf_rw16(mapping->pmm.alignment_unit_size); ump->metadata_flags = mapping->pmm.flags; DPRINTF(VOLUMES, ("Reading in Metadata files\n")); raw_phys_part = udf_rw16(pmm->part_num); phys_part = udf_find_raw_phys(ump, raw_phys_part); icb_loc.loc.part_num = udf_rw16(phys_part); DPRINTF(VOLUMES, ("Metadata file\n")); icb_loc.loc.lb_num = pmm->meta_file_lbn; error = udf_get_node(ump, &icb_loc, &ump->metadata_node, LK_EXCLUSIVE); if (ump->metadata_node) { vp = ump->metadata_node->vnode; UDF_SET_SYSTEMFILE(vp); } icb_loc.loc.lb_num = pmm->meta_mirror_file_lbn; if (icb_loc.loc.lb_num != -1) { DPRINTF(VOLUMES, ("Metadata copy file\n")); error = udf_get_node(ump, &icb_loc, &ump->metadatamirror_node, LK_EXCLUSIVE); if (ump->metadatamirror_node) { vp = ump->metadatamirror_node->vnode; UDF_SET_SYSTEMFILE(vp); } } icb_loc.loc.lb_num = pmm->meta_bitmap_file_lbn; if (icb_loc.loc.lb_num != -1) { DPRINTF(VOLUMES, ("Metadata bitmap file\n")); error = udf_get_node(ump, &icb_loc, &ump->metadatabitmap_node, LK_EXCLUSIVE); if (ump->metadatabitmap_node) { vp = ump->metadatabitmap_node->vnode; UDF_SET_SYSTEMFILE(vp); } } /* if we're mounting read-only we relax the requirements */ if (ump->vfs_mountp->mnt_flag & MNT_RDONLY) { error = EFAULT; if (ump->metadata_node) error = 0; if ((ump->metadata_node == NULL) && (ump->metadatamirror_node)) { printf( "udf mount: Metadata file not readable, " "substituting Metadata copy file\n"); ump->metadata_node = ump->metadatamirror_node; ump->metadatamirror_node = NULL; error = 0; } } else { /* mounting read/write */ /* XXX DISABLED! metadata writing is not working yet XXX */ if (error) error = EROFS; } DPRINTFIF(VOLUMES, error, ("udf mount: failed to read " "metadata files\n")); return error; } /* --------------------------------------------------------------------- */ int udf_read_vds_tables(struct udf_mount *ump) { union udf_pmap *mapping; /* struct udf_args *args = &ump->mount_args; */ uint32_t n_pm; uint32_t log_part; uint8_t *pmap_pos; int pmap_size; int error; /* Iterate (again) over the part mappings for locations */ n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */ pmap_pos = ump->logical_vol->maps; for (log_part = 0; log_part < n_pm; log_part++) { mapping = (union udf_pmap *) pmap_pos; switch (ump->vtop_tp[log_part]) { case UDF_VTOP_TYPE_PHYS : /* nothing */ break; case UDF_VTOP_TYPE_VIRT : /* search and load VAT */ error = udf_search_vat(ump, mapping); if (error) return ENOENT; break; case UDF_VTOP_TYPE_SPARABLE : /* load one of the sparable tables */ error = udf_read_sparables(ump, mapping); if (error) return ENOENT; break; case UDF_VTOP_TYPE_META : /* load the associated file descriptors */ error = udf_read_metadata_nodes(ump, mapping); if (error) return ENOENT; break; default: break; } pmap_size = pmap_pos[1]; pmap_pos += pmap_size; } /* read in and check unallocated and free space info if writing */ if ((ump->vfs_mountp->mnt_flag & MNT_RDONLY) == 0) { error = udf_read_physical_partition_spacetables(ump); if (error) return error; /* also read in metadata partition spacebitmap if defined */ error = udf_read_metadata_partition_spacetable(ump); return error; } return 0; } /* --------------------------------------------------------------------- */ int udf_read_rootdirs(struct udf_mount *ump) { union dscrptr *dscr; /* struct udf_args *args = &ump->mount_args; */ struct udf_node *rootdir_node, *streamdir_node; struct long_ad fsd_loc, *dir_loc; uint32_t lb_num, dummy; uint32_t fsd_len; int dscr_type; int error; /* TODO implement FSD reading in separate function like integrity? */ /* get fileset descriptor sequence */ fsd_loc = ump->logical_vol->lv_fsd_loc; fsd_len = udf_rw32(fsd_loc.len); dscr = NULL; error = 0; while (fsd_len || error) { DPRINTF(VOLUMES, ("fsd_len = %d\n", fsd_len)); /* translate fsd_loc to lb_num */ error = udf_translate_vtop(ump, &fsd_loc, &lb_num, &dummy); if (error) break; DPRINTF(VOLUMES, ("Reading FSD at lb %d\n", lb_num)); error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr); /* end markers */ if (error || (dscr == NULL)) break; /* analyse */ dscr_type = udf_rw16(dscr->tag.id); if (dscr_type == TAGID_TERM) break; if (dscr_type != TAGID_FSD) { free(dscr, M_UDFVOLD); return ENOENT; } /* * TODO check for multiple fileset descriptors; its only * picking the last now. Also check for FSD * correctness/interpretability */ /* update */ if (ump->fileset_desc) { free(ump->fileset_desc, M_UDFVOLD); } ump->fileset_desc = &dscr->fsd; dscr = NULL; /* continue to the next fsd */ fsd_len -= ump->discinfo.sector_size; fsd_loc.loc.lb_num = udf_rw32(udf_rw32(fsd_loc.loc.lb_num)+1); /* follow up to fsd->next_ex (long_ad) if its not null */ if (udf_rw32(ump->fileset_desc->next_ex.len)) { DPRINTF(VOLUMES, ("follow up FSD extent\n")); fsd_loc = ump->fileset_desc->next_ex; fsd_len = udf_rw32(ump->fileset_desc->next_ex.len); } } if (dscr) free(dscr, M_UDFVOLD); /* there has to be one */ if (ump->fileset_desc == NULL) return ENOENT; DPRINTF(VOLUMES, ("FSD read in fine\n")); DPRINTF(VOLUMES, ("Updating fsd logical volume id\n")); udf_update_logvolname(ump, ump->logical_vol->logvol_id); /* * Now the FSD is known, read in the rootdirectory and if one exists, * the system stream dir. Some files in the system streamdir are not * wanted in this implementation since they are not maintained. If * writing is enabled we'll delete these files if they exist. */ rootdir_node = streamdir_node = NULL; dir_loc = NULL; /* try to read in the rootdir */ dir_loc = &ump->fileset_desc->rootdir_icb; error = udf_get_node(ump, dir_loc, &rootdir_node, LK_EXCLUSIVE); if (error) return ENOENT; /* apparently it reads in fine */ /* * Try the system stream directory; not very likely in the ones we * test, but for completeness. */ dir_loc = &ump->fileset_desc->streamdir_icb; if (udf_rw32(dir_loc->len)) { printf("udf_read_rootdirs: streamdir defined "); error = udf_get_node(ump, dir_loc, &streamdir_node, LK_EXCLUSIVE); if (error) { printf("but error in streamdir reading\n"); } else { printf("but ignored\n"); /* * TODO process streamdir `baddies' i.e. files we dont * want if R/W */ } } DPRINTF(VOLUMES, ("Rootdir(s) read in fine\n")); /* release the vnodes again; they'll be auto-recycled later */ if (streamdir_node) { vput(streamdir_node->vnode); } if (rootdir_node) { vput(rootdir_node->vnode); } return 0; } /* --------------------------------------------------------------------- */ /* To make absolutely sure we are NOT returning zero, add one :) */ long udf_get_node_id(const struct long_ad *icbptr) { /* ought to be enough since each mountpoint has its own chain */ return udf_rw32(icbptr->loc.lb_num) + 1; } int udf_compare_icb(const struct long_ad *a, const struct long_ad *b) { if (udf_rw16(a->loc.part_num) < udf_rw16(b->loc.part_num)) return -1; if (udf_rw16(a->loc.part_num) > udf_rw16(b->loc.part_num)) return 1; if (udf_rw32(a->loc.lb_num) < udf_rw32(b->loc.lb_num)) return -1; if (udf_rw32(a->loc.lb_num) > udf_rw32(b->loc.lb_num)) return 1; return 0; } static int udf_compare_rbnodes(void *ctx, const void *a, const void *b) { const struct udf_node *a_node = a; const struct udf_node *b_node = b; return udf_compare_icb(&a_node->loc, &b_node->loc); } static int udf_compare_rbnode_icb(void *ctx, const void *a, const void *key) { const struct udf_node *a_node = a; const struct long_ad * const icb = key; return udf_compare_icb(&a_node->loc, icb); } static const rb_tree_ops_t udf_node_rbtree_ops = { .rbto_compare_nodes = udf_compare_rbnodes, .rbto_compare_key = udf_compare_rbnode_icb, .rbto_node_offset = offsetof(struct udf_node, rbnode), .rbto_context = NULL }; void udf_init_nodes_tree(struct udf_mount *ump) { rb_tree_init(&ump->udf_node_tree, &udf_node_rbtree_ops); } /* --------------------------------------------------------------------- */ static int udf_validate_session_start(struct udf_mount *ump) { struct mmc_trackinfo trackinfo; struct vrs_desc *vrs; uint32_t tracknr, sessionnr, sector, sector_size; uint32_t iso9660_vrs, write_track_start; uint8_t *buffer, *blank, *pos; int blks, max_sectors, vrs_len; int error; /* disc appendable? */ if (ump->discinfo.disc_state == MMC_STATE_FULL) return EROFS; /* already written here? if so, there should be an ISO VDS */ if (ump->discinfo.last_session_state == MMC_STATE_INCOMPLETE) return 0; /* * Check if the first track of the session is blank and if so, copy or * create a dummy ISO descriptor so the disc is valid again. */ tracknr = ump->discinfo.first_track_last_session; memset(&trackinfo, 0, sizeof(struct mmc_trackinfo)); trackinfo.tracknr = tracknr; error = udf_update_trackinfo(ump, &trackinfo); if (error) return error; udf_dump_trackinfo(&trackinfo); KASSERT(trackinfo.flags & (MMC_TRACKINFO_BLANK | MMC_TRACKINFO_RESERVED)); KASSERT(trackinfo.sessionnr > 1); KASSERT(trackinfo.flags & MMC_TRACKINFO_NWA_VALID); write_track_start = trackinfo.next_writable; /* we have to copy the ISO VRS from a former session */ DPRINTF(VOLUMES, ("validate_session_start: " "blank or reserved track, copying VRS\n")); /* sessionnr should be the session we're mounting */ sessionnr = ump->mount_args.sessionnr; /* start at the first track */ tracknr = ump->discinfo.first_track; while (tracknr <= ump->discinfo.num_tracks) { trackinfo.tracknr = tracknr; error = udf_update_trackinfo(ump, &trackinfo); if (error) { DPRINTF(VOLUMES, ("failed to get trackinfo; aborting\n")); return error; } if (trackinfo.sessionnr == sessionnr) break; tracknr++; } if (trackinfo.sessionnr != sessionnr) { DPRINTF(VOLUMES, ("failed to get trackinfo; aborting\n")); return ENOENT; } DPRINTF(VOLUMES, ("found possible former ISO VRS at\n")); udf_dump_trackinfo(&trackinfo); /* * location of iso9660 vrs is defined as first sector AFTER 32kb, * minimum ISO `sector size' 2048 */ sector_size = ump->discinfo.sector_size; iso9660_vrs = ((32*1024 + sector_size - 1) / sector_size) + trackinfo.track_start; buffer = malloc(UDF_ISO_VRS_SIZE, M_TEMP, M_WAITOK); max_sectors = UDF_ISO_VRS_SIZE / sector_size; blks = MAX(1, 2048 / sector_size); error = 0; for (sector = 0; sector < max_sectors; sector += blks) { pos = buffer + sector * sector_size; error = udf_read_phys_sectors(ump, UDF_C_DSCR, pos, iso9660_vrs + sector, blks); if (error) break; /* check this ISO descriptor */ vrs = (struct vrs_desc *) pos; DPRINTF(VOLUMES, ("got VRS id `%4s`\n", vrs->identifier)); if (strncmp(vrs->identifier, VRS_CD001, 5) == 0) continue; if (strncmp(vrs->identifier, VRS_CDW02, 5) == 0) continue; if (strncmp(vrs->identifier, VRS_BEA01, 5) == 0) continue; if (strncmp(vrs->identifier, VRS_NSR02, 5) == 0) continue; if (strncmp(vrs->identifier, VRS_NSR03, 5) == 0) continue; if (strncmp(vrs->identifier, VRS_TEA01, 5) == 0) break; /* now what? for now, end of sequence */ break; } vrs_len = sector + blks; if (error) { DPRINTF(VOLUMES, ("error reading old ISO VRS\n")); DPRINTF(VOLUMES, ("creating minimal ISO VRS\n")); memset(buffer, 0, UDF_ISO_VRS_SIZE); vrs = (struct vrs_desc *) (buffer); vrs->struct_type = 0; vrs->version = 1; memcpy(vrs->identifier,VRS_BEA01, 5); vrs = (struct vrs_desc *) (buffer + 2048); vrs->struct_type = 0; vrs->version = 1; if (udf_rw16(ump->logical_vol->tag.descriptor_ver) == 2) { memcpy(vrs->identifier,VRS_NSR02, 5); } else { memcpy(vrs->identifier,VRS_NSR03, 5); } vrs = (struct vrs_desc *) (buffer + 4096); vrs->struct_type = 0; vrs->version = 1; memcpy(vrs->identifier, VRS_TEA01, 5); vrs_len = 3*blks; } DPRINTF(VOLUMES, ("Got VRS of %d sectors long\n", vrs_len)); /* * location of iso9660 vrs is defined as first sector AFTER 32kb, * minimum ISO `sector size' 2048 */ sector_size = ump->discinfo.sector_size; iso9660_vrs = ((32*1024 + sector_size - 1) / sector_size) + write_track_start; /* write out 32 kb */ blank = malloc(sector_size, M_TEMP, M_WAITOK); memset(blank, 0, sector_size); error = 0; for (sector = write_track_start; sector < iso9660_vrs; sector ++) { error = udf_write_phys_sectors(ump, UDF_C_ABSOLUTE, blank, sector, 1); if (error) break; } if (!error) { /* write out our ISO VRS */ KASSERT(sector == iso9660_vrs); error = udf_write_phys_sectors(ump, UDF_C_ABSOLUTE, buffer, sector, vrs_len); sector += vrs_len; } if (!error) { /* fill upto the first anchor at S+256 */ for (; sector < write_track_start+256; sector++) { error = udf_write_phys_sectors(ump, UDF_C_ABSOLUTE, blank, sector, 1); if (error) break; } } if (!error) { /* write out anchor; write at ABSOLUTE place! */ error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_ABSOLUTE, (union dscrptr *) ump->anchors[0], sector, sector); if (error) printf("writeout of anchor failed!\n"); } free(blank, M_TEMP); free(buffer, M_TEMP); if (error) printf("udf_open_session: error writing iso vrs! : " "leaving disc in compromised state!\n"); /* synchronise device caches */ (void) udf_synchronise_caches(ump); return error; } int udf_open_logvol(struct udf_mount *ump) { int logvol_integrity; int error; /* already/still open? */ logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type); if (logvol_integrity == UDF_INTEGRITY_OPEN) return 0; /* can we open it ? */ if (ump->vfs_mountp->mnt_flag & MNT_RDONLY) return EROFS; /* setup write parameters */ DPRINTF(VOLUMES, ("Setting up write parameters\n")); if ((error = udf_setup_writeparams(ump)) != 0) return error; /* determine data and metadata tracks (most likely same) */ error = udf_search_writing_tracks(ump); if (error) { /* most likely lack of space */ printf("udf_open_logvol: error searching writing tracks\n"); return EROFS; } /* writeout/update lvint on disc or only in memory */ DPRINTF(VOLUMES, ("Opening logical volume\n")); if (ump->lvopen & UDF_OPEN_SESSION) { /* TODO optional track reservation opening */ error = udf_validate_session_start(ump); if (error) return error; /* determine data and metadata tracks again */ error = udf_search_writing_tracks(ump); if (ump->lvclose & UDF_WRITE_VAT) { /* * we writeout the VAT to get a self-sustained session * for fsck */ DPRINTF(VOLUMES, ("lvclose & UDF_WRITE_VAT\n")); /* write out the VAT data and all its descriptors */ DPRINTF(VOLUMES, ("writeout vat_node\n")); udf_writeout_vat(ump); /* force everything to be synchronized on the device */ (void) udf_synchronise_caches(ump); } } /* mark it open */ ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_OPEN); /* do we need to write it out? */ if (ump->lvopen & UDF_WRITE_LVINT) { error = udf_writeout_lvint(ump, ump->lvopen); /* if we couldn't write it mark it closed again */ if (error) { ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED); return error; } } return 0; } int udf_close_logvol(struct udf_mount *ump, int mntflags) { struct vnode *devvp = ump->devvp; struct mmc_op mmc_op; uint32_t phys; int logvol_integrity; int error = 0, error1 = 0, error2 = 0; int tracknr; int nvats, n, relblk, wrtrack_skew, nok; /* already/still closed? */ logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type); if (logvol_integrity == UDF_INTEGRITY_CLOSED) return 0; /* writeout/update lvint or write out VAT */ DPRINTF(VOLUMES, ("udf_close_logvol: closing logical volume\n")); #ifdef DIAGNOSTIC if (ump->lvclose & UDF_CLOSE_SESSION) KASSERT(ump->lvclose & UDF_WRITE_VAT); #endif if (ump->lvclose & UDF_WRITE_VAT) { DPRINTF(VOLUMES, ("lvclose & UDF_WRITE_VAT\n")); /* write out the VAT data and all its descriptors */ DPRINTF(VOLUMES, ("writeout vat_node\n")); udf_writeout_vat(ump); /* * For bug-compatibility with Windows, the last VAT sector * must be a multiple of 16/32 from the start of the track. * To allow for scratches, write out at least a 32 pieces. */ phys = ump->data_track.track_start; wrtrack_skew = phys % 32; phys = ump->data_track.next_writable; relblk = phys % 32; nvats = 32 + 32 - (relblk - wrtrack_skew); #if notyet /* * TODO calculate the available space and if the disc is * almost full, write out till end-256-1 with banks, write * AVDP and fill up with VATs, then close session and close * disc. */ if (ump->lvclose & UDF_FINALISE_DISC) { error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_FLOAT_DSCR, (union dscrptr *) ump->anchors[0], 0, 0); if (error) printf("writeout of anchor failed!\n"); /* pad space with VAT ICBs */ nvats = 256; } #endif /* write out a number of VAT nodes */ nok = 0; for (n = 0; n < nvats; n++) { /* will now only write last FE/EFE */ ump->vat_node->i_flags |= IN_MODIFIED; error = VOP_FSYNC(ump->vat_node->vnode, FSCRED, FSYNC_WAIT, 0, 0); if (!error) nok++; } /* force everything to be synchronized on the device */ (void) udf_synchronise_caches(ump); if (nok < 14) { /* arbitrary; but at least one or two CD frames */ printf("writeout of at least 14 VATs failed\n"); return error; } } /* NOTE the disc is in a (minimal) valid state now; no erroring out */ /* finish closing of session */ if (ump->lvclose & UDF_CLOSE_SESSION) { DPRINTF(VOLUMES, ("udf_close_logvol: closing session " "as requested\n")); error = udf_validate_session_start(ump); if (error) return error; (void) udf_synchronise_caches(ump); /* close all associated tracks */ tracknr = ump->discinfo.first_track_last_session; error = 0; while (tracknr <= ump->discinfo.last_track_last_session) { DPRINTF(VOLUMES, ("\tclosing possible open " "track %d\n", tracknr)); memset(&mmc_op, 0, sizeof(mmc_op)); mmc_op.operation = MMC_OP_CLOSETRACK; mmc_op.mmc_profile = ump->discinfo.mmc_profile; mmc_op.tracknr = tracknr; error = VOP_IOCTL(devvp, MMCOP, &mmc_op, FKIOCTL, NOCRED); if (error) printf("udf_close_logvol: closing of " "track %d failed\n", tracknr); tracknr ++; } if (!error) { DPRINTF(VOLUMES, ("closing session\n")); memset(&mmc_op, 0, sizeof(mmc_op)); mmc_op.operation = MMC_OP_CLOSESESSION; mmc_op.mmc_profile = ump->discinfo.mmc_profile; mmc_op.sessionnr = ump->discinfo.num_sessions; error = VOP_IOCTL(devvp, MMCOP, &mmc_op, FKIOCTL, NOCRED); if (error) printf("udf_close_logvol: closing of session" "failed\n"); } if (!error) ump->lvopen |= UDF_OPEN_SESSION; if (error) { printf("udf_close_logvol: leaving disc as it is\n"); ump->lvclose &= ~UDF_FINALISE_DISC; } } if (ump->lvclose & UDF_FINALISE_DISC) { memset(&mmc_op, 0, sizeof(mmc_op)); mmc_op.operation = MMC_OP_FINALISEDISC; mmc_op.mmc_profile = ump->discinfo.mmc_profile; mmc_op.sessionnr = ump->discinfo.num_sessions; error = VOP_IOCTL(devvp, MMCOP, &mmc_op, FKIOCTL, NOCRED); if (error) printf("udf_close_logvol: finalising disc" "failed\n"); } /* write out partition bitmaps if requested */ if (ump->lvclose & UDF_WRITE_PART_BITMAPS) { /* sync writeout metadata spacetable if existing */ error1 = udf_write_metadata_partition_spacetable(ump, true); if (error1) printf( "udf_close_logvol: writeout of metadata space " "bitmap failed\n"); /* sync writeout partition spacetables */ error2 = udf_write_physical_partition_spacetables(ump, true); if (error2) printf( "udf_close_logvol: writeout of space tables " "failed\n"); if (error1 || error2) return (error1 | error2); ump->lvclose &= ~UDF_WRITE_PART_BITMAPS; } /* write out metadata partition nodes if requested */ if (ump->lvclose & UDF_WRITE_METAPART_NODES) { /* sync writeout metadata descriptor node */ error1 = udf_writeout_node(ump->metadata_node, FSYNC_WAIT); if (error1) printf( "udf_close_logvol: writeout of metadata partition " "node failed\n"); /* duplicate metadata partition descriptor if needed */ udf_synchronise_metadatamirror_node(ump); /* sync writeout metadatamirror descriptor node */ error2 = udf_writeout_node(ump->metadatamirror_node, FSYNC_WAIT); if (error2) printf( "udf_close_logvol: writeout of metadata partition " "mirror node failed\n"); if (error1 || error2) return (error1 | error2); ump->lvclose &= ~UDF_WRITE_METAPART_NODES; } /* mark it closed */ ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED); /* do we need to write out the logical volume integrity? */ if (ump->lvclose & UDF_WRITE_LVINT) error = udf_writeout_lvint(ump, ump->lvopen); if (error) { /* HELP now what? mark it open again for now */ ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_OPEN); return error; } (void) udf_synchronise_caches(ump); return 0; } /* --------------------------------------------------------------------- */ /* * Genfs interfacing * * static const struct genfs_ops udf_genfsops = { * .gop_size = genfs_size, * size of transfers * .gop_alloc = udf_gop_alloc, * allocate len bytes at offset * .gop_write = genfs_gop_write, * putpages interface code * .gop_markupdate = udf_gop_markupdate, * set update/modify flags etc. * } */ /* * Genfs interface. These four functions are the only ones defined though not * documented... great.... */ /* * Called for allocating an extent of the file either by VOP_WRITE() or by * genfs filling up gaps. */ static int udf_gop_alloc(struct vnode *vp, off_t off, off_t len, int flags, kauth_cred_t cred) { struct udf_node *udf_node = VTOI(vp); struct udf_mount *ump = udf_node->ump; uint64_t lb_start, lb_end; uint32_t lb_size, num_lb; int udf_c_type, vpart_num, can_fail; int error; DPRINTF(ALLOC, ("udf_gop_alloc called for offset %"PRIu64" for %"PRIu64" bytes, %s\n", off, len, flags? "SYNC":"NONE")); /* * request the pages of our vnode and see how many pages will need to * be allocated and reserve that space */ lb_size = udf_rw32(udf_node->ump->logical_vol->lb_size); lb_start = off / lb_size; lb_end = (off + len + lb_size -1) / lb_size; num_lb = lb_end - lb_start; udf_c_type = udf_get_c_type(udf_node); vpart_num = udf_get_record_vpart(ump, udf_c_type); /* all requests can fail */ can_fail = true; /* fid's (directories) can't fail */ if (udf_c_type == UDF_C_FIDS) can_fail = false; /* system files can't fail */ if (vp->v_vflag & VV_SYSTEM) can_fail = false; error = udf_reserve_space(ump, udf_node, udf_c_type, vpart_num, num_lb, can_fail); DPRINTF(ALLOC, ("\tlb_start %"PRIu64", lb_end %"PRIu64", num_lb %d\n", lb_start, lb_end, num_lb)); return error; } /* * callback from genfs to update our flags */ static void udf_gop_markupdate(struct vnode *vp, int flags) { struct udf_node *udf_node = VTOI(vp); u_long mask = 0; if ((flags & GOP_UPDATE_ACCESSED) != 0) { mask = IN_ACCESS; } if ((flags & GOP_UPDATE_MODIFIED) != 0) { if (vp->v_type == VREG) { mask |= IN_CHANGE | IN_UPDATE; } else { mask |= IN_MODIFY; } } if (mask) { udf_node->i_flags |= mask; } } static const struct genfs_ops udf_genfsops = { .gop_size = genfs_size, .gop_alloc = udf_gop_alloc, .gop_write = genfs_gop_write_rwmap, .gop_markupdate = udf_gop_markupdate, .gop_putrange = genfs_gop_putrange, }; /* --------------------------------------------------------------------- */ int udf_write_terminator(struct udf_mount *ump, uint32_t sector) { union dscrptr *dscr; int error; dscr = malloc(ump->discinfo.sector_size, M_TEMP, M_WAITOK|M_ZERO); udf_inittag(ump, &dscr->tag, TAGID_TERM, sector); /* CRC length for an anchor is 512 - tag length; defined in Ecma 167 */ dscr->tag.desc_crc_len = udf_rw16(512-UDF_DESC_TAG_LENGTH); (void) udf_validate_tag_and_crc_sums(dscr); error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR, dscr, sector, sector); free(dscr, M_TEMP); return error; } /* --------------------------------------------------------------------- */ /* UDF<->unix converters */ /* --------------------------------------------------------------------- */ static mode_t udf_perm_to_unix_mode(uint32_t perm) { mode_t mode; mode = ((perm & UDF_FENTRY_PERM_USER_MASK) ); mode |= ((perm & UDF_FENTRY_PERM_GRP_MASK ) >> 2); mode |= ((perm & UDF_FENTRY_PERM_OWNER_MASK) >> 4); return mode; } /* --------------------------------------------------------------------- */ static uint32_t unix_mode_to_udf_perm(mode_t mode) { uint32_t perm; perm = ((mode & S_IRWXO) ); perm |= ((mode & S_IRWXG) << 2); perm |= ((mode & S_IRWXU) << 4); perm |= ((mode & S_IWOTH) << 3); perm |= ((mode & S_IWGRP) << 5); perm |= ((mode & S_IWUSR) << 7); return perm; } /* --------------------------------------------------------------------- */ static uint32_t udf_icb_to_unix_filetype(uint32_t icbftype) { switch (icbftype) { case UDF_ICB_FILETYPE_DIRECTORY : case UDF_ICB_FILETYPE_STREAMDIR : return S_IFDIR; case UDF_ICB_FILETYPE_FIFO : return S_IFIFO; case UDF_ICB_FILETYPE_CHARDEVICE : return S_IFCHR; case UDF_ICB_FILETYPE_BLOCKDEVICE : return S_IFBLK; case UDF_ICB_FILETYPE_RANDOMACCESS : case UDF_ICB_FILETYPE_REALTIME : return S_IFREG; case UDF_ICB_FILETYPE_SYMLINK : return S_IFLNK; case UDF_ICB_FILETYPE_SOCKET : return S_IFSOCK; } /* no idea what this is */ return 0; } /* --------------------------------------------------------------------- */ void udf_to_unix_name(char *result, int result_len, char *id, int len, struct charspec *chsp) { uint16_t *raw_name, *unix_name; uint16_t *inchp, ch; uint8_t *outchp; const char *osta_id = "OSTA Compressed Unicode"; int ucode_chars, nice_uchars, is_osta_typ0, nout; raw_name = malloc(2048 * sizeof(uint16_t), M_UDFTEMP, M_WAITOK); unix_name = raw_name + 1024; /* split space in half */ assert(sizeof(char) == sizeof(uint8_t)); outchp = (uint8_t *) result; is_osta_typ0 = (chsp->type == 0); is_osta_typ0 &= (strcmp((char *) chsp->inf, osta_id) == 0); if (is_osta_typ0) { /* TODO clean up */ *raw_name = *unix_name = 0; ucode_chars = udf_UncompressUnicode(len, (uint8_t *) id, raw_name); ucode_chars = MIN(ucode_chars, UnicodeLength((unicode_t *) raw_name)); nice_uchars = UDFTransName(unix_name, raw_name, ucode_chars); /* output UTF8 */ for (inchp = unix_name; nice_uchars>0; inchp++, nice_uchars--) { ch = *inchp; nout = wput_utf8(outchp, result_len, ch); outchp += nout; result_len -= nout; if (!ch) break; } *outchp++ = 0; } else { /* assume 8bit char length byte latin-1 */ assert(*id == 8); assert(strlen((char *) (id+1)) <= NAME_MAX); strncpy((char *) result, (char *) (id+1), strlen((char *) (id+1))); } free(raw_name, M_UDFTEMP); } /* --------------------------------------------------------------------- */ void unix_to_udf_name(char *result, uint8_t *result_len, char const *name, int name_len, struct charspec *chsp) { uint16_t *raw_name; uint16_t *outchp; const char *inchp; const char *osta_id = "OSTA Compressed Unicode"; int udf_chars, is_osta_typ0, bits; size_t cnt; /* allocate temporary unicode-16 buffer */ raw_name = malloc(1024, M_UDFTEMP, M_WAITOK); /* convert utf8 to unicode-16 */ *raw_name = 0; inchp = name; outchp = raw_name; bits = 8; for (cnt = name_len, udf_chars = 0; cnt;) { *outchp = wget_utf8(&inchp, &cnt); if (*outchp > 0xff) bits=16; outchp++; udf_chars++; } /* null terminate just in case */ *outchp++ = 0; is_osta_typ0 = (chsp->type == 0); is_osta_typ0 &= (strcmp((char *) chsp->inf, osta_id) == 0); if (is_osta_typ0) { udf_chars = udf_CompressUnicode(udf_chars, bits, (unicode_t *) raw_name, (byte *) result); } else { printf("unix to udf name: no CHSP0 ?\n"); /* XXX assume 8bit char length byte latin-1 */ *result++ = 8; udf_chars = 1; strncpy(result, name + 1, name_len); udf_chars += name_len; } *result_len = udf_chars; free(raw_name, M_UDFTEMP); } /* --------------------------------------------------------------------- */ void udf_timestamp_to_timespec(struct udf_mount *ump, struct timestamp *timestamp, struct timespec *timespec) { struct clock_ymdhms ymdhms; uint32_t usecs, secs, nsecs; uint16_t tz; /* fill in ymdhms structure from timestamp */ memset(&ymdhms, 0, sizeof(ymdhms)); ymdhms.dt_year = udf_rw16(timestamp->year); ymdhms.dt_mon = timestamp->month; ymdhms.dt_day = timestamp->day; ymdhms.dt_wday = 0; /* ? */ ymdhms.dt_hour = timestamp->hour; ymdhms.dt_min = timestamp->minute; ymdhms.dt_sec = timestamp->second; secs = clock_ymdhms_to_secs(&ymdhms); usecs = timestamp->usec + 100*timestamp->hund_usec + 10000*timestamp->centisec; nsecs = usecs * 1000; /* * Calculate the time zone. The timezone is 12 bit signed 2's * compliment, so we gotta do some extra magic to handle it right. */ tz = udf_rw16(timestamp->type_tz); tz &= 0x0fff; /* only lower 12 bits are significant */ if (tz & 0x0800) /* sign extension */ tz |= 0xf000; /* TODO check timezone conversion */ /* check if we are specified a timezone to convert */ if (udf_rw16(timestamp->type_tz) & 0x1000) { if ((int16_t) tz != -2047) secs -= (int16_t) tz * 60; } else { secs -= ump->mount_args.gmtoff; } timespec->tv_sec = secs; timespec->tv_nsec = nsecs; } void udf_timespec_to_timestamp(struct timespec *timespec, struct timestamp *timestamp) { struct clock_ymdhms ymdhms; uint32_t husec, usec, csec; (void) clock_secs_to_ymdhms(timespec->tv_sec, &ymdhms); usec = timespec->tv_nsec / 1000; husec = usec / 100; usec -= husec * 100; /* only 0-99 in usec */ csec = husec / 100; /* only 0-99 in csec */ husec -= csec * 100; /* only 0-99 in husec */ /* set method 1 for CUT/GMT */ timestamp->type_tz = udf_rw16((1<<12) + 0); timestamp->year = udf_rw16(ymdhms.dt_year); timestamp->month = ymdhms.dt_mon; timestamp->day = ymdhms.dt_day; timestamp->hour = ymdhms.dt_hour; timestamp->minute = ymdhms.dt_min; timestamp->second = ymdhms.dt_sec; timestamp->centisec = csec; timestamp->hund_usec = husec; timestamp->usec = usec; } /* --------------------------------------------------------------------- */ /* * Attribute and filetypes converters with get/set pairs */ uint32_t udf_getaccessmode(struct udf_node *udf_node) { struct file_entry *fe = udf_node->fe; struct extfile_entry *efe = udf_node->efe; uint32_t udf_perm, icbftype; uint32_t mode, ftype; uint16_t icbflags; UDF_LOCK_NODE(udf_node, 0); if (fe) { udf_perm = udf_rw32(fe->perm); icbftype = fe->icbtag.file_type; icbflags = udf_rw16(fe->icbtag.flags); } else { assert(udf_node->efe); udf_perm = udf_rw32(efe->perm); icbftype = efe->icbtag.file_type; icbflags = udf_rw16(efe->icbtag.flags); } mode = udf_perm_to_unix_mode(udf_perm); ftype = udf_icb_to_unix_filetype(icbftype); /* set suid, sgid, sticky from flags in fe/efe */ if (icbflags & UDF_ICB_TAG_FLAGS_SETUID) mode |= S_ISUID; if (icbflags & UDF_ICB_TAG_FLAGS_SETGID) mode |= S_ISGID; if (icbflags & UDF_ICB_TAG_FLAGS_STICKY) mode |= S_ISVTX; UDF_UNLOCK_NODE(udf_node, 0); return mode | ftype; } void udf_setaccessmode(struct udf_node *udf_node, mode_t mode) { struct file_entry *fe = udf_node->fe; struct extfile_entry *efe = udf_node->efe; uint32_t udf_perm; uint16_t icbflags; UDF_LOCK_NODE(udf_node, 0); udf_perm = unix_mode_to_udf_perm(mode & ALLPERMS); if (fe) { icbflags = udf_rw16(fe->icbtag.flags); } else { icbflags = udf_rw16(efe->icbtag.flags); } icbflags &= ~UDF_ICB_TAG_FLAGS_SETUID; icbflags &= ~UDF_ICB_TAG_FLAGS_SETGID; icbflags &= ~UDF_ICB_TAG_FLAGS_STICKY; if (mode & S_ISUID) icbflags |= UDF_ICB_TAG_FLAGS_SETUID; if (mode & S_ISGID) icbflags |= UDF_ICB_TAG_FLAGS_SETGID; if (mode & S_ISVTX) icbflags |= UDF_ICB_TAG_FLAGS_STICKY; if (fe) { fe->perm = udf_rw32(udf_perm); fe->icbtag.flags = udf_rw16(icbflags); } else { efe->perm = udf_rw32(udf_perm); efe->icbtag.flags = udf_rw16(icbflags); } UDF_UNLOCK_NODE(udf_node, 0); } void udf_getownership(struct udf_node *udf_node, uid_t *uidp, gid_t *gidp) { struct udf_mount *ump = udf_node->ump; struct file_entry *fe = udf_node->fe; struct extfile_entry *efe = udf_node->efe; uid_t uid; gid_t gid; UDF_LOCK_NODE(udf_node, 0); if (fe) { uid = (uid_t)udf_rw32(fe->uid); gid = (gid_t)udf_rw32(fe->gid); } else { assert(udf_node->efe); uid = (uid_t)udf_rw32(efe->uid); gid = (gid_t)udf_rw32(efe->gid); } /* do the uid/gid translation game */ if (uid == (uid_t) -1) uid = ump->mount_args.anon_uid; if (gid == (gid_t) -1) gid = ump->mount_args.anon_gid; *uidp = uid; *gidp = gid; UDF_UNLOCK_NODE(udf_node, 0); } void udf_setownership(struct udf_node *udf_node, uid_t uid, gid_t gid) { struct udf_mount *ump = udf_node->ump; struct file_entry *fe = udf_node->fe; struct extfile_entry *efe = udf_node->efe; uid_t nobody_uid; gid_t nobody_gid; UDF_LOCK_NODE(udf_node, 0); /* do the uid/gid translation game */ nobody_uid = ump->mount_args.nobody_uid; nobody_gid = ump->mount_args.nobody_gid; if (uid == nobody_uid) uid = (uid_t) -1; if (gid == nobody_gid) gid = (gid_t) -1; if (fe) { fe->uid = udf_rw32((uint32_t) uid); fe->gid = udf_rw32((uint32_t) gid); } else { efe->uid = udf_rw32((uint32_t) uid); efe->gid = udf_rw32((uint32_t) gid); } UDF_UNLOCK_NODE(udf_node, 0); } /* --------------------------------------------------------------------- */ int udf_dirhash_fill(struct udf_node *dir_node) { struct vnode *dvp = dir_node->vnode; struct dirhash *dirh; struct file_entry *fe = dir_node->fe; struct extfile_entry *efe = dir_node->efe; struct fileid_desc *fid; struct dirent *dirent; uint64_t file_size, pre_diroffset, diroffset; uint32_t lb_size; int error; /* make sure we have a dirhash to work on */ dirh = dir_node->dir_hash; KASSERT(dirh); KASSERT(dirh->refcnt > 0); if (dirh->flags & DIRH_BROKEN) return EIO; if (dirh->flags & DIRH_COMPLETE) return 0; /* make sure we have a clean dirhash to add to */ dirhash_purge_entries(dirh); /* get directory filesize */ if (fe) { file_size = udf_rw64(fe->inf_len); } else { assert(efe); file_size = udf_rw64(efe->inf_len); } /* allocate temporary space for fid */ lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size); fid = malloc(lb_size, M_UDFTEMP, M_WAITOK); /* allocate temporary space for dirent */ dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK); error = 0; diroffset = 0; while (diroffset < file_size) { /* transfer a new fid/dirent */ pre_diroffset = diroffset; error = udf_read_fid_stream(dvp, &diroffset, fid, dirent); if (error) { /* TODO what to do? continue but not add? */ dirh->flags |= DIRH_BROKEN; dirhash_purge_entries(dirh); break; } if ((fid->file_char & UDF_FILE_CHAR_DEL)) { /* register deleted extent for reuse */ dirhash_enter_freed(dirh, pre_diroffset, udf_fidsize(fid)); } else { /* append to the dirhash */ dirhash_enter(dirh, dirent, pre_diroffset, udf_fidsize(fid), 0); } } dirh->flags |= DIRH_COMPLETE; free(fid, M_UDFTEMP); free(dirent, M_UDFTEMP); return error; } /* --------------------------------------------------------------------- */ /* * Directory read and manipulation functions. * */ int udf_lookup_name_in_dir(struct vnode *vp, const char *name, int namelen, struct long_ad *icb_loc, int *found) { struct udf_node *dir_node = VTOI(vp); struct dirhash *dirh; struct dirhash_entry *dirh_ep; struct fileid_desc *fid; struct dirent *dirent, *s_dirent; struct charspec osta_charspec; uint64_t diroffset; uint32_t lb_size; int hit, error; /* set default return */ *found = 0; /* get our dirhash and make sure its read in */ dirhash_get(&dir_node->dir_hash); error = udf_dirhash_fill(dir_node); if (error) { dirhash_put(dir_node->dir_hash); return error; } dirh = dir_node->dir_hash; /* allocate temporary space for fid */ lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size); fid = malloc(lb_size, M_UDFTEMP, M_WAITOK); dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK); s_dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK); DPRINTF(DIRHASH, ("dirhash_lookup looking for `%*.*s`\n", namelen, namelen, name)); /* convert given unix name to canonical unix name */ udf_osta_charset(&osta_charspec); unix_to_udf_name((char *) fid->data, &fid->l_fi, name, namelen, &osta_charspec); udf_to_unix_name(s_dirent->d_name, NAME_MAX, (char *) fid->data, fid->l_fi, &osta_charspec); s_dirent->d_namlen = strlen(s_dirent->d_name); /* search our dirhash hits */ memset(icb_loc, 0, sizeof(*icb_loc)); dirh_ep = NULL; for (;;) { hit = dirhash_lookup(dirh, s_dirent->d_name, s_dirent->d_namlen, &dirh_ep); /* if no hit, abort the search */ if (!hit) break; /* check this hit */ diroffset = dirh_ep->offset; /* transfer a new fid/dirent */ error = udf_read_fid_stream(vp, &diroffset, fid, dirent); if (error) break; DPRINTF(DIRHASH, ("dirhash_lookup\tchecking `%*.*s`\n", dirent->d_namlen, dirent->d_namlen, dirent->d_name)); /* see if its our entry */ if (strncmp(dirent->d_name, s_dirent->d_name, s_dirent->d_namlen) == 0) { *found = 1; *icb_loc = fid->icb; break; } } free(fid, M_UDFTEMP); free(dirent, M_UDFTEMP); free(s_dirent, M_UDFTEMP); dirhash_put(dir_node->dir_hash); return error; } /* --------------------------------------------------------------------- */ static int udf_create_new_fe(struct udf_mount *ump, struct file_entry *fe, int file_type, struct long_ad *node_icb, struct long_ad *parent_icb, uint64_t parent_unique_id) { struct timespec now; struct icb_tag *icb; struct filetimes_extattr_entry *ft_extattr; uint64_t unique_id; uint32_t fidsize, lb_num; uint8_t *bpos; int crclen, attrlen; lb_num = udf_rw32(node_icb->loc.lb_num); udf_inittag(ump, &fe->tag, TAGID_FENTRY, lb_num); icb = &fe->icbtag; /* * Always use strategy type 4 unless on WORM which we don't support * (yet). Fill in defaults and set for internal allocation of data. */ icb->strat_type = udf_rw16(4); icb->max_num_entries = udf_rw16(1); icb->file_type = file_type; /* 8 bit */ icb->flags = udf_rw16(UDF_ICB_INTERN_ALLOC); fe->perm = udf_rw32(0x7fff); /* all is allowed */ fe->link_cnt = udf_rw16(0); /* explicit setting */ fe->ckpoint = udf_rw32(1); /* user supplied file version */ vfs_timestamp(&now); udf_timespec_to_timestamp(&now, &fe->atime); udf_timespec_to_timestamp(&now, &fe->attrtime); udf_timespec_to_timestamp(&now, &fe->mtime); udf_set_regid(&fe->imp_id, IMPL_NAME); udf_add_impl_regid(ump, &fe->imp_id); unique_id = udf_advance_uniqueid(ump); fe->unique_id = udf_rw64(unique_id); fe->l_ea = udf_rw32(0); /* create extended attribute to record our creation time */ attrlen = UDF_FILETIMES_ATTR_SIZE(1); ft_extattr = malloc(attrlen, M_UDFTEMP, M_WAITOK); memset(ft_extattr, 0, attrlen); ft_extattr->hdr.type = udf_rw32(UDF_FILETIMES_ATTR_NO); ft_extattr->hdr.subtype = 1; /* [4/48.10.5] */ ft_extattr->hdr.a_l = udf_rw32(UDF_FILETIMES_ATTR_SIZE(1)); ft_extattr->d_l = udf_rw32(UDF_TIMESTAMP_SIZE); /* one item */ ft_extattr->existence = UDF_FILETIMES_FILE_CREATION; udf_timespec_to_timestamp(&now, &ft_extattr->times[0]); udf_extattr_insert_internal(ump, (union dscrptr *) fe, (struct extattr_entry *) ft_extattr); free(ft_extattr, M_UDFTEMP); /* if its a directory, create '..' */ bpos = (uint8_t *) fe->data + udf_rw32(fe->l_ea); fidsize = 0; if (file_type == UDF_ICB_FILETYPE_DIRECTORY) { fidsize = udf_create_parentfid(ump, (struct fileid_desc *) bpos, parent_icb, parent_unique_id); } /* record fidlength information */ fe->inf_len = udf_rw64(fidsize); fe->l_ad = udf_rw32(fidsize); fe->logblks_rec = udf_rw64(0); /* intern */ crclen = sizeof(struct file_entry) - 1 - UDF_DESC_TAG_LENGTH; crclen += udf_rw32(fe->l_ea) + fidsize; fe->tag.desc_crc_len = udf_rw16(crclen); (void) udf_validate_tag_and_crc_sums((union dscrptr *) fe); return fidsize; } /* --------------------------------------------------------------------- */ static int udf_create_new_efe(struct udf_mount *ump, struct extfile_entry *efe, int file_type, struct long_ad *node_icb, struct long_ad *parent_icb, uint64_t parent_unique_id) { struct timespec now; struct icb_tag *icb; uint64_t unique_id; uint32_t fidsize, lb_num; uint8_t *bpos; int crclen; lb_num = udf_rw32(node_icb->loc.lb_num); udf_inittag(ump, &efe->tag, TAGID_EXTFENTRY, lb_num); icb = &efe->icbtag; /* * Always use strategy type 4 unless on WORM which we don't support * (yet). Fill in defaults and set for internal allocation of data. */ icb->strat_type = udf_rw16(4); icb->max_num_entries = udf_rw16(1); icb->file_type = file_type; /* 8 bit */ icb->flags = udf_rw16(UDF_ICB_INTERN_ALLOC); efe->perm = udf_rw32(0x7fff); /* all is allowed */ efe->link_cnt = udf_rw16(0); /* explicit setting */ efe->ckpoint = udf_rw32(1); /* user supplied file version */ vfs_timestamp(&now); udf_timespec_to_timestamp(&now, &efe->ctime); udf_timespec_to_timestamp(&now, &efe->atime); udf_timespec_to_timestamp(&now, &efe->attrtime); udf_timespec_to_timestamp(&now, &efe->mtime); udf_set_regid(&efe->imp_id, IMPL_NAME); udf_add_impl_regid(ump, &efe->imp_id); unique_id = udf_advance_uniqueid(ump); efe->unique_id = udf_rw64(unique_id); efe->l_ea = udf_rw32(0); /* if its a directory, create '..' */ bpos = (uint8_t *) efe->data + udf_rw32(efe->l_ea); fidsize = 0; if (file_type == UDF_ICB_FILETYPE_DIRECTORY) { fidsize = udf_create_parentfid(ump, (struct fileid_desc *) bpos, parent_icb, parent_unique_id); } /* record fidlength information */ efe->obj_size = udf_rw64(fidsize); efe->inf_len = udf_rw64(fidsize); efe->l_ad = udf_rw32(fidsize); efe->logblks_rec = udf_rw64(0); /* intern */ crclen = sizeof(struct extfile_entry) - 1 - UDF_DESC_TAG_LENGTH; crclen += udf_rw32(efe->l_ea) + fidsize; efe->tag.desc_crc_len = udf_rw16(crclen); (void) udf_validate_tag_and_crc_sums((union dscrptr *) efe); return fidsize; } /* --------------------------------------------------------------------- */ int udf_dir_detach(struct udf_mount *ump, struct udf_node *dir_node, struct udf_node *udf_node, struct componentname *cnp) { struct vnode *dvp = dir_node->vnode; struct dirhash *dirh; struct dirhash_entry *dirh_ep; struct file_entry *fe = dir_node->fe; struct fileid_desc *fid; struct dirent *dirent, *s_dirent; struct charspec osta_charspec; uint64_t diroffset; uint32_t lb_size, fidsize; int found, error; int hit, refcnt; /* get our dirhash and make sure its read in */ dirhash_get(&dir_node->dir_hash); error = udf_dirhash_fill(dir_node); if (error) { dirhash_put(dir_node->dir_hash); return error; } dirh = dir_node->dir_hash; /* get directory filesize */ if (!fe) { assert(dir_node->efe); } /* allocate temporary space for fid and dirents */ lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size); fid = malloc(lb_size, M_UDFTEMP, M_WAITOK); dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK); s_dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK); /* convert given unix name to canonical unix name */ udf_osta_charset(&osta_charspec); unix_to_udf_name((char *) fid->data, &fid->l_fi, cnp->cn_nameptr, cnp->cn_namelen, &osta_charspec); udf_to_unix_name(s_dirent->d_name, NAME_MAX, (char *) fid->data, fid->l_fi, &osta_charspec); s_dirent->d_namlen = strlen(s_dirent->d_name); /* search our dirhash hits */ found = 0; dirh_ep = NULL; for (;;) { hit = dirhash_lookup(dirh, s_dirent->d_name, s_dirent->d_namlen, &dirh_ep); /* if no hit, abort the search */ if (!hit) break; /* check this hit */ diroffset = dirh_ep->offset; /* transfer a new fid/dirent */ error = udf_read_fid_stream(dvp, &diroffset, fid, dirent); if (error) break; /* see if its our entry */ KASSERT(dirent->d_namlen == s_dirent->d_namlen); if (strncmp(dirent->d_name, s_dirent->d_name, s_dirent->d_namlen) == 0) { found = 1; break; } } if (!found) error = ENOENT; if (error) goto error_out; /* mark deleted */ fid->file_char |= UDF_FILE_CHAR_DEL; #ifdef UDF_COMPLETE_DELETE memset(&fid->icb, 0, sizeof(fid->icb)); #endif (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid); /* get size of fid and compensate for the read_fid_stream advance */ fidsize = udf_fidsize(fid); diroffset -= fidsize; /* write out */ error = vn_rdwr(UIO_WRITE, dir_node->vnode, fid, fidsize, diroffset, UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED, FSCRED, NULL, NULL); if (error) goto error_out; /* get reference count of attached node */ if (udf_node->fe) { refcnt = udf_rw16(udf_node->fe->link_cnt); } else { KASSERT(udf_node->efe); refcnt = udf_rw16(udf_node->efe->link_cnt); } #ifdef UDF_COMPLETE_DELETE /* subtract reference counter in attached node */ refcnt -= 1; if (udf_node->fe) { udf_node->fe->link_cnt = udf_rw16(refcnt); } else { udf_node->efe->link_cnt = udf_rw16(refcnt); } /* prevent writeout when refcnt == 0 */ if (refcnt == 0) udf_node->i_flags |= IN_DELETED; if (fid->file_char & UDF_FILE_CHAR_DIR) { int drefcnt; /* subtract reference counter in directory node */ /* note subtract 2 (?) for its was also backreferenced */ if (dir_node->fe) { drefcnt = udf_rw16(dir_node->fe->link_cnt); drefcnt -= 1; dir_node->fe->link_cnt = udf_rw16(drefcnt); } else { KASSERT(dir_node->efe); drefcnt = udf_rw16(dir_node->efe->link_cnt); drefcnt -= 1; dir_node->efe->link_cnt = udf_rw16(drefcnt); } } udf_node->i_flags |= IN_MODIFIED; dir_node->i_flags |= IN_MODIFIED; #endif /* if it is/was a hardlink adjust the file count */ if (refcnt > 0) udf_adjust_filecount(udf_node, -1); /* remove from the dirhash */ dirhash_remove(dirh, dirent, diroffset, udf_fidsize(fid)); error_out: free(fid, M_UDFTEMP); free(dirent, M_UDFTEMP); free(s_dirent, M_UDFTEMP); dirhash_put(dir_node->dir_hash); return error; } /* --------------------------------------------------------------------- */ int udf_dir_update_rootentry(struct udf_mount *ump, struct udf_node *dir_node, struct udf_node *new_parent_node) { struct vnode *dvp = dir_node->vnode; struct dirhash *dirh; struct dirhash_entry *dirh_ep; struct file_entry *fe; struct extfile_entry *efe; struct fileid_desc *fid; struct dirent *dirent; uint64_t diroffset; uint64_t new_parent_unique_id; uint32_t lb_size, fidsize; int found, error; char const *name = ".."; int namelen = 2; int hit; /* get our dirhash and make sure its read in */ dirhash_get(&dir_node->dir_hash); error = udf_dirhash_fill(dir_node); if (error) { dirhash_put(dir_node->dir_hash); return error; } dirh = dir_node->dir_hash; /* get new parent's unique ID */ fe = new_parent_node->fe; efe = new_parent_node->efe; if (fe) { new_parent_unique_id = udf_rw64(fe->unique_id); } else { assert(efe); new_parent_unique_id = udf_rw64(efe->unique_id); } /* get directory filesize */ fe = dir_node->fe; efe = dir_node->efe; if (!fe) { assert(efe); } /* allocate temporary space for fid */ lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size); fid = malloc(lb_size, M_UDFTEMP, M_WAITOK); dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK); /* * NOTE the standard does not dictate the FID entry '..' should be * first, though in practice it will most likely be. */ /* search our dirhash hits */ found = 0; dirh_ep = NULL; for (;;) { hit = dirhash_lookup(dirh, name, namelen, &dirh_ep); /* if no hit, abort the search */ if (!hit) break; /* check this hit */ diroffset = dirh_ep->offset; /* transfer a new fid/dirent */ error = udf_read_fid_stream(dvp, &diroffset, fid, dirent); if (error) break; /* see if its our entry */ KASSERT(dirent->d_namlen == namelen); if (strncmp(dirent->d_name, name, namelen) == 0) { found = 1; break; } } if (!found) error = ENOENT; if (error) goto error_out; /* update our ICB to the new parent, hit of lower 32 bits of uniqueid */ fid->icb = new_parent_node->write_loc; fid->icb.longad_uniqueid = udf_rw32(new_parent_unique_id); (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid); /* get size of fid and compensate for the read_fid_stream advance */ fidsize = udf_fidsize(fid); diroffset -= fidsize; /* write out */ error = vn_rdwr(UIO_WRITE, dir_node->vnode, fid, fidsize, diroffset, UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED, FSCRED, NULL, NULL); /* nothing to be done in the dirhash */ error_out: free(fid, M_UDFTEMP); free(dirent, M_UDFTEMP); dirhash_put(dir_node->dir_hash); return error; } /* --------------------------------------------------------------------- */ /* * We are not allowed to split the fid tag itself over an logical block so * check the space remaining in the logical block. * * We try to select the smallest candidate for recycling or when none is * found, append a new one at the end of the directory. */ int udf_dir_attach(struct udf_mount *ump, struct udf_node *dir_node, struct udf_node *udf_node, struct vattr *vap, struct componentname *cnp) { struct vnode *dvp = dir_node->vnode; struct dirhash *dirh; struct dirhash_entry *dirh_ep; struct fileid_desc *fid; struct icb_tag *icbtag; struct charspec osta_charspec; struct dirent dirent; uint64_t unique_id, dir_size; uint64_t fid_pos, end_fid_pos, chosen_fid_pos; uint32_t chosen_size, chosen_size_diff; int lb_size, lb_rest, fidsize, this_fidsize, size_diff; int file_char, refcnt, icbflags, addr_type, hit, error; /* get our dirhash and make sure its read in */ dirhash_get(&dir_node->dir_hash); error = udf_dirhash_fill(dir_node); if (error) { dirhash_put(dir_node->dir_hash); return error; } dirh = dir_node->dir_hash; /* get info */ lb_size = udf_rw32(ump->logical_vol->lb_size); udf_osta_charset(&osta_charspec); if (dir_node->fe) { dir_size = udf_rw64(dir_node->fe->inf_len); icbtag = &dir_node->fe->icbtag; } else { dir_size = udf_rw64(dir_node->efe->inf_len); icbtag = &dir_node->efe->icbtag; } icbflags = udf_rw16(icbtag->flags); addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK; if (udf_node->fe) { unique_id = udf_rw64(udf_node->fe->unique_id); refcnt = udf_rw16(udf_node->fe->link_cnt); } else { unique_id = udf_rw64(udf_node->efe->unique_id); refcnt = udf_rw16(udf_node->efe->link_cnt); } if (refcnt > 0) { unique_id = udf_advance_uniqueid(ump); udf_adjust_filecount(udf_node, 1); } /* determine file characteristics */ file_char = 0; /* visible non deleted file and not stream metadata */ if (vap->va_type == VDIR) file_char = UDF_FILE_CHAR_DIR; /* malloc scrap buffer */ fid = malloc(lb_size, M_TEMP, M_WAITOK|M_ZERO); /* calculate _minimum_ fid size */ unix_to_udf_name((char *) fid->data, &fid->l_fi, cnp->cn_nameptr, cnp->cn_namelen, &osta_charspec); fidsize = UDF_FID_SIZE + fid->l_fi; fidsize = (fidsize + 3) & ~3; /* multiple of 4 */ /* find position that will fit the FID */ chosen_fid_pos = dir_size; chosen_size = 0; chosen_size_diff = UINT_MAX; /* shut up gcc */ dirent.d_namlen = 0; /* search our dirhash hits */ error = 0; dirh_ep = NULL; for (;;) { hit = dirhash_lookup_freed(dirh, fidsize, &dirh_ep); /* if no hit, abort the search */ if (!hit) break; /* check this hit for size */ this_fidsize = dirh_ep->entry_size; /* check this hit */ fid_pos = dirh_ep->offset; end_fid_pos = fid_pos + this_fidsize; size_diff = this_fidsize - fidsize; lb_rest = lb_size - (end_fid_pos % lb_size); #ifndef UDF_COMPLETE_DELETE /* transfer a new fid/dirent */ error = udf_read_fid_stream(vp, &fid_pos, fid, dirent); if (error) goto error_out; /* only reuse entries that are wiped */ /* check if the len + loc are marked zero */ if (udf_rw32(fid->icb.len) != 0) continue; if (udf_rw32(fid->icb.loc.lb_num) != 0) continue; if (udf_rw16(fid->icb.loc.part_num) != 0) continue; #endif /* UDF_COMPLETE_DELETE */ /* select if not splitting the tag and its smaller */ if ((size_diff >= 0) && (size_diff < chosen_size_diff) && (lb_rest >= sizeof(struct desc_tag))) { /* UDF 2.3.4.2+3 specifies rules for iu size */ if ((size_diff == 0) || (size_diff >= 32)) { chosen_fid_pos = fid_pos; chosen_size = this_fidsize; chosen_size_diff = size_diff; } } } /* extend directory if no other candidate found */ if (chosen_size == 0) { chosen_fid_pos = dir_size; chosen_size = fidsize; chosen_size_diff = 0; /* special case UDF 2.00+ 2.3.4.4, no splitting up fid tag */ if (addr_type == UDF_ICB_INTERN_ALLOC) { /* pre-grow directory to see if we're to switch */ udf_grow_node(dir_node, dir_size + chosen_size); icbflags = udf_rw16(icbtag->flags); addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK; } /* make sure the next fid desc_tag won't be split */ if (addr_type != UDF_ICB_INTERN_ALLOC) { end_fid_pos = chosen_fid_pos + chosen_size; lb_rest = lb_size - (end_fid_pos % lb_size); /* pad with implementation use regid if needed */ if (lb_rest < sizeof(struct desc_tag)) chosen_size += 32; } } chosen_size_diff = chosen_size - fidsize; /* populate the FID */ memset(fid, 0, lb_size); udf_inittag(ump, &fid->tag, TAGID_FID, 0); fid->file_version_num = udf_rw16(1); /* UDF 2.3.4.1 */ fid->file_char = file_char; fid->icb = udf_node->loc; fid->icb.longad_uniqueid = udf_rw32((uint32_t) unique_id); fid->l_iu = udf_rw16(0); if (chosen_size > fidsize) { /* insert implementation-use regid to space it correctly */ fid->l_iu = udf_rw16(chosen_size_diff); /* set implementation use */ udf_set_regid((struct regid *) fid->data, IMPL_NAME); udf_add_impl_regid(ump, (struct regid *) fid->data); } /* fill in name */ unix_to_udf_name((char *) fid->data + udf_rw16(fid->l_iu), &fid->l_fi, cnp->cn_nameptr, cnp->cn_namelen, &osta_charspec); fid->tag.desc_crc_len = udf_rw16(chosen_size - UDF_DESC_TAG_LENGTH); (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid); /* writeout FID/update parent directory */ error = vn_rdwr(UIO_WRITE, dvp, fid, chosen_size, chosen_fid_pos, UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED, FSCRED, NULL, NULL); if (error) goto error_out; /* add reference counter in attached node */ if (udf_node->fe) { refcnt = udf_rw16(udf_node->fe->link_cnt); udf_node->fe->link_cnt = udf_rw16(refcnt+1); } else { KASSERT(udf_node->efe); refcnt = udf_rw16(udf_node->efe->link_cnt); udf_node->efe->link_cnt = udf_rw16(refcnt+1); } /* mark not deleted if it was... just in case, but do warn */ if (udf_node->i_flags & IN_DELETED) { printf("udf: warning, marking a file undeleted\n"); udf_node->i_flags &= ~IN_DELETED; } if (file_char & UDF_FILE_CHAR_DIR) { /* add reference counter in directory node for '..' */ if (dir_node->fe) { refcnt = udf_rw16(dir_node->fe->link_cnt); refcnt++; dir_node->fe->link_cnt = udf_rw16(refcnt); } else { KASSERT(dir_node->efe); refcnt = udf_rw16(dir_node->efe->link_cnt); refcnt++; dir_node->efe->link_cnt = udf_rw16(refcnt); } } /* append to the dirhash */ /* NOTE do not use dirent anymore or it won't match later! */ udf_to_unix_name(dirent.d_name, NAME_MAX, (char *) fid->data + udf_rw16(fid->l_iu), fid->l_fi, &osta_charspec); dirent.d_namlen = strlen(dirent.d_name); dirhash_enter(dirh, &dirent, chosen_fid_pos, udf_fidsize(fid), 1); /* note updates */ udf_node->i_flags |= IN_CHANGE | IN_MODIFY; /* | IN_CREATE? */ /* VN_KNOTE(udf_node, ...) */ udf_update(udf_node->vnode, NULL, NULL, NULL, 0); error_out: free(fid, M_TEMP); dirhash_put(dir_node->dir_hash); return error; } /* --------------------------------------------------------------------- */ /* * Each node can have an attached streamdir node though not recursively. These * are otherwise known as named substreams/named extended attributes that have * no size limitations. * * `Normal' extended attributes are indicated with a number and are recorded * in either the fe/efe descriptor itself for small descriptors or recorded in * the attached extended attribute file. Since these spaces can get * fragmented, care ought to be taken. * * Since the size of the space reserved for allocation descriptors is limited, * there is a mechanim provided for extending this space; this is done by a * special extent to allow shrinking of the allocations without breaking the * linkage to the allocation extent descriptor. */ int udf_loadvnode(struct mount *mp, struct vnode *vp, const void *key, size_t key_len, const void **new_key) { union dscrptr *dscr; struct udf_mount *ump; struct udf_node *udf_node; struct long_ad node_icb_loc, icb_loc, next_icb_loc, last_fe_icb_loc; uint64_t file_size; uint32_t lb_size, sector, dummy; int udf_file_type, dscr_type, strat, strat4096, needs_indirect; int slot, eof, error; int num_indir_followed = 0; DPRINTF(NODE, ("udf_loadvnode called\n")); udf_node = NULL; ump = VFSTOUDF(mp); KASSERT(key_len == sizeof(node_icb_loc.loc)); memset(&node_icb_loc, 0, sizeof(node_icb_loc)); node_icb_loc.len = ump->logical_vol->lb_size; memcpy(&node_icb_loc.loc, key, key_len); /* garbage check: translate udf_node_icb_loc to sectornr */ error = udf_translate_vtop(ump, &node_icb_loc, §or, &dummy); if (error) { DPRINTF(NODE, ("\tcan't translate icb address!\n")); /* no use, this will fail anyway */ return EINVAL; } /* build udf_node (do initialise!) */ udf_node = pool_get(&udf_node_pool, PR_WAITOK); memset(udf_node, 0, sizeof(struct udf_node)); vp->v_tag = VT_UDF; vp->v_op = udf_vnodeop_p; vp->v_data = udf_node; /* initialise crosslinks, note location of fe/efe for hashing */ udf_node->ump = ump; udf_node->vnode = vp; udf_node->loc = node_icb_loc; udf_node->lockf = 0; mutex_init(&udf_node->node_mutex, MUTEX_DEFAULT, IPL_NONE); cv_init(&udf_node->node_lock, "udf_nlk"); genfs_node_init(vp, &udf_genfsops); /* inititise genfs */ udf_node->outstanding_bufs = 0; udf_node->outstanding_nodedscr = 0; udf_node->uncommitted_lbs = 0; /* check if we're fetching the root */ if (ump->fileset_desc) if (memcmp(&udf_node->loc, &ump->fileset_desc->rootdir_icb, sizeof(struct long_ad)) == 0) vp->v_vflag |= VV_ROOT; icb_loc = node_icb_loc; needs_indirect = 0; strat4096 = 0; udf_file_type = UDF_ICB_FILETYPE_UNKNOWN; file_size = 0; lb_size = udf_rw32(ump->logical_vol->lb_size); DPRINTF(NODE, ("\tstart reading descriptors\n")); do { /* try to read in fe/efe */ error = udf_read_logvol_dscr(ump, &icb_loc, &dscr); /* blank sector marks end of sequence, check this */ if ((dscr == NULL) && (!strat4096)) error = ENOENT; /* break if read error or blank sector */ if (error || (dscr == NULL)) break; /* process descriptor based on the descriptor type */ dscr_type = udf_rw16(dscr->tag.id); DPRINTF(NODE, ("\tread descriptor %d\n", dscr_type)); /* if dealing with an indirect entry, follow the link */ if (dscr_type == TAGID_INDIRECTENTRY) { needs_indirect = 0; next_icb_loc = dscr->inde.indirect_icb; udf_free_logvol_dscr(ump, &icb_loc, dscr); icb_loc = next_icb_loc; if (++num_indir_followed > UDF_MAX_INDIRS_FOLLOW) { error = EMLINK; break; } continue; } /* only file entries and extended file entries allowed here */ if ((dscr_type != TAGID_FENTRY) && (dscr_type != TAGID_EXTFENTRY)) { udf_free_logvol_dscr(ump, &icb_loc, dscr); error = ENOENT; break; } KASSERT(udf_tagsize(dscr, lb_size) == lb_size); /* choose this one */ last_fe_icb_loc = icb_loc; /* record and process/update (ext)fentry */ if (dscr_type == TAGID_FENTRY) { if (udf_node->fe) udf_free_logvol_dscr(ump, &last_fe_icb_loc, udf_node->fe); udf_node->fe = &dscr->fe; strat = udf_rw16(udf_node->fe->icbtag.strat_type); udf_file_type = udf_node->fe->icbtag.file_type; file_size = udf_rw64(udf_node->fe->inf_len); } else { if (udf_node->efe) udf_free_logvol_dscr(ump, &last_fe_icb_loc, udf_node->efe); udf_node->efe = &dscr->efe; strat = udf_rw16(udf_node->efe->icbtag.strat_type); udf_file_type = udf_node->efe->icbtag.file_type; file_size = udf_rw64(udf_node->efe->inf_len); } /* check recording strategy (structure) */ /* * Strategy 4096 is a daisy linked chain terminating with an * unrecorded sector or a TERM descriptor. The next * descriptor is to be found in the sector that follows the * current sector. */ if (strat == 4096) { strat4096 = 1; needs_indirect = 1; icb_loc.loc.lb_num = udf_rw32(icb_loc.loc.lb_num) + 1; } /* * Strategy 4 is the normal strategy and terminates, but if * we're in strategy 4096, we can't have strategy 4 mixed in */ if (strat == 4) { if (strat4096) { error = EINVAL; break; } break; /* done */ } } while (!error); /* first round of cleanup code */ if (error) { DPRINTF(NODE, ("\tnode fe/efe failed!\n")); /* recycle udf_node */ udf_dispose_node(udf_node); return EINVAL; /* error code ok? */ } DPRINTF(NODE, ("\tnode fe/efe read in fine\n")); /* assert no references to dscr anymore beyong this point */ assert((udf_node->fe) || (udf_node->efe)); dscr = NULL; /* * Remember where to record an updated version of the descriptor. If * there is a sequence of indirect entries, icb_loc will have been * updated. It's the write discipline to allocate new space and to make * sure the chain is maintained. * * `needs_indirect' flags if the next location is to be filled with * an indirect entry. */ udf_node->write_loc = icb_loc; udf_node->needs_indirect = needs_indirect; /* * Go through all allocations extents of this descriptor and when * encountering a redirect read in the allocation extension. These are * daisy-chained. */ UDF_LOCK_NODE(udf_node, 0); udf_node->num_extensions = 0; error = 0; slot = 0; for (;;) { udf_get_adslot(udf_node, slot, &icb_loc, &eof); DPRINTF(ADWLK, ("slot %d, eof = %d, flags = %d, len = %d, " "lb_num = %d, part = %d\n", slot, eof, UDF_EXT_FLAGS(udf_rw32(icb_loc.len)), UDF_EXT_LEN(udf_rw32(icb_loc.len)), udf_rw32(icb_loc.loc.lb_num), udf_rw16(icb_loc.loc.part_num))); if (eof) break; slot++; if (UDF_EXT_FLAGS(udf_rw32(icb_loc.len)) != UDF_EXT_REDIRECT) continue; DPRINTF(NODE, ("\tgot redirect extent\n")); if (udf_node->num_extensions >= UDF_MAX_ALLOC_EXTENTS) { DPRINTF(ALLOC, ("udf_get_node: implementation limit, " "too many allocation extensions on " "udf_node\n")); error = EINVAL; break; } /* length can only be *one* lb : UDF 2.50/2.3.7.1 */ if (UDF_EXT_LEN(udf_rw32(icb_loc.len)) != lb_size) { DPRINTF(ALLOC, ("udf_get_node: bad allocation " "extension size in udf_node\n")); error = EINVAL; break; } DPRINTF(NODE, ("read allocation extent at lb_num %d\n", UDF_EXT_LEN(udf_rw32(icb_loc.loc.lb_num)))); /* load in allocation extent */ error = udf_read_logvol_dscr(ump, &icb_loc, &dscr); if (error || (dscr == NULL)) break; /* process read-in descriptor */ dscr_type = udf_rw16(dscr->tag.id); if (dscr_type != TAGID_ALLOCEXTENT) { udf_free_logvol_dscr(ump, &icb_loc, dscr); error = ENOENT; break; } DPRINTF(NODE, ("\trecording redirect extent\n")); udf_node->ext[udf_node->num_extensions] = &dscr->aee; udf_node->ext_loc[udf_node->num_extensions] = icb_loc; udf_node->num_extensions++; } /* while */ UDF_UNLOCK_NODE(udf_node, 0); /* second round of cleanup code */ if (error) { /* recycle udf_node */ udf_dispose_node(udf_node); return EINVAL; /* error code ok? */ } DPRINTF(NODE, ("\tnode read in fine\n")); /* * Translate UDF filetypes into vnode types. * * Systemfiles like the meta main and mirror files are not treated as * normal files, so we type them as having no type. UDF dictates that * they are not allowed to be visible. */ switch (udf_file_type) { case UDF_ICB_FILETYPE_DIRECTORY : case UDF_ICB_FILETYPE_STREAMDIR : vp->v_type = VDIR; break; case UDF_ICB_FILETYPE_BLOCKDEVICE : vp->v_type = VBLK; break; case UDF_ICB_FILETYPE_CHARDEVICE : vp->v_type = VCHR; break; case UDF_ICB_FILETYPE_SOCKET : vp->v_type = VSOCK; break; case UDF_ICB_FILETYPE_FIFO : vp->v_type = VFIFO; break; case UDF_ICB_FILETYPE_SYMLINK : vp->v_type = VLNK; break; case UDF_ICB_FILETYPE_VAT : case UDF_ICB_FILETYPE_META_MAIN : case UDF_ICB_FILETYPE_META_MIRROR : vp->v_type = VNON; break; case UDF_ICB_FILETYPE_RANDOMACCESS : case UDF_ICB_FILETYPE_REALTIME : vp->v_type = VREG; break; default: /* YIKES, something else */ vp->v_type = VNON; } /* TODO specfs, fifofs etc etc. vnops setting */ /* don't forget to set vnode's v_size */ uvm_vnp_setsize(vp, file_size); /* TODO ext attr and streamdir udf_nodes */ *new_key = &udf_node->loc.loc; return 0; } int udf_get_node(struct udf_mount *ump, struct long_ad *node_icb_loc, struct udf_node **udf_noderes, int lktype) { int error; struct vnode *vp; *udf_noderes = NULL; error = vcache_get(ump->vfs_mountp, &node_icb_loc->loc, sizeof(node_icb_loc->loc), &vp); if (error) return error; error = vn_lock(vp, lktype); if (error) { vrele(vp); return error; } *udf_noderes = VTOI(vp); return 0; } /* --------------------------------------------------------------------- */ int udf_writeout_node(struct udf_node *udf_node, int waitfor) { union dscrptr *dscr; struct long_ad *loc; int extnr, error; DPRINTF(NODE, ("udf_writeout_node called\n")); KASSERT(udf_node->outstanding_bufs == 0); KASSERT(udf_node->outstanding_nodedscr == 0); KASSERT(LIST_EMPTY(&udf_node->vnode->v_dirtyblkhd)); if (udf_node->i_flags & IN_DELETED) { DPRINTF(NODE, ("\tnode deleted; not writing out\n")); udf_cleanup_reservation(udf_node); return 0; } /* lock node; unlocked in callback */ UDF_LOCK_NODE(udf_node, 0); /* remove pending reservations, we're written out */ udf_cleanup_reservation(udf_node); /* at least one descriptor writeout */ udf_node->outstanding_nodedscr = 1; /* we're going to write out the descriptor so clear the flags */ udf_node->i_flags &= ~(IN_MODIFIED | IN_ACCESSED); /* if we were rebuild, write out the allocation extents */ if (udf_node->i_flags & IN_NODE_REBUILD) { /* mark outstanding node descriptors and issue them */ udf_node->outstanding_nodedscr += udf_node->num_extensions; for (extnr = 0; extnr < udf_node->num_extensions; extnr++) { loc = &udf_node->ext_loc[extnr]; dscr = (union dscrptr *) udf_node->ext[extnr]; error = udf_write_logvol_dscr(udf_node, dscr, loc, 0); if (error) return error; } /* mark allocation extents written out */ udf_node->i_flags &= ~(IN_NODE_REBUILD); } if (udf_node->fe) { KASSERT(udf_node->efe == NULL); dscr = (union dscrptr *) udf_node->fe; } else { KASSERT(udf_node->efe); KASSERT(udf_node->fe == NULL); dscr = (union dscrptr *) udf_node->efe; } KASSERT(dscr); loc = &udf_node->write_loc; error = udf_write_logvol_dscr(udf_node, dscr, loc, waitfor); return error; } /* --------------------------------------------------------------------- */ int udf_dispose_node(struct udf_node *udf_node) { struct vnode *vp; int extnr; DPRINTF(NODE, ("udf_dispose_node called on node %p\n", udf_node)); if (!udf_node) { DPRINTF(NODE, ("UDF: Dispose node on node NULL, ignoring\n")); return 0; } vp = udf_node->vnode; #ifdef DIAGNOSTIC if (vp->v_numoutput) panic("disposing UDF node with pending I/O's, udf_node = %p, " "v_numoutput = %d", udf_node, vp->v_numoutput); #endif udf_cleanup_reservation(udf_node); /* TODO extended attributes and streamdir */ /* remove dirhash if present */ dirhash_purge(&udf_node->dir_hash); /* destroy our lock */ mutex_destroy(&udf_node->node_mutex); cv_destroy(&udf_node->node_lock); /* dissociate our udf_node from the vnode */ genfs_node_destroy(udf_node->vnode); mutex_enter(vp->v_interlock); vp->v_data = NULL; mutex_exit(vp->v_interlock); /* free associated memory and the node itself */ for (extnr = 0; extnr < udf_node->num_extensions; extnr++) { udf_free_logvol_dscr(udf_node->ump, &udf_node->ext_loc[extnr], udf_node->ext[extnr]); udf_node->ext[extnr] = (void *) 0xdeadcccc; } if (udf_node->fe) udf_free_logvol_dscr(udf_node->ump, &udf_node->loc, udf_node->fe); if (udf_node->efe) udf_free_logvol_dscr(udf_node->ump, &udf_node->loc, udf_node->efe); udf_node->fe = (void *) 0xdeadaaaa; udf_node->efe = (void *) 0xdeadbbbb; udf_node->ump = (void *) 0xdeadbeef; pool_put(&udf_node_pool, udf_node); return 0; } /* * create a new node using the specified dvp, vap and cnp. * This allows special files to be created. Use with care. */ int udf_newvnode(struct mount *mp, struct vnode *dvp, struct vnode *vp, struct vattr *vap, kauth_cred_t cred, void *extra, size_t *key_len, const void **new_key) { union dscrptr *dscr; struct udf_node *dir_node = VTOI(dvp); struct udf_node *udf_node; struct udf_mount *ump = dir_node->ump; struct long_ad node_icb_loc; uint64_t parent_unique_id; uint64_t lmapping; uint32_t lb_size, lb_num; uint16_t vpart_num; uid_t uid; gid_t gid, parent_gid; int (**vnodeops)(void *); int udf_file_type, fid_size, error; vnodeops = udf_vnodeop_p; udf_file_type = UDF_ICB_FILETYPE_RANDOMACCESS; switch (vap->va_type) { case VREG : udf_file_type = UDF_ICB_FILETYPE_RANDOMACCESS; break; case VDIR : udf_file_type = UDF_ICB_FILETYPE_DIRECTORY; break; case VLNK : udf_file_type = UDF_ICB_FILETYPE_SYMLINK; break; case VBLK : udf_file_type = UDF_ICB_FILETYPE_BLOCKDEVICE; /* specfs */ return ENOTSUP; break; case VCHR : udf_file_type = UDF_ICB_FILETYPE_CHARDEVICE; /* specfs */ return ENOTSUP; break; case VFIFO : udf_file_type = UDF_ICB_FILETYPE_FIFO; /* fifofs */ return ENOTSUP; break; case VSOCK : udf_file_type = UDF_ICB_FILETYPE_SOCKET; return ENOTSUP; break; case VNON : case VBAD : default : /* nothing; can we even create these? */ return EINVAL; } lb_size = udf_rw32(ump->logical_vol->lb_size); /* reserve space for one logical block */ vpart_num = ump->node_part; error = udf_reserve_space(ump, NULL, UDF_C_NODE, vpart_num, 1, /* can_fail */ true); if (error) return error; /* allocate node */ error = udf_allocate_space(ump, NULL, UDF_C_NODE, vpart_num, 1, &lmapping); if (error) { udf_do_unreserve_space(ump, NULL, vpart_num, 1); return error; } lb_num = lmapping; /* initialise pointer to location */ memset(&node_icb_loc, 0, sizeof(struct long_ad)); node_icb_loc.len = udf_rw32(lb_size); node_icb_loc.loc.lb_num = udf_rw32(lb_num); node_icb_loc.loc.part_num = udf_rw16(vpart_num); /* build udf_node (do initialise!) */ udf_node = pool_get(&udf_node_pool, PR_WAITOK); memset(udf_node, 0, sizeof(struct udf_node)); /* initialise crosslinks, note location of fe/efe for hashing */ /* bugalert: synchronise with udf_get_node() */ udf_node->ump = ump; udf_node->vnode = vp; vp->v_data = udf_node; udf_node->loc = node_icb_loc; udf_node->write_loc = node_icb_loc; udf_node->lockf = 0; mutex_init(&udf_node->node_mutex, MUTEX_DEFAULT, IPL_NONE); cv_init(&udf_node->node_lock, "udf_nlk"); udf_node->outstanding_bufs = 0; udf_node->outstanding_nodedscr = 0; udf_node->uncommitted_lbs = 0; vp->v_tag = VT_UDF; vp->v_op = vnodeops; /* initialise genfs */ genfs_node_init(vp, &udf_genfsops); /* get parent's unique ID for referring '..' if its a directory */ if (dir_node->fe) { parent_unique_id = udf_rw64(dir_node->fe->unique_id); parent_gid = (gid_t) udf_rw32(dir_node->fe->gid); } else { parent_unique_id = udf_rw64(dir_node->efe->unique_id); parent_gid = (gid_t) udf_rw32(dir_node->efe->gid); } /* get descriptor */ udf_create_logvol_dscr(ump, udf_node, &node_icb_loc, &dscr); /* choose a fe or an efe for it */ if (udf_rw16(ump->logical_vol->tag.descriptor_ver) == 2) { udf_node->fe = &dscr->fe; fid_size = udf_create_new_fe(ump, udf_node->fe, udf_file_type, &udf_node->loc, &dir_node->loc, parent_unique_id); /* TODO add extended attribute for creation time */ } else { udf_node->efe = &dscr->efe; fid_size = udf_create_new_efe(ump, udf_node->efe, udf_file_type, &udf_node->loc, &dir_node->loc, parent_unique_id); } KASSERT(dscr->tag.tag_loc == udf_node->loc.loc.lb_num); /* update vnode's size and type */ vp->v_type = vap->va_type; uvm_vnp_setsize(vp, fid_size); /* set access mode */ udf_setaccessmode(udf_node, vap->va_mode); /* set ownership */ uid = kauth_cred_geteuid(cred); gid = parent_gid; udf_setownership(udf_node, uid, gid); *key_len = sizeof(udf_node->loc.loc); *new_key = &udf_node->loc.loc; return 0; } int udf_create_node(struct vnode *dvp, struct vnode **vpp, struct vattr *vap, struct componentname *cnp) { struct udf_node *udf_node, *dir_node = VTOI(dvp); struct udf_mount *ump = dir_node->ump; int error; error = vcache_new(dvp->v_mount, dvp, vap, cnp->cn_cred, NULL, vpp); if (error) return error; udf_node = VTOI(*vpp); error = udf_dir_attach(ump, dir_node, udf_node, vap, cnp); if (error) { struct long_ad *node_icb_loc = &udf_node->loc; uint32_t lb_num = udf_rw32(node_icb_loc->loc.lb_num); uint16_t vpart_num = udf_rw16(node_icb_loc->loc.part_num); /* free disc allocation for node */ udf_free_allocated_space(ump, lb_num, vpart_num, 1); /* recycle udf_node */ udf_dispose_node(udf_node); vrele(*vpp); *vpp = NULL; return error; } /* adjust file count */ udf_adjust_filecount(udf_node, 1); cache_enter(dvp, *vpp, cnp->cn_nameptr, cnp->cn_namelen, cnp->cn_flags); return 0; } /* --------------------------------------------------------------------- */ static void udf_free_descriptor_space(struct udf_node *udf_node, struct long_ad *loc, void *mem) { struct udf_mount *ump = udf_node->ump; uint32_t lb_size, lb_num, len, num_lb; uint16_t vpart_num; /* is there really one? */ if (mem == NULL) return; /* got a descriptor here */ len = UDF_EXT_LEN(udf_rw32(loc->len)); lb_num = udf_rw32(loc->loc.lb_num); vpart_num = udf_rw16(loc->loc.part_num); lb_size = udf_rw32(ump->logical_vol->lb_size); num_lb = (len + lb_size -1) / lb_size; udf_free_allocated_space(ump, lb_num, vpart_num, num_lb); } void udf_delete_node(struct udf_node *udf_node) { void *dscr; struct long_ad *loc; int extnr, lvint, dummy; if (udf_node->i_flags & IN_NO_DELETE) return; /* paranoia check on integrity; should be open!; we could panic */ lvint = udf_rw32(udf_node->ump->logvol_integrity->integrity_type); if (lvint == UDF_INTEGRITY_CLOSED) printf("\tIntegrity was CLOSED!\n"); /* whatever the node type, change its size to zero */ (void) udf_resize_node(udf_node, 0, &dummy); /* force it to be `clean'; no use writing it out */ udf_node->i_flags &= ~(IN_MODIFIED | IN_ACCESSED | IN_ACCESS | IN_CHANGE | IN_UPDATE | IN_MODIFY); /* adjust file count */ udf_adjust_filecount(udf_node, -1); /* * Free its allocated descriptors; memory will be released when * vop_reclaim() is called. */ loc = &udf_node->loc; dscr = udf_node->fe; udf_free_descriptor_space(udf_node, loc, dscr); dscr = udf_node->efe; udf_free_descriptor_space(udf_node, loc, dscr); for (extnr = 0; extnr < UDF_MAX_ALLOC_EXTENTS; extnr++) { dscr = udf_node->ext[extnr]; loc = &udf_node->ext_loc[extnr]; udf_free_descriptor_space(udf_node, loc, dscr); } } /* --------------------------------------------------------------------- */ /* set new filesize; node but be LOCKED on entry and is locked on exit */ int udf_resize_node(struct udf_node *udf_node, uint64_t new_size, int *extended) { struct file_entry *fe = udf_node->fe; struct extfile_entry *efe = udf_node->efe; uint64_t file_size; int error; if (fe) { file_size = udf_rw64(fe->inf_len); } else { assert(udf_node->efe); file_size = udf_rw64(efe->inf_len); } DPRINTF(ATTR, ("\tchanging file length from %"PRIu64" to %"PRIu64"\n", file_size, new_size)); /* if not changing, we're done */ if (file_size == new_size) return 0; *extended = (new_size > file_size); if (*extended) { error = udf_grow_node(udf_node, new_size); } else { error = udf_shrink_node(udf_node, new_size); } return error; } /* --------------------------------------------------------------------- */ void udf_itimes(struct udf_node *udf_node, struct timespec *acc, struct timespec *mod, struct timespec *birth) { struct timespec now; struct file_entry *fe; struct extfile_entry *efe; struct filetimes_extattr_entry *ft_extattr; struct timestamp *atime, *mtime, *attrtime, *ctime; struct timestamp fe_ctime; struct timespec cur_birth; uint32_t offset, a_l; uint8_t *filedata; int error; /* protect against rogue values */ if (!udf_node) return; fe = udf_node->fe; efe = udf_node->efe; if (!(udf_node->i_flags & (IN_ACCESS|IN_CHANGE|IN_UPDATE|IN_MODIFY))) return; /* get descriptor information */ if (fe) { atime = &fe->atime; mtime = &fe->mtime; attrtime = &fe->attrtime; filedata = fe->data; /* initial save dummy setting */ ctime = &fe_ctime; /* check our extended attribute if present */ error = udf_extattr_search_intern(udf_node, UDF_FILETIMES_ATTR_NO, "", &offset, &a_l); if (!error) { ft_extattr = (struct filetimes_extattr_entry *) (filedata + offset); if (ft_extattr->existence & UDF_FILETIMES_FILE_CREATION) ctime = &ft_extattr->times[0]; } /* TODO create the extended attribute if not found ? */ } else { assert(udf_node->efe); atime = &efe->atime; mtime = &efe->mtime; attrtime = &efe->attrtime; ctime = &efe->ctime; } vfs_timestamp(&now); /* set access time */ if (udf_node->i_flags & IN_ACCESS) { if (acc == NULL) acc = &now; udf_timespec_to_timestamp(acc, atime); } /* set modification time */ if (udf_node->i_flags & (IN_UPDATE | IN_MODIFY)) { if (mod == NULL) mod = &now; udf_timespec_to_timestamp(mod, mtime); /* ensure birthtime is older than set modification! */ udf_timestamp_to_timespec(udf_node->ump, ctime, &cur_birth); if ((cur_birth.tv_sec > mod->tv_sec) || ((cur_birth.tv_sec == mod->tv_sec) && (cur_birth.tv_nsec > mod->tv_nsec))) { udf_timespec_to_timestamp(mod, ctime); } } /* update birthtime if specified */ /* XXX we assume here that given birthtime is older than mod */ if (birth && (birth->tv_sec != VNOVAL)) { udf_timespec_to_timestamp(birth, ctime); } /* set change time */ if (udf_node->i_flags & (IN_CHANGE | IN_MODIFY)) udf_timespec_to_timestamp(&now, attrtime); /* notify updates to the node itself */ if (udf_node->i_flags & (IN_ACCESS | IN_MODIFY)) udf_node->i_flags |= IN_ACCESSED; if (udf_node->i_flags & (IN_UPDATE | IN_CHANGE)) udf_node->i_flags |= IN_MODIFIED; /* clear modification flags */ udf_node->i_flags &= ~(IN_ACCESS | IN_CHANGE | IN_UPDATE | IN_MODIFY); } /* --------------------------------------------------------------------- */ int udf_update(struct vnode *vp, struct timespec *acc, struct timespec *mod, struct timespec *birth, int updflags) { union dscrptr *dscrptr; struct udf_node *udf_node = VTOI(vp); struct udf_mount *ump = udf_node->ump; struct regid *impl_id; int mnt_async = (vp->v_mount->mnt_flag & MNT_ASYNC); int waitfor, flags; #ifdef DEBUG char bits[128]; DPRINTF(CALL, ("udf_update(node, %p, %p, %p, %d)\n", acc, mod, birth, updflags)); snprintb(bits, sizeof(bits), IN_FLAGBITS, udf_node->i_flags); DPRINTF(CALL, ("\tnode flags %s\n", bits)); DPRINTF(CALL, ("\t\tmnt_async = %d\n", mnt_async)); #endif /* set our times */ udf_itimes(udf_node, acc, mod, birth); /* set our implementation id */ if (udf_node->fe) { dscrptr = (union dscrptr *) udf_node->fe; impl_id = &udf_node->fe->imp_id; } else { dscrptr = (union dscrptr *) udf_node->efe; impl_id = &udf_node->efe->imp_id; } /* set our ID */ udf_set_regid(impl_id, IMPL_NAME); udf_add_impl_regid(ump, impl_id); /* update our crc! on RMW we are not allowed to change a thing */ udf_validate_tag_and_crc_sums(dscrptr); /* if called when mounted readonly, never write back */ if (vp->v_mount->mnt_flag & MNT_RDONLY) return 0; /* check if the node is dirty 'enough'*/ if (updflags & UPDATE_CLOSE) { flags = udf_node->i_flags & (IN_MODIFIED | IN_ACCESSED); } else { flags = udf_node->i_flags & IN_MODIFIED; } if (flags == 0) return 0; /* determine if we need to write sync or async */ waitfor = 0; if ((flags & IN_MODIFIED) && (mnt_async == 0)) { /* sync mounted */ waitfor = updflags & UPDATE_WAIT; if (updflags & UPDATE_DIROP) waitfor |= UPDATE_WAIT; } if (waitfor) return VOP_FSYNC(vp, FSCRED, FSYNC_WAIT, 0,0); return 0; } /* --------------------------------------------------------------------- */ /* * Read one fid and process it into a dirent and advance to the next (*fid) * has to be allocated a logical block in size, (*dirent) struct dirent length */ int udf_read_fid_stream(struct vnode *vp, uint64_t *offset, struct fileid_desc *fid, struct dirent *dirent) { struct udf_node *dir_node = VTOI(vp); struct udf_mount *ump = dir_node->ump; struct file_entry *fe = dir_node->fe; struct extfile_entry *efe = dir_node->efe; uint32_t fid_size, lb_size; uint64_t file_size; char *fid_name; int enough, error; assert(fid); assert(dirent); assert(dir_node); assert(offset); assert(*offset != 1); DPRINTF(FIDS, ("read_fid_stream called at offset %"PRIu64"\n", *offset)); /* check if we're past the end of the directory */ if (fe) { file_size = udf_rw64(fe->inf_len); } else { assert(dir_node->efe); file_size = udf_rw64(efe->inf_len); } if (*offset >= file_size) return EINVAL; /* get maximum length of FID descriptor */ lb_size = udf_rw32(ump->logical_vol->lb_size); /* initialise return values */ fid_size = 0; memset(dirent, 0, sizeof(struct dirent)); memset(fid, 0, lb_size); enough = (file_size - (*offset) >= UDF_FID_SIZE); if (!enough) { /* short dir ... */ return EIO; } error = vn_rdwr(UIO_READ, vp, fid, MIN(file_size - (*offset), lb_size), *offset, UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED, FSCRED, NULL, NULL); if (error) return error; DPRINTF(FIDS, ("\tfid piece read in fine\n")); /* * Check if we got a whole descriptor. * TODO Try to `resync' directory stream when something is very wrong. */ /* check if our FID header is OK */ error = udf_check_tag(fid); if (error) { goto brokendir; } DPRINTF(FIDS, ("\ttag check ok\n")); if (udf_rw16(fid->tag.id) != TAGID_FID) { error = EIO; goto brokendir; } DPRINTF(FIDS, ("\ttag checked ok: got TAGID_FID\n")); /* check for length */ fid_size = udf_fidsize(fid); enough = (file_size - (*offset) >= fid_size); if (!enough) { error = EIO; goto brokendir; } DPRINTF(FIDS, ("\tthe complete fid is read in\n")); /* check FID contents */ error = udf_check_tag_payload((union dscrptr *) fid, lb_size); brokendir: if (error) { /* note that is sometimes a bit quick to report */ printf("UDF: BROKEN DIRECTORY ENTRY\n"); /* RESYNC? */ /* TODO: use udf_resync_fid_stream */ return EIO; } DPRINTF(FIDS, ("\tpayload checked ok\n")); /* we got a whole and valid descriptor! */ DPRINTF(FIDS, ("\tinterpret FID\n")); /* create resulting dirent structure */ fid_name = (char *) fid->data + udf_rw16(fid->l_iu); udf_to_unix_name(dirent->d_name, NAME_MAX, fid_name, fid->l_fi, &ump->logical_vol->desc_charset); /* '..' has no name, so provide one */ if (fid->file_char & UDF_FILE_CHAR_PAR) strcpy(dirent->d_name, ".."); dirent->d_fileno = udf_get_node_id(&fid->icb); /* inode hash XXX */ dirent->d_namlen = strlen(dirent->d_name); dirent->d_reclen = _DIRENT_SIZE(dirent); /* * Note that its not worth trying to go for the filetypes now... its * too expensive too */ dirent->d_type = DT_UNKNOWN; /* initial guess for filetype we can make */ if (fid->file_char & UDF_FILE_CHAR_DIR) dirent->d_type = DT_DIR; /* advance */ *offset += fid_size; return error; } /* --------------------------------------------------------------------- */ static void udf_sync_pass(struct udf_mount *ump, kauth_cred_t cred, int pass, int *ndirty) { struct udf_node *udf_node, *n_udf_node; struct vnode *vp; int vdirty, error; KASSERT(mutex_owned(&ump->sync_lock)); DPRINTF(SYNC, ("sync_pass %d\n", pass)); udf_node = RB_TREE_MIN(&ump->udf_node_tree); for (;udf_node; udf_node = n_udf_node) { DPRINTF(SYNC, (".")); vp = udf_node->vnode; n_udf_node = rb_tree_iterate(&ump->udf_node_tree, udf_node, RB_DIR_RIGHT); error = vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT); if (error) { KASSERT(error == EBUSY); *ndirty += 1; continue; } switch (pass) { case 1: VOP_FSYNC(vp, cred, 0 | FSYNC_DATAONLY,0,0); break; case 2: vdirty = vp->v_numoutput; if (vp->v_tag == VT_UDF) vdirty += udf_node->outstanding_bufs + udf_node->outstanding_nodedscr; if (vdirty == 0) VOP_FSYNC(vp, cred, 0,0,0); *ndirty += vdirty; break; case 3: vdirty = vp->v_numoutput; if (vp->v_tag == VT_UDF) vdirty += udf_node->outstanding_bufs + udf_node->outstanding_nodedscr; *ndirty += vdirty; break; } VOP_UNLOCK(vp); } DPRINTF(SYNC, ("END sync_pass %d\n", pass)); } static bool udf_sync_selector(void *cl, struct vnode *vp) { struct udf_node *udf_node; KASSERT(mutex_owned(vp->v_interlock)); udf_node = VTOI(vp); if (vp->v_vflag & VV_SYSTEM) return false; if (vp->v_type == VNON) return false; if (udf_node == NULL) return false; if ((udf_node->i_flags & (IN_ACCESSED | IN_UPDATE | IN_MODIFIED)) == 0) return false; if (LIST_EMPTY(&vp->v_dirtyblkhd) && (vp->v_iflag & VI_ONWORKLST) == 0) return false; return true; } void udf_do_sync(struct udf_mount *ump, kauth_cred_t cred, int waitfor) { struct vnode_iterator *marker; struct vnode *vp; struct udf_node *udf_node, *udf_next_node; int dummy, ndirty; if (waitfor == MNT_LAZY) return; mutex_enter(&ump->sync_lock); /* Fill the rbtree with nodes to sync. */ vfs_vnode_iterator_init(ump->vfs_mountp, &marker); while ((vp = vfs_vnode_iterator_next(marker, udf_sync_selector, NULL)) != NULL) { udf_node = VTOI(vp); udf_node->i_flags |= IN_SYNCED; rb_tree_insert_node(&ump->udf_node_tree, udf_node); } vfs_vnode_iterator_destroy(marker); dummy = 0; DPRINTF(CALL, ("issue VOP_FSYNC(DATA only) on all nodes\n")); DPRINTF(SYNC, ("issue VOP_FSYNC(DATA only) on all nodes\n")); udf_sync_pass(ump, cred, 1, &dummy); DPRINTF(CALL, ("issue VOP_FSYNC(COMPLETE) on all finished nodes\n")); DPRINTF(SYNC, ("issue VOP_FSYNC(COMPLETE) on all finished nodes\n")); udf_sync_pass(ump, cred, 2, &dummy); if (waitfor == MNT_WAIT) { recount: ndirty = ump->devvp->v_numoutput; DPRINTF(SYNC, ("counting pending blocks: on devvp %d\n", ndirty)); udf_sync_pass(ump, cred, 3, &ndirty); DPRINTF(SYNC, ("counted num dirty pending blocks %d\n", ndirty)); if (ndirty) { /* 1/4 second wait */ kpause("udfsync2", false, hz/4, NULL); goto recount; } } /* Clean the rbtree. */ for (udf_node = RB_TREE_MIN(&ump->udf_node_tree); udf_node; udf_node = udf_next_node) { udf_next_node = rb_tree_iterate(&ump->udf_node_tree, udf_node, RB_DIR_RIGHT); rb_tree_remove_node(&ump->udf_node_tree, udf_node); udf_node->i_flags &= ~IN_SYNCED; vrele(udf_node->vnode); } mutex_exit(&ump->sync_lock); } /* --------------------------------------------------------------------- */ /* * Read and write file extent in/from the buffer. * * The splitup of the extent into separate request-buffers is to minimise * copying around as much as possible. * * block based file reading and writing */ static int udf_read_internal(struct udf_node *node, uint8_t *blob) { struct udf_mount *ump; struct file_entry *fe = node->fe; struct extfile_entry *efe = node->efe; uint64_t inflen; uint32_t sector_size; uint8_t *srcpos; int icbflags, addr_type; /* get extent and do some paranoia checks */ ump = node->ump; sector_size = ump->discinfo.sector_size; /* * XXX there should be real bounds-checking logic here, * in case ->l_ea or ->inf_len contains nonsense. */ if (fe) { inflen = udf_rw64(fe->inf_len); srcpos = &fe->data[0] + udf_rw32(fe->l_ea); icbflags = udf_rw16(fe->icbtag.flags); } else { assert(node->efe); inflen = udf_rw64(efe->inf_len); srcpos = &efe->data[0] + udf_rw32(efe->l_ea); icbflags = udf_rw16(efe->icbtag.flags); } addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK; assert(addr_type == UDF_ICB_INTERN_ALLOC); __USE(addr_type); assert(inflen < sector_size); /* copy out info */ memcpy(blob, srcpos, inflen); memset(&blob[inflen], 0, sector_size - inflen); return 0; } static int udf_write_internal(struct udf_node *node, uint8_t *blob) { struct udf_mount *ump; struct file_entry *fe = node->fe; struct extfile_entry *efe = node->efe; uint64_t inflen; uint32_t sector_size; uint8_t *pos; int icbflags, addr_type; /* get extent and do some paranoia checks */ ump = node->ump; sector_size = ump->discinfo.sector_size; if (fe) { inflen = udf_rw64(fe->inf_len); pos = &fe->data[0] + udf_rw32(fe->l_ea); icbflags = udf_rw16(fe->icbtag.flags); } else { assert(node->efe); inflen = udf_rw64(efe->inf_len); pos = &efe->data[0] + udf_rw32(efe->l_ea); icbflags = udf_rw16(efe->icbtag.flags); } addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK; assert(addr_type == UDF_ICB_INTERN_ALLOC); __USE(addr_type); assert(inflen < sector_size); __USE(sector_size); /* copy in blob */ /* memset(pos, 0, inflen); */ memcpy(pos, blob, inflen); return 0; } void udf_read_filebuf(struct udf_node *udf_node, struct buf *buf) { struct buf *nestbuf; struct udf_mount *ump = udf_node->ump; uint64_t *mapping; uint64_t run_start; uint32_t sector_size; uint32_t buf_offset, sector, rbuflen, rblk; uint32_t from, lblkno; uint32_t sectors; uint8_t *buf_pos; int error, run_length, what; sector_size = udf_node->ump->discinfo.sector_size; from = buf->b_blkno; sectors = buf->b_bcount / sector_size; what = udf_get_c_type(udf_node); /* assure we have enough translation slots */ KASSERT(buf->b_bcount / sector_size <= UDF_MAX_MAPPINGS); KASSERT(MAXPHYS / sector_size <= UDF_MAX_MAPPINGS); if (sectors > UDF_MAX_MAPPINGS) { printf("udf_read_filebuf: implementation limit on bufsize\n"); buf->b_error = EIO; biodone(buf); return; } mapping = malloc(sizeof(*mapping) * UDF_MAX_MAPPINGS, M_TEMP, M_WAITOK); error = 0; DPRINTF(READ, ("\ttranslate %d-%d\n", from, sectors)); error = udf_translate_file_extent(udf_node, from, sectors, mapping); if (error) { buf->b_error = error; biodone(buf); goto out; } DPRINTF(READ, ("\ttranslate extent went OK\n")); /* pre-check if its an internal */ if (*mapping == UDF_TRANS_INTERN) { error = udf_read_internal(udf_node, (uint8_t *) buf->b_data); if (error) buf->b_error = error; biodone(buf); goto out; } DPRINTF(READ, ("\tnot intern\n")); #ifdef DEBUG if (udf_verbose & UDF_DEBUG_TRANSLATE) { printf("Returned translation table:\n"); for (sector = 0; sector < sectors; sector++) { printf("%d : %"PRIu64"\n", sector, mapping[sector]); } } #endif /* request read-in of data from disc scheduler */ buf->b_resid = buf->b_bcount; for (sector = 0; sector < sectors; sector++) { buf_offset = sector * sector_size; buf_pos = (uint8_t *) buf->b_data + buf_offset; DPRINTF(READ, ("\tprocessing rel sector %d\n", sector)); /* check if its zero or unmapped to stop reading */ switch (mapping[sector]) { case UDF_TRANS_UNMAPPED: case UDF_TRANS_ZERO: /* copy zero sector TODO runlength like below */ memset(buf_pos, 0, sector_size); DPRINTF(READ, ("\treturning zero sector\n")); nestiobuf_done(buf, sector_size, 0); break; default : DPRINTF(READ, ("\tread sector " "%"PRIu64"\n", mapping[sector])); lblkno = from + sector; run_start = mapping[sector]; run_length = 1; while (sector < sectors-1) { if (mapping[sector+1] != mapping[sector]+1) break; run_length++; sector++; } /* * nest an iobuf and mark it for async reading. Since * we're using nested buffers, they can't be cached by * design. */ rbuflen = run_length * sector_size; rblk = run_start * (sector_size/DEV_BSIZE); nestbuf = getiobuf(NULL, true); nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen); /* nestbuf is B_ASYNC */ /* identify this nestbuf */ nestbuf->b_lblkno = lblkno; assert(nestbuf->b_vp == udf_node->vnode); /* CD schedules on raw blkno */ nestbuf->b_blkno = rblk; nestbuf->b_proc = NULL; nestbuf->b_rawblkno = rblk; nestbuf->b_udf_c_type = what; udf_discstrat_queuebuf(ump, nestbuf); } } out: /* if we're synchronously reading, wait for the completion */ if ((buf->b_flags & B_ASYNC) == 0) biowait(buf); DPRINTF(READ, ("\tend of read_filebuf\n")); free(mapping, M_TEMP); return; } void udf_write_filebuf(struct udf_node *udf_node, struct buf *buf) { struct buf *nestbuf; struct udf_mount *ump = udf_node->ump; uint64_t *mapping; uint64_t run_start; uint32_t lb_size; uint32_t buf_offset, lb_num, rbuflen, rblk; uint32_t from, lblkno; uint32_t num_lb; int error, run_length, what, s; lb_size = udf_rw32(udf_node->ump->logical_vol->lb_size); from = buf->b_blkno; num_lb = buf->b_bcount / lb_size; what = udf_get_c_type(udf_node); /* assure we have enough translation slots */ KASSERT(buf->b_bcount / lb_size <= UDF_MAX_MAPPINGS); KASSERT(MAXPHYS / lb_size <= UDF_MAX_MAPPINGS); if (num_lb > UDF_MAX_MAPPINGS) { printf("udf_write_filebuf: implementation limit on bufsize\n"); buf->b_error = EIO; biodone(buf); return; } mapping = malloc(sizeof(*mapping) * UDF_MAX_MAPPINGS, M_TEMP, M_WAITOK); error = 0; DPRINTF(WRITE, ("\ttranslate %d-%d\n", from, num_lb)); error = udf_translate_file_extent(udf_node, from, num_lb, mapping); if (error) { buf->b_error = error; biodone(buf); goto out; } DPRINTF(WRITE, ("\ttranslate extent went OK\n")); /* if its internally mapped, we can write it in the descriptor itself */ if (*mapping == UDF_TRANS_INTERN) { /* TODO paranoia check if we ARE going to have enough space */ error = udf_write_internal(udf_node, (uint8_t *) buf->b_data); if (error) buf->b_error = error; biodone(buf); goto out; } DPRINTF(WRITE, ("\tnot intern\n")); /* request write out of data to disc scheduler */ buf->b_resid = buf->b_bcount; for (lb_num = 0; lb_num < num_lb; lb_num++) { buf_offset = lb_num * lb_size; DPRINTF(WRITE, ("\tprocessing rel lb_num %d\n", lb_num)); /* * Mappings are not that important here. Just before we write * the lb_num we late-allocate them when needed and update the * mapping in the udf_node. */ /* XXX why not ignore the mapping altogether ? */ DPRINTF(WRITE, ("\twrite lb_num " "%"PRIu64, mapping[lb_num])); lblkno = from + lb_num; run_start = mapping[lb_num]; run_length = 1; while (lb_num < num_lb-1) { if (mapping[lb_num+1] != mapping[lb_num]+1) if (mapping[lb_num+1] != mapping[lb_num]) break; run_length++; lb_num++; } DPRINTF(WRITE, ("+ %d\n", run_length)); /* nest an iobuf on the master buffer for the extent */ rbuflen = run_length * lb_size; rblk = run_start * (lb_size/DEV_BSIZE); nestbuf = getiobuf(NULL, true); nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen); /* nestbuf is B_ASYNC */ /* identify this nestbuf */ nestbuf->b_lblkno = lblkno; KASSERT(nestbuf->b_vp == udf_node->vnode); /* CD schedules on raw blkno */ nestbuf->b_blkno = rblk; nestbuf->b_proc = NULL; nestbuf->b_rawblkno = rblk; nestbuf->b_udf_c_type = what; /* increment our outstanding bufs counter */ s = splbio(); udf_node->outstanding_bufs++; splx(s); udf_discstrat_queuebuf(ump, nestbuf); } out: /* if we're synchronously writing, wait for the completion */ if ((buf->b_flags & B_ASYNC) == 0) biowait(buf); DPRINTF(WRITE, ("\tend of write_filebuf\n")); free(mapping, M_TEMP); return; } /* --------------------------------------------------------------------- */