/* $NetBSD: kern_event.c,v 1.150 2023/09/21 09:31:50 msaitoh Exp $ */ /*- * Copyright (c) 2008, 2009, 2021 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Andrew Doran. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /*- * Copyright (c) 1999,2000,2001 Jonathan Lemon * Copyright (c) 2009 Apple, Inc * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * FreeBSD: src/sys/kern/kern_event.c,v 1.27 2001/07/05 17:10:44 rwatson Exp */ #ifdef _KERNEL_OPT #include "opt_ddb.h" #endif /* _KERNEL_OPT */ #include __KERNEL_RCSID(0, "$NetBSD: kern_event.c,v 1.150 2023/09/21 09:31:50 msaitoh Exp $"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static int kqueue_scan(file_t *, size_t, struct kevent *, const struct timespec *, register_t *, const struct kevent_ops *, struct kevent *, size_t); static int kqueue_ioctl(file_t *, u_long, void *); static int kqueue_fcntl(file_t *, u_int, void *); static int kqueue_poll(file_t *, int); static int kqueue_kqfilter(file_t *, struct knote *); static int kqueue_stat(file_t *, struct stat *); static int kqueue_close(file_t *); static void kqueue_restart(file_t *); static int kqueue_fpathconf(file_t *, int, register_t *); static int kqueue_register(struct kqueue *, struct kevent *); static void kqueue_doclose(struct kqueue *, struct klist *, int); static void knote_detach(struct knote *, filedesc_t *fdp, bool); static void knote_enqueue(struct knote *); static void knote_activate(struct knote *); static void knote_activate_locked(struct knote *); static void knote_deactivate_locked(struct knote *); static void filt_kqdetach(struct knote *); static int filt_kqueue(struct knote *, long hint); static int filt_procattach(struct knote *); static void filt_procdetach(struct knote *); static int filt_proc(struct knote *, long hint); static int filt_fileattach(struct knote *); static void filt_timerexpire(void *x); static int filt_timerattach(struct knote *); static void filt_timerdetach(struct knote *); static int filt_timer(struct knote *, long hint); static int filt_timertouch(struct knote *, struct kevent *, long type); static int filt_userattach(struct knote *); static void filt_userdetach(struct knote *); static int filt_user(struct knote *, long hint); static int filt_usertouch(struct knote *, struct kevent *, long type); /* * Private knote state that should never be exposed outside * of kern_event.c * * Field locking: * * q kn_kq->kq_lock */ struct knote_impl { struct knote ki_knote; unsigned int ki_influx; /* q: in-flux counter */ kmutex_t ki_foplock; /* for kn_filterops */ }; #define KIMPL_TO_KNOTE(kip) (&(kip)->ki_knote) #define KNOTE_TO_KIMPL(knp) container_of((knp), struct knote_impl, ki_knote) static inline struct knote * knote_alloc(bool sleepok) { struct knote_impl *ki; ki = kmem_zalloc(sizeof(*ki), sleepok ? KM_SLEEP : KM_NOSLEEP); mutex_init(&ki->ki_foplock, MUTEX_DEFAULT, IPL_NONE); return KIMPL_TO_KNOTE(ki); } static inline void knote_free(struct knote *kn) { struct knote_impl *ki = KNOTE_TO_KIMPL(kn); mutex_destroy(&ki->ki_foplock); kmem_free(ki, sizeof(*ki)); } static inline void knote_foplock_enter(struct knote *kn) { mutex_enter(&KNOTE_TO_KIMPL(kn)->ki_foplock); } static inline void knote_foplock_exit(struct knote *kn) { mutex_exit(&KNOTE_TO_KIMPL(kn)->ki_foplock); } static inline bool __diagused knote_foplock_owned(struct knote *kn) { return mutex_owned(&KNOTE_TO_KIMPL(kn)->ki_foplock); } static const struct fileops kqueueops = { .fo_name = "kqueue", .fo_read = (void *)enxio, .fo_write = (void *)enxio, .fo_ioctl = kqueue_ioctl, .fo_fcntl = kqueue_fcntl, .fo_poll = kqueue_poll, .fo_stat = kqueue_stat, .fo_close = kqueue_close, .fo_kqfilter = kqueue_kqfilter, .fo_restart = kqueue_restart, .fo_fpathconf = kqueue_fpathconf, }; static void filt_nopdetach(struct knote *kn __unused) { } static int filt_nopevent(struct knote *kn __unused, long hint __unused) { return 0; } static const struct filterops nop_fd_filtops = { .f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE, .f_attach = NULL, .f_detach = filt_nopdetach, .f_event = filt_nopevent, }; static const struct filterops nop_filtops = { .f_flags = FILTEROP_MPSAFE, .f_attach = NULL, .f_detach = filt_nopdetach, .f_event = filt_nopevent, }; static const struct filterops kqread_filtops = { .f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE, .f_attach = NULL, .f_detach = filt_kqdetach, .f_event = filt_kqueue, }; static const struct filterops proc_filtops = { .f_flags = FILTEROP_MPSAFE, .f_attach = filt_procattach, .f_detach = filt_procdetach, .f_event = filt_proc, }; /* * file_filtops is not marked MPSAFE because it's going to call * fileops::fo_kqfilter(), which might not be. That function, * however, will override the knote's filterops, and thus will * inherit the MPSAFE-ness of the back-end at that time. */ static const struct filterops file_filtops = { .f_flags = FILTEROP_ISFD, .f_attach = filt_fileattach, .f_detach = NULL, .f_event = NULL, }; static const struct filterops timer_filtops = { .f_flags = FILTEROP_MPSAFE, .f_attach = filt_timerattach, .f_detach = filt_timerdetach, .f_event = filt_timer, .f_touch = filt_timertouch, }; static const struct filterops user_filtops = { .f_flags = FILTEROP_MPSAFE, .f_attach = filt_userattach, .f_detach = filt_userdetach, .f_event = filt_user, .f_touch = filt_usertouch, }; static u_int kq_ncallouts = 0; static int kq_calloutmax = (4 * 1024); #define KN_HASHSIZE 64 /* XXX should be tunable */ #define KN_HASH(val, mask) (((val) ^ (val >> 8)) & (mask)) extern const struct filterops fs_filtops; /* vfs_syscalls.c */ extern const struct filterops sig_filtops; /* kern_sig.c */ /* * Table for all system-defined filters. * These should be listed in the numeric order of the EVFILT_* defines. * If filtops is NULL, the filter isn't implemented in NetBSD. * End of list is when name is NULL. * * Note that 'refcnt' is meaningless for built-in filters. */ struct kfilter { const char *name; /* name of filter */ uint32_t filter; /* id of filter */ unsigned refcnt; /* reference count */ const struct filterops *filtops;/* operations for filter */ size_t namelen; /* length of name string */ }; /* System defined filters */ static struct kfilter sys_kfilters[] = { { "EVFILT_READ", EVFILT_READ, 0, &file_filtops, 0 }, { "EVFILT_WRITE", EVFILT_WRITE, 0, &file_filtops, 0, }, { "EVFILT_AIO", EVFILT_AIO, 0, NULL, 0 }, { "EVFILT_VNODE", EVFILT_VNODE, 0, &file_filtops, 0 }, { "EVFILT_PROC", EVFILT_PROC, 0, &proc_filtops, 0 }, { "EVFILT_SIGNAL", EVFILT_SIGNAL, 0, &sig_filtops, 0 }, { "EVFILT_TIMER", EVFILT_TIMER, 0, &timer_filtops, 0 }, { "EVFILT_FS", EVFILT_FS, 0, &fs_filtops, 0 }, { "EVFILT_USER", EVFILT_USER, 0, &user_filtops, 0 }, { "EVFILT_EMPTY", EVFILT_EMPTY, 0, &file_filtops, 0 }, { NULL, 0, 0, NULL, 0 }, }; /* User defined kfilters */ static struct kfilter *user_kfilters; /* array */ static int user_kfilterc; /* current offset */ static int user_kfiltermaxc; /* max size so far */ static size_t user_kfiltersz; /* size of allocated memory */ /* * Global Locks. * * Lock order: * * kqueue_filter_lock * -> kn_kq->kq_fdp->fd_lock * -> knote foplock (if taken) * -> object lock (e.g., device driver lock, &c.) * -> kn_kq->kq_lock * * Locking rules. ==> indicates the lock is acquired by the backing * object, locks prior are acquired before calling filter ops: * * f_attach: fdp->fd_lock -> knote foplock -> * (maybe) KERNEL_LOCK ==> backing object lock * * f_detach: fdp->fd_lock -> knote foplock -> * (maybe) KERNEL_LOCK ==> backing object lock * * f_event via kevent: fdp->fd_lock -> knote foplock -> * (maybe) KERNEL_LOCK ==> backing object lock * N.B. NOTE_SUBMIT will never be set in the "hint" argument * in this case. * * f_event via knote (via backing object: Whatever caller guarantees. * Typically: * f_event(NOTE_SUBMIT): caller has already acquired backing * object lock. * f_event(!NOTE_SUBMIT): caller has not acquired backing object, * lock or has possibly acquired KERNEL_LOCK. Backing object * lock may or may not be acquired as-needed. * N.B. the knote foplock will **not** be acquired in this case. The * caller guarantees that klist_fini() will not be called concurrently * with knote(). * * f_touch: fdp->fd_lock -> kn_kq->kq_lock (spin lock) * N.B. knote foplock is **not** acquired in this case and * the caller must guarantee that klist_fini() will never * be called. kevent_register() restricts filters that * provide f_touch to known-safe cases. * * klist_fini(): Caller must guarantee that no more knotes can * be attached to the klist, and must **not** hold the backing * object's lock; klist_fini() itself will acquire the foplock * of each knote on the klist. * * Locking rules when detaching knotes: * * There are some situations where knote submission may require dropping * locks (see knote_proc_fork()). In order to support this, it's possible * to mark a knote as being 'in-flux'. Such a knote is guaranteed not to * be detached while it remains in-flux. Because it will not be detached, * locks can be dropped so e.g. memory can be allocated, locks on other * data structures can be acquired, etc. During this time, any attempt to * detach an in-flux knote must wait until the knote is no longer in-flux. * When this happens, the knote is marked for death (KN_WILLDETACH) and the * LWP who gets to finish the detach operation is recorded in the knote's * 'udata' field (which is no longer required for its original purpose once * a knote is so marked). Code paths that lead to knote_detach() must ensure * that their LWP is the one tasked with its final demise after waiting for * the in-flux status of the knote to clear. Note that once a knote is * marked KN_WILLDETACH, no code paths may put it into an in-flux state. * * Once the special circumstances have been handled, the locks are re- * acquired in the proper order (object lock -> kq_lock), the knote taken * out of flux, and any waiters are notified. Because waiters must have * also dropped *their* locks in order to safely block, they must re- * validate all of their assumptions; see knote_detach_quiesce(). See also * the kqueue_register() (EV_ADD, EV_DELETE) and kqueue_scan() (EV_ONESHOT) * cases. * * When kqueue_scan() encounters an in-flux knote, the situation is * treated like another LWP's list marker. * * LISTEN WELL: It is important to not hold knotes in flux for an * extended period of time! In-flux knotes effectively block any * progress of the kqueue_scan() operation. Any code paths that place * knotes in-flux should be careful to not block for indefinite periods * of time, such as for memory allocation (i.e. KM_NOSLEEP is OK, but * KM_SLEEP is not). */ static krwlock_t kqueue_filter_lock; /* lock on filter lists */ #define KQ_FLUX_WAIT(kq) (void)cv_wait(&kq->kq_cv, &kq->kq_lock) #define KQ_FLUX_WAKEUP(kq) cv_broadcast(&kq->kq_cv) static inline bool kn_in_flux(struct knote *kn) { KASSERT(mutex_owned(&kn->kn_kq->kq_lock)); return KNOTE_TO_KIMPL(kn)->ki_influx != 0; } static inline bool kn_enter_flux(struct knote *kn) { KASSERT(mutex_owned(&kn->kn_kq->kq_lock)); if (kn->kn_status & KN_WILLDETACH) { return false; } struct knote_impl *ki = KNOTE_TO_KIMPL(kn); KASSERT(ki->ki_influx < UINT_MAX); ki->ki_influx++; return true; } static inline bool kn_leave_flux(struct knote *kn) { KASSERT(mutex_owned(&kn->kn_kq->kq_lock)); struct knote_impl *ki = KNOTE_TO_KIMPL(kn); KASSERT(ki->ki_influx > 0); ki->ki_influx--; return ki->ki_influx == 0; } static void kn_wait_flux(struct knote *kn, bool can_loop) { struct knote_impl *ki = KNOTE_TO_KIMPL(kn); bool loop; KASSERT(mutex_owned(&kn->kn_kq->kq_lock)); /* * It may not be safe for us to touch the knote again after * dropping the kq_lock. The caller has let us know in * 'can_loop'. */ for (loop = true; loop && ki->ki_influx != 0; loop = can_loop) { KQ_FLUX_WAIT(kn->kn_kq); } } #define KNOTE_WILLDETACH(kn) \ do { \ (kn)->kn_status |= KN_WILLDETACH; \ (kn)->kn_kevent.udata = curlwp; \ } while (/*CONSTCOND*/0) /* * Wait until the specified knote is in a quiescent state and * safe to detach. Returns true if we potentially blocked (and * thus dropped our locks). */ static bool knote_detach_quiesce(struct knote *kn) { struct kqueue *kq = kn->kn_kq; filedesc_t *fdp = kq->kq_fdp; KASSERT(mutex_owned(&fdp->fd_lock)); mutex_spin_enter(&kq->kq_lock); /* * There are two cases where we might see KN_WILLDETACH here: * * 1. Someone else has already started detaching the knote but * had to wait for it to settle first. * * 2. We had to wait for it to settle, and had to come back * around after re-acquiring the locks. * * When KN_WILLDETACH is set, we also set the LWP that claimed * the prize of finishing the detach in the 'udata' field of the * knote (which will never be used again for its usual purpose * once the note is in this state). If it doesn't point to us, * we must drop the locks and let them in to finish the job. * * Otherwise, once we have claimed the knote for ourselves, we * can finish waiting for it to settle. The is the only scenario * where touching a detaching knote is safe after dropping the * locks. */ if ((kn->kn_status & KN_WILLDETACH) != 0 && kn->kn_kevent.udata != curlwp) { /* * N.B. it is NOT safe for us to touch the knote again * after dropping the locks here. The caller must go * back around and re-validate everything. However, if * the knote is in-flux, we want to block to minimize * busy-looping. */ mutex_exit(&fdp->fd_lock); if (kn_in_flux(kn)) { kn_wait_flux(kn, false); mutex_spin_exit(&kq->kq_lock); return true; } mutex_spin_exit(&kq->kq_lock); preempt_point(); return true; } /* * If we get here, we know that we will be claiming the * detach responsibilies, or that we already have and * this is the second attempt after re-validation. */ KASSERT((kn->kn_status & KN_WILLDETACH) == 0 || kn->kn_kevent.udata == curlwp); /* * Similarly, if we get here, either we are just claiming it * and may have to wait for it to settle, or if this is the * second attempt after re-validation that no other code paths * have put it in-flux. */ KASSERT((kn->kn_status & KN_WILLDETACH) == 0 || kn_in_flux(kn) == false); KNOTE_WILLDETACH(kn); if (kn_in_flux(kn)) { mutex_exit(&fdp->fd_lock); kn_wait_flux(kn, true); /* * It is safe for us to touch the knote again after * dropping the locks, but the caller must still * re-validate everything because other aspects of * the environment may have changed while we blocked. */ KASSERT(kn_in_flux(kn) == false); mutex_spin_exit(&kq->kq_lock); return true; } mutex_spin_exit(&kq->kq_lock); return false; } /* * Calls into the filterops need to be resilient against things which * destroy a klist, e.g. device detach, freeing a vnode, etc., to avoid * chasing garbage pointers (to data, or even potentially code in a * module about to be unloaded). To that end, we acquire the * knote foplock before calling into the filter ops. When a driver * (or anything else) is tearing down its klist, klist_fini() enumerates * each knote, acquires its foplock, and replaces the filterops with a * nop stub, allowing knote detach (when descriptors are closed) to safely * proceed. */ static int filter_attach(struct knote *kn) { int rv; KASSERT(knote_foplock_owned(kn)); KASSERT(kn->kn_fop != NULL); KASSERT(kn->kn_fop->f_attach != NULL); /* * N.B. that kn->kn_fop may change as the result of calling * f_attach(). After f_attach() returns, kn->kn_fop may not * be modified by code outside of klist_fini(). */ if (kn->kn_fop->f_flags & FILTEROP_MPSAFE) { rv = kn->kn_fop->f_attach(kn); } else { KERNEL_LOCK(1, NULL); rv = kn->kn_fop->f_attach(kn); KERNEL_UNLOCK_ONE(NULL); } return rv; } static void filter_detach(struct knote *kn) { KASSERT(knote_foplock_owned(kn)); KASSERT(kn->kn_fop != NULL); KASSERT(kn->kn_fop->f_detach != NULL); if (kn->kn_fop->f_flags & FILTEROP_MPSAFE) { kn->kn_fop->f_detach(kn); } else { KERNEL_LOCK(1, NULL); kn->kn_fop->f_detach(kn); KERNEL_UNLOCK_ONE(NULL); } } static int filter_event(struct knote *kn, long hint, bool submitting) { int rv; /* See knote(). */ KASSERT(submitting || knote_foplock_owned(kn)); KASSERT(kn->kn_fop != NULL); KASSERT(kn->kn_fop->f_event != NULL); if (kn->kn_fop->f_flags & FILTEROP_MPSAFE) { rv = kn->kn_fop->f_event(kn, hint); } else { KERNEL_LOCK(1, NULL); rv = kn->kn_fop->f_event(kn, hint); KERNEL_UNLOCK_ONE(NULL); } return rv; } static int filter_touch(struct knote *kn, struct kevent *kev, long type) { /* * XXX We cannot assert that the knote foplock is held here * XXX beause we cannot safely acquire it in all cases * XXX where "touch" will be used in kqueue_scan(). We just * XXX have to assume that f_touch will always be safe to call, * XXX and kqueue_register() allows only the two known-safe * XXX users of that op. */ KASSERT(kn->kn_fop != NULL); KASSERT(kn->kn_fop->f_touch != NULL); return kn->kn_fop->f_touch(kn, kev, type); } static kauth_listener_t kqueue_listener; static int kqueue_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie, void *arg0, void *arg1, void *arg2, void *arg3) { struct proc *p; int result; result = KAUTH_RESULT_DEFER; p = arg0; if (action != KAUTH_PROCESS_KEVENT_FILTER) return result; if ((kauth_cred_getuid(p->p_cred) != kauth_cred_getuid(cred) || ISSET(p->p_flag, PK_SUGID))) return result; result = KAUTH_RESULT_ALLOW; return result; } /* * Initialize the kqueue subsystem. */ void kqueue_init(void) { rw_init(&kqueue_filter_lock); kqueue_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS, kqueue_listener_cb, NULL); } /* * Find kfilter entry by name, or NULL if not found. */ static struct kfilter * kfilter_byname_sys(const char *name) { int i; KASSERT(rw_lock_held(&kqueue_filter_lock)); for (i = 0; sys_kfilters[i].name != NULL; i++) { if (strcmp(name, sys_kfilters[i].name) == 0) return &sys_kfilters[i]; } return NULL; } static struct kfilter * kfilter_byname_user(const char *name) { int i; KASSERT(rw_lock_held(&kqueue_filter_lock)); /* user filter slots have a NULL name if previously deregistered */ for (i = 0; i < user_kfilterc ; i++) { if (user_kfilters[i].name != NULL && strcmp(name, user_kfilters[i].name) == 0) return &user_kfilters[i]; } return NULL; } static struct kfilter * kfilter_byname(const char *name) { struct kfilter *kfilter; KASSERT(rw_lock_held(&kqueue_filter_lock)); if ((kfilter = kfilter_byname_sys(name)) != NULL) return kfilter; return kfilter_byname_user(name); } /* * Find kfilter entry by filter id, or NULL if not found. * Assumes entries are indexed in filter id order, for speed. */ static struct kfilter * kfilter_byfilter(uint32_t filter) { struct kfilter *kfilter; KASSERT(rw_lock_held(&kqueue_filter_lock)); if (filter < EVFILT_SYSCOUNT) /* it's a system filter */ kfilter = &sys_kfilters[filter]; else if (user_kfilters != NULL && filter < EVFILT_SYSCOUNT + user_kfilterc) /* it's a user filter */ kfilter = &user_kfilters[filter - EVFILT_SYSCOUNT]; else return (NULL); /* out of range */ KASSERT(kfilter->filter == filter); /* sanity check! */ return (kfilter); } /* * Register a new kfilter. Stores the entry in user_kfilters. * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise. * If retfilter != NULL, the new filterid is returned in it. */ int kfilter_register(const char *name, const struct filterops *filtops, int *retfilter) { struct kfilter *kfilter; size_t len; int i; if (name == NULL || name[0] == '\0' || filtops == NULL) return (EINVAL); /* invalid args */ rw_enter(&kqueue_filter_lock, RW_WRITER); if (kfilter_byname(name) != NULL) { rw_exit(&kqueue_filter_lock); return (EEXIST); /* already exists */ } if (user_kfilterc > 0xffffffff - EVFILT_SYSCOUNT) { rw_exit(&kqueue_filter_lock); return (EINVAL); /* too many */ } for (i = 0; i < user_kfilterc; i++) { kfilter = &user_kfilters[i]; if (kfilter->name == NULL) { /* Previously deregistered slot. Reuse. */ goto reuse; } } /* check if need to grow user_kfilters */ if (user_kfilterc + 1 > user_kfiltermaxc) { /* Grow in KFILTER_EXTENT chunks. */ user_kfiltermaxc += KFILTER_EXTENT; len = user_kfiltermaxc * sizeof(*kfilter); kfilter = kmem_alloc(len, KM_SLEEP); memset((char *)kfilter + user_kfiltersz, 0, len - user_kfiltersz); if (user_kfilters != NULL) { memcpy(kfilter, user_kfilters, user_kfiltersz); kmem_free(user_kfilters, user_kfiltersz); } user_kfiltersz = len; user_kfilters = kfilter; } /* Adding new slot */ kfilter = &user_kfilters[user_kfilterc++]; reuse: kfilter->name = kmem_strdupsize(name, &kfilter->namelen, KM_SLEEP); kfilter->filter = (kfilter - user_kfilters) + EVFILT_SYSCOUNT; kfilter->filtops = kmem_alloc(sizeof(*filtops), KM_SLEEP); memcpy(__UNCONST(kfilter->filtops), filtops, sizeof(*filtops)); if (retfilter != NULL) *retfilter = kfilter->filter; rw_exit(&kqueue_filter_lock); return (0); } /* * Unregister a kfilter previously registered with kfilter_register. * This retains the filter id, but clears the name and frees filtops (filter * operations), so that the number isn't reused during a boot. * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise. */ int kfilter_unregister(const char *name) { struct kfilter *kfilter; if (name == NULL || name[0] == '\0') return (EINVAL); /* invalid name */ rw_enter(&kqueue_filter_lock, RW_WRITER); if (kfilter_byname_sys(name) != NULL) { rw_exit(&kqueue_filter_lock); return (EINVAL); /* can't detach system filters */ } kfilter = kfilter_byname_user(name); if (kfilter == NULL) { rw_exit(&kqueue_filter_lock); return (ENOENT); } if (kfilter->refcnt != 0) { rw_exit(&kqueue_filter_lock); return (EBUSY); } /* Cast away const (but we know it's safe. */ kmem_free(__UNCONST(kfilter->name), kfilter->namelen); kfilter->name = NULL; /* mark as `not implemented' */ if (kfilter->filtops != NULL) { /* Cast away const (but we know it's safe. */ kmem_free(__UNCONST(kfilter->filtops), sizeof(*kfilter->filtops)); kfilter->filtops = NULL; /* mark as `not implemented' */ } rw_exit(&kqueue_filter_lock); return (0); } /* * Filter attach method for EVFILT_READ and EVFILT_WRITE on normal file * descriptors. Calls fileops kqfilter method for given file descriptor. */ static int filt_fileattach(struct knote *kn) { file_t *fp; fp = kn->kn_obj; return (*fp->f_ops->fo_kqfilter)(fp, kn); } /* * Filter detach method for EVFILT_READ on kqueue descriptor. */ static void filt_kqdetach(struct knote *kn) { struct kqueue *kq; kq = ((file_t *)kn->kn_obj)->f_kqueue; mutex_spin_enter(&kq->kq_lock); selremove_knote(&kq->kq_sel, kn); mutex_spin_exit(&kq->kq_lock); } /* * Filter event method for EVFILT_READ on kqueue descriptor. */ /*ARGSUSED*/ static int filt_kqueue(struct knote *kn, long hint) { struct kqueue *kq; int rv; kq = ((file_t *)kn->kn_obj)->f_kqueue; if (hint != NOTE_SUBMIT) mutex_spin_enter(&kq->kq_lock); kn->kn_data = KQ_COUNT(kq); rv = (kn->kn_data > 0); if (hint != NOTE_SUBMIT) mutex_spin_exit(&kq->kq_lock); return rv; } /* * Filter attach method for EVFILT_PROC. */ static int filt_procattach(struct knote *kn) { struct proc *p; mutex_enter(&proc_lock); p = proc_find(kn->kn_id); if (p == NULL) { mutex_exit(&proc_lock); return ESRCH; } /* * Fail if it's not owned by you, or the last exec gave us * setuid/setgid privs (unless you're root). */ mutex_enter(p->p_lock); mutex_exit(&proc_lock); if (kauth_authorize_process(curlwp->l_cred, KAUTH_PROCESS_KEVENT_FILTER, p, NULL, NULL, NULL) != 0) { mutex_exit(p->p_lock); return EACCES; } kn->kn_obj = p; kn->kn_flags |= EV_CLEAR; /* automatically set */ /* * NOTE_CHILD is only ever generated internally; don't let it * leak in from user-space. See knote_proc_fork_track(). */ kn->kn_sfflags &= ~NOTE_CHILD; klist_insert(&p->p_klist, kn); mutex_exit(p->p_lock); return 0; } /* * Filter detach method for EVFILT_PROC. * * The knote may be attached to a different process, which may exit, * leaving nothing for the knote to be attached to. So when the process * exits, the knote is marked as DETACHED and also flagged as ONESHOT so * it will be deleted when read out. However, as part of the knote deletion, * this routine is called, so a check is needed to avoid actually performing * a detach, because the original process might not exist any more. */ static void filt_procdetach(struct knote *kn) { struct kqueue *kq = kn->kn_kq; struct proc *p; /* * We have to synchronize with knote_proc_exit(), but we * are forced to acquire the locks in the wrong order here * because we can't be sure kn->kn_obj is valid unless * KN_DETACHED is not set. */ again: mutex_spin_enter(&kq->kq_lock); if ((kn->kn_status & KN_DETACHED) == 0) { p = kn->kn_obj; if (!mutex_tryenter(p->p_lock)) { mutex_spin_exit(&kq->kq_lock); preempt_point(); goto again; } kn->kn_status |= KN_DETACHED; klist_remove(&p->p_klist, kn); mutex_exit(p->p_lock); } mutex_spin_exit(&kq->kq_lock); } /* * Filter event method for EVFILT_PROC. * * Due to some of the complexities of process locking, we have special * entry points for delivering knote submissions. filt_proc() is used * only to check for activation from kqueue_register() and kqueue_scan(). */ static int filt_proc(struct knote *kn, long hint) { struct kqueue *kq = kn->kn_kq; uint32_t fflags; /* * Because we share the same klist with signal knotes, just * ensure that we're not being invoked for the proc-related * submissions. */ KASSERT((hint & (NOTE_EXEC | NOTE_EXIT | NOTE_FORK)) == 0); mutex_spin_enter(&kq->kq_lock); fflags = kn->kn_fflags; mutex_spin_exit(&kq->kq_lock); return fflags != 0; } void knote_proc_exec(struct proc *p) { struct knote *kn, *tmpkn; struct kqueue *kq; uint32_t fflags; mutex_enter(p->p_lock); SLIST_FOREACH_SAFE(kn, &p->p_klist, kn_selnext, tmpkn) { /* N.B. EVFILT_SIGNAL knotes are on this same list. */ if (kn->kn_fop == &sig_filtops) { continue; } KASSERT(kn->kn_fop == &proc_filtops); kq = kn->kn_kq; mutex_spin_enter(&kq->kq_lock); fflags = (kn->kn_fflags |= (kn->kn_sfflags & NOTE_EXEC)); if (fflags) { knote_activate_locked(kn); } mutex_spin_exit(&kq->kq_lock); } mutex_exit(p->p_lock); } static int __noinline knote_proc_fork_track(struct proc *p1, struct proc *p2, struct knote *okn) { struct kqueue *kq = okn->kn_kq; KASSERT(mutex_owned(&kq->kq_lock)); KASSERT(mutex_owned(p1->p_lock)); /* * We're going to put this knote into flux while we drop * the locks and create and attach a new knote to track the * child. If we are not able to enter flux, then this knote * is about to go away, so skip the notification. */ if (!kn_enter_flux(okn)) { return 0; } mutex_spin_exit(&kq->kq_lock); mutex_exit(p1->p_lock); /* * We actually have to register *two* new knotes: * * ==> One for the NOTE_CHILD notification. This is a forced * ONESHOT note. * * ==> One to actually track the child process as it subsequently * forks, execs, and, ultimately, exits. * * If we only register a single knote, then it's possible for * for the NOTE_CHILD and NOTE_EXIT to be collapsed into a single * notification if the child exits before the tracking process * has received the NOTE_CHILD notification, which applications * aren't expecting (the event's 'data' field would be clobbered, * for example). * * To do this, what we have here is an **extremely** stripped-down * version of kqueue_register() that has the following properties: * * ==> Does not block to allocate memory. If we are unable * to allocate memory, we return ENOMEM. * * ==> Does not search for existing knotes; we know there * are not any because this is a new process that isn't * even visible to other processes yet. * * ==> Assumes that the knhash for our kq's descriptor table * already exists (after all, we're already tracking * processes with knotes if we got here). * * ==> Directly attaches the new tracking knote to the child * process. * * The whole point is to do the minimum amount of work while the * knote is held in-flux, and to avoid doing extra work in general * (we already have the new child process; why bother looking it * up again?). */ filedesc_t *fdp = kq->kq_fdp; struct knote *knchild, *kntrack; int error = 0; knchild = knote_alloc(false); kntrack = knote_alloc(false); if (__predict_false(knchild == NULL || kntrack == NULL)) { error = ENOMEM; goto out; } kntrack->kn_obj = p2; kntrack->kn_id = p2->p_pid; kntrack->kn_kq = kq; kntrack->kn_fop = okn->kn_fop; kntrack->kn_kfilter = okn->kn_kfilter; kntrack->kn_sfflags = okn->kn_sfflags; kntrack->kn_sdata = p1->p_pid; kntrack->kn_kevent.ident = p2->p_pid; kntrack->kn_kevent.filter = okn->kn_filter; kntrack->kn_kevent.flags = okn->kn_flags | EV_ADD | EV_ENABLE | EV_CLEAR; kntrack->kn_kevent.fflags = 0; kntrack->kn_kevent.data = 0; kntrack->kn_kevent.udata = okn->kn_kevent.udata; /* preserve udata */ /* * The child note does not need to be attached to the * new proc's klist at all. */ *knchild = *kntrack; knchild->kn_status = KN_DETACHED; knchild->kn_sfflags = 0; knchild->kn_kevent.flags |= EV_ONESHOT; knchild->kn_kevent.fflags = NOTE_CHILD; knchild->kn_kevent.data = p1->p_pid; /* parent */ mutex_enter(&fdp->fd_lock); /* * We need to check to see if the kq is closing, and skip * attaching the knote if so. Normally, this isn't necessary * when coming in the front door because the file descriptor * layer will synchronize this. * * It's safe to test KQ_CLOSING without taking the kq_lock * here because that flag is only ever set when the fd_lock * is also held. */ if (__predict_false(kq->kq_count & KQ_CLOSING)) { mutex_exit(&fdp->fd_lock); goto out; } /* * We do the "insert into FD table" and "attach to klist" steps * in the opposite order of kqueue_register() here to avoid * having to take p2->p_lock twice. But this is OK because we * hold fd_lock across the entire operation. */ mutex_enter(p2->p_lock); error = kauth_authorize_process(curlwp->l_cred, KAUTH_PROCESS_KEVENT_FILTER, p2, NULL, NULL, NULL); if (__predict_false(error != 0)) { mutex_exit(p2->p_lock); mutex_exit(&fdp->fd_lock); error = EACCES; goto out; } klist_insert(&p2->p_klist, kntrack); mutex_exit(p2->p_lock); KASSERT(fdp->fd_knhashmask != 0); KASSERT(fdp->fd_knhash != NULL); struct klist *list = &fdp->fd_knhash[KN_HASH(kntrack->kn_id, fdp->fd_knhashmask)]; SLIST_INSERT_HEAD(list, kntrack, kn_link); SLIST_INSERT_HEAD(list, knchild, kn_link); /* This adds references for knchild *and* kntrack. */ atomic_add_int(&kntrack->kn_kfilter->refcnt, 2); knote_activate(knchild); kntrack = NULL; knchild = NULL; mutex_exit(&fdp->fd_lock); out: if (__predict_false(knchild != NULL)) { knote_free(knchild); } if (__predict_false(kntrack != NULL)) { knote_free(kntrack); } mutex_enter(p1->p_lock); mutex_spin_enter(&kq->kq_lock); if (kn_leave_flux(okn)) { KQ_FLUX_WAKEUP(kq); } return error; } void knote_proc_fork(struct proc *p1, struct proc *p2) { struct knote *kn; struct kqueue *kq; uint32_t fflags; mutex_enter(p1->p_lock); /* * N.B. We DO NOT use SLIST_FOREACH_SAFE() here because we * don't want to pre-fetch the next knote; in the event we * have to drop p_lock, we will have put the knote in-flux, * meaning that no one will be able to detach it until we * have taken the knote out of flux. However, that does * NOT stop someone else from detaching the next note in the * list while we have it unlocked. Thus, we want to fetch * the next note in the list only after we have re-acquired * the lock, and using SLIST_FOREACH() will satisfy that. */ SLIST_FOREACH(kn, &p1->p_klist, kn_selnext) { /* N.B. EVFILT_SIGNAL knotes are on this same list. */ if (kn->kn_fop == &sig_filtops) { continue; } KASSERT(kn->kn_fop == &proc_filtops); kq = kn->kn_kq; mutex_spin_enter(&kq->kq_lock); kn->kn_fflags |= (kn->kn_sfflags & NOTE_FORK); if (__predict_false(kn->kn_sfflags & NOTE_TRACK)) { /* * This will drop kq_lock and p_lock and * re-acquire them before it returns. */ if (knote_proc_fork_track(p1, p2, kn)) { kn->kn_fflags |= NOTE_TRACKERR; } KASSERT(mutex_owned(p1->p_lock)); KASSERT(mutex_owned(&kq->kq_lock)); } fflags = kn->kn_fflags; if (fflags) { knote_activate_locked(kn); } mutex_spin_exit(&kq->kq_lock); } mutex_exit(p1->p_lock); } void knote_proc_exit(struct proc *p) { struct knote *kn; struct kqueue *kq; KASSERT(mutex_owned(p->p_lock)); while (!SLIST_EMPTY(&p->p_klist)) { kn = SLIST_FIRST(&p->p_klist); kq = kn->kn_kq; KASSERT(kn->kn_obj == p); mutex_spin_enter(&kq->kq_lock); kn->kn_data = P_WAITSTATUS(p); /* * Mark as ONESHOT, so that the knote is g/c'ed * when read. */ kn->kn_flags |= (EV_EOF | EV_ONESHOT); kn->kn_fflags |= kn->kn_sfflags & NOTE_EXIT; /* * Detach the knote from the process and mark it as such. * N.B. EVFILT_SIGNAL are also on p_klist, but by the * time we get here, all open file descriptors for this * process have been released, meaning that signal knotes * will have already been detached. * * We need to synchronize this with filt_procdetach(). */ KASSERT(kn->kn_fop == &proc_filtops); if ((kn->kn_status & KN_DETACHED) == 0) { kn->kn_status |= KN_DETACHED; SLIST_REMOVE_HEAD(&p->p_klist, kn_selnext); } /* * Always activate the knote for NOTE_EXIT regardless * of whether or not the listener cares about it. * This matches historical behavior. */ knote_activate_locked(kn); mutex_spin_exit(&kq->kq_lock); } } #define FILT_TIMER_NOSCHED ((uintptr_t)-1) static int filt_timercompute(struct kevent *kev, uintptr_t *tticksp) { struct timespec ts; uintptr_t tticks; if (kev->fflags & ~(NOTE_TIMER_UNITMASK | NOTE_ABSTIME)) { return EINVAL; } /* * Convert the event 'data' to a timespec, then convert the * timespec to callout ticks. */ switch (kev->fflags & NOTE_TIMER_UNITMASK) { case NOTE_SECONDS: ts.tv_sec = kev->data; ts.tv_nsec = 0; break; case NOTE_MSECONDS: /* == historical value 0 */ ts.tv_sec = kev->data / 1000; ts.tv_nsec = (kev->data % 1000) * 1000000; break; case NOTE_USECONDS: ts.tv_sec = kev->data / 1000000; ts.tv_nsec = (kev->data % 1000000) * 1000; break; case NOTE_NSECONDS: ts.tv_sec = kev->data / 1000000000; ts.tv_nsec = kev->data % 1000000000; break; default: return EINVAL; } if (kev->fflags & NOTE_ABSTIME) { struct timespec deadline = ts; /* * Get current time. * * XXX This is CLOCK_REALTIME. There is no way to * XXX specify CLOCK_MONOTONIC. */ nanotime(&ts); /* Absolute timers do not repeat. */ kev->data = FILT_TIMER_NOSCHED; /* If we're past the deadline, then the event will fire. */ if (timespeccmp(&deadline, &ts, <=)) { tticks = FILT_TIMER_NOSCHED; goto out; } /* Calculate how much time is left. */ timespecsub(&deadline, &ts, &ts); } else { /* EV_CLEAR automatically set for relative timers. */ kev->flags |= EV_CLEAR; } tticks = tstohz(&ts); /* if the supplied value is under our resolution, use 1 tick */ if (tticks == 0) { if (kev->data == 0) return EINVAL; tticks = 1; } else if (tticks > INT_MAX) { return EINVAL; } if ((kev->flags & EV_ONESHOT) != 0) { /* Timer does not repeat. */ kev->data = FILT_TIMER_NOSCHED; } else { KASSERT((uintptr_t)tticks != FILT_TIMER_NOSCHED); kev->data = tticks; } out: *tticksp = tticks; return 0; } static void filt_timerexpire(void *knx) { struct knote *kn = knx; struct kqueue *kq = kn->kn_kq; mutex_spin_enter(&kq->kq_lock); kn->kn_data++; knote_activate_locked(kn); if (kn->kn_sdata != FILT_TIMER_NOSCHED) { KASSERT(kn->kn_sdata > 0); KASSERT(kn->kn_sdata <= INT_MAX); callout_schedule((callout_t *)kn->kn_hook, (int)kn->kn_sdata); } mutex_spin_exit(&kq->kq_lock); } static inline void filt_timerstart(struct knote *kn, uintptr_t tticks) { callout_t *calloutp = kn->kn_hook; KASSERT(mutex_owned(&kn->kn_kq->kq_lock)); KASSERT(!callout_pending(calloutp)); if (__predict_false(tticks == FILT_TIMER_NOSCHED)) { kn->kn_data = 1; } else { KASSERT(tticks <= INT_MAX); callout_reset(calloutp, (int)tticks, filt_timerexpire, kn); } } static int filt_timerattach(struct knote *kn) { callout_t *calloutp; struct kqueue *kq; uintptr_t tticks; int error; struct kevent kev = { .flags = kn->kn_flags, .fflags = kn->kn_sfflags, .data = kn->kn_sdata, }; error = filt_timercompute(&kev, &tticks); if (error) { return error; } if (atomic_inc_uint_nv(&kq_ncallouts) >= kq_calloutmax || (calloutp = kmem_alloc(sizeof(*calloutp), KM_NOSLEEP)) == NULL) { atomic_dec_uint(&kq_ncallouts); return ENOMEM; } callout_init(calloutp, CALLOUT_MPSAFE); kq = kn->kn_kq; mutex_spin_enter(&kq->kq_lock); kn->kn_sdata = kev.data; kn->kn_flags = kev.flags; KASSERT(kn->kn_sfflags == kev.fflags); kn->kn_hook = calloutp; filt_timerstart(kn, tticks); mutex_spin_exit(&kq->kq_lock); return (0); } static void filt_timerdetach(struct knote *kn) { callout_t *calloutp; struct kqueue *kq = kn->kn_kq; /* prevent rescheduling when we expire */ mutex_spin_enter(&kq->kq_lock); kn->kn_sdata = FILT_TIMER_NOSCHED; mutex_spin_exit(&kq->kq_lock); calloutp = (callout_t *)kn->kn_hook; /* * Attempt to stop the callout. This will block if it's * already running. */ callout_halt(calloutp, NULL); callout_destroy(calloutp); kmem_free(calloutp, sizeof(*calloutp)); atomic_dec_uint(&kq_ncallouts); } static int filt_timertouch(struct knote *kn, struct kevent *kev, long type) { struct kqueue *kq = kn->kn_kq; callout_t *calloutp; uintptr_t tticks; int error; KASSERT(mutex_owned(&kq->kq_lock)); switch (type) { case EVENT_REGISTER: /* Only relevant for EV_ADD. */ if ((kev->flags & EV_ADD) == 0) { return 0; } /* * Stop the timer, under the assumption that if * an application is re-configuring the timer, * they no longer care about the old one. We * can safely drop the kq_lock while we wait * because fdp->fd_lock will be held throughout, * ensuring that no one can sneak in with an * EV_DELETE or close the kq. */ KASSERT(mutex_owned(&kq->kq_fdp->fd_lock)); calloutp = kn->kn_hook; callout_halt(calloutp, &kq->kq_lock); KASSERT(mutex_owned(&kq->kq_lock)); knote_deactivate_locked(kn); kn->kn_data = 0; error = filt_timercompute(kev, &tticks); if (error) { return error; } kn->kn_sdata = kev->data; kn->kn_flags = kev->flags; kn->kn_sfflags = kev->fflags; filt_timerstart(kn, tticks); break; case EVENT_PROCESS: *kev = kn->kn_kevent; break; default: panic("%s: invalid type (%ld)", __func__, type); } return 0; } static int filt_timer(struct knote *kn, long hint) { struct kqueue *kq = kn->kn_kq; int rv; mutex_spin_enter(&kq->kq_lock); rv = (kn->kn_data != 0); mutex_spin_exit(&kq->kq_lock); return rv; } static int filt_userattach(struct knote *kn) { struct kqueue *kq = kn->kn_kq; /* * EVFILT_USER knotes are not attached to anything in the kernel. */ mutex_spin_enter(&kq->kq_lock); kn->kn_hook = NULL; if (kn->kn_fflags & NOTE_TRIGGER) kn->kn_hookid = 1; else kn->kn_hookid = 0; mutex_spin_exit(&kq->kq_lock); return (0); } static void filt_userdetach(struct knote *kn) { /* * EVFILT_USER knotes are not attached to anything in the kernel. */ } static int filt_user(struct knote *kn, long hint) { struct kqueue *kq = kn->kn_kq; int hookid; mutex_spin_enter(&kq->kq_lock); hookid = kn->kn_hookid; mutex_spin_exit(&kq->kq_lock); return hookid; } static int filt_usertouch(struct knote *kn, struct kevent *kev, long type) { int ffctrl; KASSERT(mutex_owned(&kn->kn_kq->kq_lock)); switch (type) { case EVENT_REGISTER: if (kev->fflags & NOTE_TRIGGER) kn->kn_hookid = 1; ffctrl = kev->fflags & NOTE_FFCTRLMASK; kev->fflags &= NOTE_FFLAGSMASK; switch (ffctrl) { case NOTE_FFNOP: break; case NOTE_FFAND: kn->kn_sfflags &= kev->fflags; break; case NOTE_FFOR: kn->kn_sfflags |= kev->fflags; break; case NOTE_FFCOPY: kn->kn_sfflags = kev->fflags; break; default: /* XXX Return error? */ break; } kn->kn_sdata = kev->data; if (kev->flags & EV_CLEAR) { kn->kn_hookid = 0; kn->kn_data = 0; kn->kn_fflags = 0; } break; case EVENT_PROCESS: *kev = kn->kn_kevent; kev->fflags = kn->kn_sfflags; kev->data = kn->kn_sdata; if (kn->kn_flags & EV_CLEAR) { kn->kn_hookid = 0; kn->kn_data = 0; kn->kn_fflags = 0; } break; default: panic("filt_usertouch() - invalid type (%ld)", type); break; } return 0; } /* * filt_seltrue: * * This filter "event" routine simulates seltrue(). */ int filt_seltrue(struct knote *kn, long hint) { /* * We don't know how much data can be read/written, * but we know that it *can* be. This is about as * good as select/poll does as well. */ kn->kn_data = 0; return (1); } /* * This provides full kqfilter entry for device switch tables, which * has same effect as filter using filt_seltrue() as filter method. */ static void filt_seltruedetach(struct knote *kn) { /* Nothing to do */ } const struct filterops seltrue_filtops = { .f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE, .f_attach = NULL, .f_detach = filt_seltruedetach, .f_event = filt_seltrue, }; int seltrue_kqfilter(dev_t dev, struct knote *kn) { switch (kn->kn_filter) { case EVFILT_READ: case EVFILT_WRITE: kn->kn_fop = &seltrue_filtops; break; default: return (EINVAL); } /* Nothing more to do */ return (0); } /* * kqueue(2) system call. */ static int kqueue1(struct lwp *l, int flags, register_t *retval) { struct kqueue *kq; file_t *fp; int fd, error; if ((error = fd_allocfile(&fp, &fd)) != 0) return error; fp->f_flag = FREAD | FWRITE | (flags & (FNONBLOCK|FNOSIGPIPE)); fp->f_type = DTYPE_KQUEUE; fp->f_ops = &kqueueops; kq = kmem_zalloc(sizeof(*kq), KM_SLEEP); mutex_init(&kq->kq_lock, MUTEX_DEFAULT, IPL_SCHED); cv_init(&kq->kq_cv, "kqueue"); selinit(&kq->kq_sel); TAILQ_INIT(&kq->kq_head); fp->f_kqueue = kq; *retval = fd; kq->kq_fdp = curlwp->l_fd; fd_set_exclose(l, fd, (flags & O_CLOEXEC) != 0); fd_affix(curproc, fp, fd); return error; } /* * kqueue(2) system call. */ int sys_kqueue(struct lwp *l, const void *v, register_t *retval) { return kqueue1(l, 0, retval); } int sys_kqueue1(struct lwp *l, const struct sys_kqueue1_args *uap, register_t *retval) { /* { syscallarg(int) flags; } */ return kqueue1(l, SCARG(uap, flags), retval); } /* * kevent(2) system call. */ int kevent_fetch_changes(void *ctx, const struct kevent *changelist, struct kevent *changes, size_t index, int n) { return copyin(changelist + index, changes, n * sizeof(*changes)); } int kevent_put_events(void *ctx, struct kevent *events, struct kevent *eventlist, size_t index, int n) { return copyout(events, eventlist + index, n * sizeof(*events)); } static const struct kevent_ops kevent_native_ops = { .keo_private = NULL, .keo_fetch_timeout = copyin, .keo_fetch_changes = kevent_fetch_changes, .keo_put_events = kevent_put_events, }; int sys___kevent100(struct lwp *l, const struct sys___kevent100_args *uap, register_t *retval) { /* { syscallarg(int) fd; syscallarg(const struct kevent *) changelist; syscallarg(size_t) nchanges; syscallarg(struct kevent *) eventlist; syscallarg(size_t) nevents; syscallarg(const struct timespec *) timeout; } */ return kevent1(retval, SCARG(uap, fd), SCARG(uap, changelist), SCARG(uap, nchanges), SCARG(uap, eventlist), SCARG(uap, nevents), SCARG(uap, timeout), &kevent_native_ops); } int kevent1(register_t *retval, int fd, const struct kevent *changelist, size_t nchanges, struct kevent *eventlist, size_t nevents, const struct timespec *timeout, const struct kevent_ops *keops) { struct kevent *kevp; struct kqueue *kq; struct timespec ts; size_t i, n, ichange; int nerrors, error; struct kevent kevbuf[KQ_NEVENTS]; /* approx 300 bytes on 64-bit */ file_t *fp; /* check that we're dealing with a kq */ fp = fd_getfile(fd); if (fp == NULL) return (EBADF); if (fp->f_type != DTYPE_KQUEUE) { fd_putfile(fd); return (EBADF); } if (timeout != NULL) { error = (*keops->keo_fetch_timeout)(timeout, &ts, sizeof(ts)); if (error) goto done; timeout = &ts; } kq = fp->f_kqueue; nerrors = 0; ichange = 0; /* traverse list of events to register */ while (nchanges > 0) { n = MIN(nchanges, __arraycount(kevbuf)); error = (*keops->keo_fetch_changes)(keops->keo_private, changelist, kevbuf, ichange, n); if (error) goto done; for (i = 0; i < n; i++) { kevp = &kevbuf[i]; kevp->flags &= ~EV_SYSFLAGS; /* register each knote */ error = kqueue_register(kq, kevp); if (!error && !(kevp->flags & EV_RECEIPT)) continue; if (nevents == 0) goto done; kevp->flags = EV_ERROR; kevp->data = error; error = (*keops->keo_put_events) (keops->keo_private, kevp, eventlist, nerrors, 1); if (error) goto done; nevents--; nerrors++; } nchanges -= n; /* update the results */ ichange += n; } if (nerrors) { *retval = nerrors; error = 0; goto done; } /* actually scan through the events */ error = kqueue_scan(fp, nevents, eventlist, timeout, retval, keops, kevbuf, __arraycount(kevbuf)); done: fd_putfile(fd); return (error); } /* * Register a given kevent kev onto the kqueue */ static int kqueue_register(struct kqueue *kq, struct kevent *kev) { struct kfilter *kfilter; filedesc_t *fdp; file_t *fp; fdfile_t *ff; struct knote *kn, *newkn; struct klist *list; int error, fd, rv; fdp = kq->kq_fdp; fp = NULL; kn = NULL; error = 0; fd = 0; newkn = knote_alloc(true); rw_enter(&kqueue_filter_lock, RW_READER); kfilter = kfilter_byfilter(kev->filter); if (kfilter == NULL || kfilter->filtops == NULL) { /* filter not found nor implemented */ rw_exit(&kqueue_filter_lock); knote_free(newkn); return (EINVAL); } /* search if knote already exists */ if (kfilter->filtops->f_flags & FILTEROP_ISFD) { /* monitoring a file descriptor */ /* validate descriptor */ if (kev->ident > INT_MAX || (fp = fd_getfile(fd = kev->ident)) == NULL) { rw_exit(&kqueue_filter_lock); knote_free(newkn); return EBADF; } mutex_enter(&fdp->fd_lock); ff = fdp->fd_dt->dt_ff[fd]; if (ff->ff_refcnt & FR_CLOSING) { error = EBADF; goto doneunlock; } if (fd <= fdp->fd_lastkqfile) { SLIST_FOREACH(kn, &ff->ff_knlist, kn_link) { if (kq == kn->kn_kq && kev->filter == kn->kn_filter) break; } } } else { /* * not monitoring a file descriptor, so * lookup knotes in internal hash table */ mutex_enter(&fdp->fd_lock); if (fdp->fd_knhashmask != 0) { list = &fdp->fd_knhash[ KN_HASH((u_long)kev->ident, fdp->fd_knhashmask)]; SLIST_FOREACH(kn, list, kn_link) { if (kev->ident == kn->kn_id && kq == kn->kn_kq && kev->filter == kn->kn_filter) break; } } } /* It's safe to test KQ_CLOSING while holding only the fd_lock. */ KASSERT(mutex_owned(&fdp->fd_lock)); KASSERT((kq->kq_count & KQ_CLOSING) == 0); /* * kn now contains the matching knote, or NULL if no match */ if (kn == NULL) { if (kev->flags & EV_ADD) { /* create new knote */ kn = newkn; newkn = NULL; kn->kn_obj = fp; kn->kn_id = kev->ident; kn->kn_kq = kq; kn->kn_fop = kfilter->filtops; kn->kn_kfilter = kfilter; kn->kn_sfflags = kev->fflags; kn->kn_sdata = kev->data; kev->fflags = 0; kev->data = 0; kn->kn_kevent = *kev; KASSERT(kn->kn_fop != NULL); /* * XXX Allow only known-safe users of f_touch. * XXX See filter_touch() for details. */ if (kn->kn_fop->f_touch != NULL && kn->kn_fop != &timer_filtops && kn->kn_fop != &user_filtops) { error = ENOTSUP; goto fail_ev_add; } /* * apply reference count to knote structure, and * do not release it at the end of this routine. */ fp = NULL; if (!(kn->kn_fop->f_flags & FILTEROP_ISFD)) { /* * If knote is not on an fd, store on * internal hash table. */ if (fdp->fd_knhashmask == 0) { /* XXXAD can block with fd_lock held */ fdp->fd_knhash = hashinit(KN_HASHSIZE, HASH_LIST, true, &fdp->fd_knhashmask); } list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)]; } else { /* Otherwise, knote is on an fd. */ list = (struct klist *) &fdp->fd_dt->dt_ff[kn->kn_id]->ff_knlist; if ((int)kn->kn_id > fdp->fd_lastkqfile) fdp->fd_lastkqfile = kn->kn_id; } SLIST_INSERT_HEAD(list, kn, kn_link); /* * N.B. kn->kn_fop may change as the result * of filter_attach()! */ knote_foplock_enter(kn); error = filter_attach(kn); if (error != 0) { #ifdef DEBUG struct proc *p = curlwp->l_proc; const file_t *ft = kn->kn_obj; printf("%s: %s[%d]: event type %d not " "supported for file type %d/%s " "(error %d)\n", __func__, p->p_comm, p->p_pid, kn->kn_filter, ft ? ft->f_type : -1, ft ? ft->f_ops->fo_name : "?", error); #endif fail_ev_add: /* * N.B. no need to check for this note to * be in-flux, since it was never visible * to the monitored object. * * knote_detach() drops fdp->fd_lock */ knote_foplock_exit(kn); mutex_enter(&kq->kq_lock); KNOTE_WILLDETACH(kn); KASSERT(kn_in_flux(kn) == false); mutex_exit(&kq->kq_lock); knote_detach(kn, fdp, false); goto done; } atomic_inc_uint(&kfilter->refcnt); goto done_ev_add; } else { /* No matching knote and the EV_ADD flag is not set. */ error = ENOENT; goto doneunlock; } } if (kev->flags & EV_DELETE) { /* * Let the world know that this knote is about to go * away, and wait for it to settle if it's currently * in-flux. */ mutex_spin_enter(&kq->kq_lock); if (kn->kn_status & KN_WILLDETACH) { /* * This knote is already on its way out, * so just be done. */ mutex_spin_exit(&kq->kq_lock); goto doneunlock; } KNOTE_WILLDETACH(kn); if (kn_in_flux(kn)) { mutex_exit(&fdp->fd_lock); /* * It's safe for us to conclusively wait for * this knote to settle because we know we'll * be completing the detach. */ kn_wait_flux(kn, true); KASSERT(kn_in_flux(kn) == false); mutex_spin_exit(&kq->kq_lock); mutex_enter(&fdp->fd_lock); } else { mutex_spin_exit(&kq->kq_lock); } /* knote_detach() drops fdp->fd_lock */ knote_detach(kn, fdp, true); goto done; } /* * The user may change some filter values after the * initial EV_ADD, but doing so will not reset any * filter which have already been triggered. */ knote_foplock_enter(kn); kn->kn_kevent.udata = kev->udata; KASSERT(kn->kn_fop != NULL); if (!(kn->kn_fop->f_flags & FILTEROP_ISFD) && kn->kn_fop->f_touch != NULL) { mutex_spin_enter(&kq->kq_lock); error = filter_touch(kn, kev, EVENT_REGISTER); mutex_spin_exit(&kq->kq_lock); if (__predict_false(error != 0)) { /* Never a new knote (which would consume newkn). */ KASSERT(newkn != NULL); knote_foplock_exit(kn); goto doneunlock; } } else { kn->kn_sfflags = kev->fflags; kn->kn_sdata = kev->data; } /* * We can get here if we are trying to attach * an event to a file descriptor that does not * support events, and the attach routine is * broken and does not return an error. */ done_ev_add: rv = filter_event(kn, 0, false); if (rv) knote_activate(kn); knote_foplock_exit(kn); /* disable knote */ if ((kev->flags & EV_DISABLE)) { mutex_spin_enter(&kq->kq_lock); if ((kn->kn_status & KN_DISABLED) == 0) kn->kn_status |= KN_DISABLED; mutex_spin_exit(&kq->kq_lock); } /* enable knote */ if ((kev->flags & EV_ENABLE)) { knote_enqueue(kn); } doneunlock: mutex_exit(&fdp->fd_lock); done: rw_exit(&kqueue_filter_lock); if (newkn != NULL) knote_free(newkn); if (fp != NULL) fd_putfile(fd); return (error); } #define KN_FMT(buf, kn) \ (snprintb((buf), sizeof(buf), __KN_FLAG_BITS, (kn)->kn_status), buf) #if defined(DDB) void kqueue_printit(struct kqueue *kq, bool full, void (*pr)(const char *, ...)) { const struct knote *kn; u_int count; int nmarker; char buf[128]; count = 0; nmarker = 0; (*pr)("kqueue %p (restart=%d count=%u):\n", kq, !!(kq->kq_count & KQ_RESTART), KQ_COUNT(kq)); (*pr)(" Queued knotes:\n"); TAILQ_FOREACH(kn, &kq->kq_head, kn_tqe) { if (kn->kn_status & KN_MARKER) { nmarker++; } else { count++; } (*pr)(" knote %p: kq=%p status=%s\n", kn, kn->kn_kq, KN_FMT(buf, kn)); (*pr)(" id=0x%lx (%lu) filter=%d\n", (u_long)kn->kn_id, (u_long)kn->kn_id, kn->kn_filter); if (kn->kn_kq != kq) { (*pr)(" !!! kn->kn_kq != kq\n"); } } if (count != KQ_COUNT(kq)) { (*pr)(" !!! count(%u) != KQ_COUNT(%u)\n", count, KQ_COUNT(kq)); } } #endif /* DDB */ #if defined(DEBUG) static void kqueue_check(const char *func, size_t line, const struct kqueue *kq) { const struct knote *kn; u_int count; int nmarker; char buf[128]; KASSERT(mutex_owned(&kq->kq_lock)); count = 0; nmarker = 0; TAILQ_FOREACH(kn, &kq->kq_head, kn_tqe) { if ((kn->kn_status & (KN_MARKER | KN_QUEUED)) == 0) { panic("%s,%zu: kq=%p kn=%p !(MARKER|QUEUED) %s", func, line, kq, kn, KN_FMT(buf, kn)); } if ((kn->kn_status & KN_MARKER) == 0) { if (kn->kn_kq != kq) { panic("%s,%zu: kq=%p kn(%p) != kn->kq(%p): %s", func, line, kq, kn, kn->kn_kq, KN_FMT(buf, kn)); } if ((kn->kn_status & KN_ACTIVE) == 0) { panic("%s,%zu: kq=%p kn=%p: !ACTIVE %s", func, line, kq, kn, KN_FMT(buf, kn)); } count++; if (count > KQ_COUNT(kq)) { panic("%s,%zu: kq=%p kq->kq_count(%u) != " "count(%d), nmarker=%d", func, line, kq, KQ_COUNT(kq), count, nmarker); } } else { nmarker++; } } } #define kq_check(a) kqueue_check(__func__, __LINE__, (a)) #else /* defined(DEBUG) */ #define kq_check(a) /* nothing */ #endif /* defined(DEBUG) */ static void kqueue_restart(file_t *fp) { struct kqueue *kq = fp->f_kqueue; KASSERT(kq != NULL); mutex_spin_enter(&kq->kq_lock); kq->kq_count |= KQ_RESTART; cv_broadcast(&kq->kq_cv); mutex_spin_exit(&kq->kq_lock); } static int kqueue_fpathconf(struct file *fp, int name, register_t *retval) { return EINVAL; } /* * Scan through the list of events on fp (for a maximum of maxevents), * returning the results in to ulistp. Timeout is determined by tsp; if * NULL, wait indefinitely, if 0 valued, perform a poll, otherwise wait * as appropriate. */ static int kqueue_scan(file_t *fp, size_t maxevents, struct kevent *ulistp, const struct timespec *tsp, register_t *retval, const struct kevent_ops *keops, struct kevent *kevbuf, size_t kevcnt) { struct kqueue *kq; struct kevent *kevp; struct timespec ats, sleepts; struct knote *kn, *marker; struct knote_impl morker; size_t count, nkev, nevents; int timeout, error, touch, rv, influx; filedesc_t *fdp; fdp = curlwp->l_fd; kq = fp->f_kqueue; count = maxevents; nkev = nevents = error = 0; if (count == 0) { *retval = 0; return 0; } if (tsp) { /* timeout supplied */ ats = *tsp; if (inittimeleft(&ats, &sleepts) == -1) { *retval = maxevents; return EINVAL; } timeout = tstohz(&ats); if (timeout <= 0) timeout = -1; /* do poll */ } else { /* no timeout, wait forever */ timeout = 0; } memset(&morker, 0, sizeof(morker)); marker = &morker.ki_knote; marker->kn_kq = kq; marker->kn_status = KN_MARKER; mutex_spin_enter(&kq->kq_lock); retry: kevp = kevbuf; if (KQ_COUNT(kq) == 0) { if (timeout >= 0) { error = cv_timedwait_sig(&kq->kq_cv, &kq->kq_lock, timeout); if (error == 0) { if (KQ_COUNT(kq) == 0 && (kq->kq_count & KQ_RESTART)) { /* return to clear file reference */ error = ERESTART; } else if (tsp == NULL || (timeout = gettimeleft(&ats, &sleepts)) > 0) { goto retry; } } else { /* don't restart after signals... */ if (error == ERESTART) error = EINTR; if (error == EWOULDBLOCK) error = 0; } } mutex_spin_exit(&kq->kq_lock); goto done; } /* mark end of knote list */ TAILQ_INSERT_TAIL(&kq->kq_head, marker, kn_tqe); influx = 0; /* * Acquire the fdp->fd_lock interlock to avoid races with * file creation/destruction from other threads. */ mutex_spin_exit(&kq->kq_lock); relock: mutex_enter(&fdp->fd_lock); mutex_spin_enter(&kq->kq_lock); while (count != 0) { /* * Get next knote. We are guaranteed this will never * be NULL because of the marker we inserted above. */ kn = TAILQ_FIRST(&kq->kq_head); bool kn_is_other_marker = (kn->kn_status & KN_MARKER) != 0 && kn != marker; bool kn_is_detaching = (kn->kn_status & KN_WILLDETACH) != 0; bool kn_is_in_flux = kn_in_flux(kn); /* * If we found a marker that's not ours, or this knote * is in a state of flux, then wait for everything to * settle down and go around again. */ if (kn_is_other_marker || kn_is_detaching || kn_is_in_flux) { if (influx) { influx = 0; KQ_FLUX_WAKEUP(kq); } mutex_exit(&fdp->fd_lock); if (kn_is_other_marker || kn_is_in_flux) { KQ_FLUX_WAIT(kq); mutex_spin_exit(&kq->kq_lock); } else { /* * Detaching but not in-flux? Someone is * actively trying to finish the job; just * go around and try again. */ KASSERT(kn_is_detaching); mutex_spin_exit(&kq->kq_lock); preempt_point(); } goto relock; } TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe); if (kn == marker) { /* it's our marker, stop */ KQ_FLUX_WAKEUP(kq); if (count == maxevents) { mutex_exit(&fdp->fd_lock); goto retry; } break; } KASSERT((kn->kn_status & KN_BUSY) == 0); kq_check(kq); kn->kn_status &= ~KN_QUEUED; kn->kn_status |= KN_BUSY; kq_check(kq); if (kn->kn_status & KN_DISABLED) { kn->kn_status &= ~KN_BUSY; kq->kq_count--; /* don't want disabled events */ continue; } if ((kn->kn_flags & EV_ONESHOT) == 0) { mutex_spin_exit(&kq->kq_lock); KASSERT(mutex_owned(&fdp->fd_lock)); knote_foplock_enter(kn); rv = filter_event(kn, 0, false); knote_foplock_exit(kn); mutex_spin_enter(&kq->kq_lock); /* Re-poll if note was re-enqueued. */ if ((kn->kn_status & KN_QUEUED) != 0) { kn->kn_status &= ~KN_BUSY; /* Re-enqueue raised kq_count, lower it again */ kq->kq_count--; influx = 1; continue; } if (rv == 0) { /* * non-ONESHOT event that hasn't triggered * again, so it will remain de-queued. */ kn->kn_status &= ~(KN_ACTIVE|KN_BUSY); kq->kq_count--; influx = 1; continue; } } else { /* * Must NOT drop kq_lock until we can do * the KNOTE_WILLDETACH() below. */ } KASSERT(kn->kn_fop != NULL); touch = (!(kn->kn_fop->f_flags & FILTEROP_ISFD) && kn->kn_fop->f_touch != NULL); /* XXXAD should be got from f_event if !oneshot. */ KASSERT((kn->kn_status & KN_WILLDETACH) == 0); if (touch) { (void)filter_touch(kn, kevp, EVENT_PROCESS); } else { *kevp = kn->kn_kevent; } kevp++; nkev++; influx = 1; if (kn->kn_flags & EV_ONESHOT) { /* delete ONESHOT events after retrieval */ KNOTE_WILLDETACH(kn); kn->kn_status &= ~KN_BUSY; kq->kq_count--; KASSERT(kn_in_flux(kn) == false); KASSERT((kn->kn_status & KN_WILLDETACH) != 0); KASSERT(kn->kn_kevent.udata == curlwp); mutex_spin_exit(&kq->kq_lock); knote_detach(kn, fdp, true); mutex_enter(&fdp->fd_lock); mutex_spin_enter(&kq->kq_lock); } else if (kn->kn_flags & EV_CLEAR) { /* clear state after retrieval */ kn->kn_data = 0; kn->kn_fflags = 0; /* * Manually clear knotes who weren't * 'touch'ed. */ if (touch == 0) { kn->kn_data = 0; kn->kn_fflags = 0; } kn->kn_status &= ~(KN_ACTIVE|KN_BUSY); kq->kq_count--; } else if (kn->kn_flags & EV_DISPATCH) { kn->kn_status |= KN_DISABLED; kn->kn_status &= ~(KN_ACTIVE|KN_BUSY); kq->kq_count--; } else { /* add event back on list */ kq_check(kq); kn->kn_status |= KN_QUEUED; kn->kn_status &= ~KN_BUSY; TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe); kq_check(kq); } if (nkev == kevcnt) { /* do copyouts in kevcnt chunks */ influx = 0; KQ_FLUX_WAKEUP(kq); mutex_spin_exit(&kq->kq_lock); mutex_exit(&fdp->fd_lock); error = (*keops->keo_put_events) (keops->keo_private, kevbuf, ulistp, nevents, nkev); mutex_enter(&fdp->fd_lock); mutex_spin_enter(&kq->kq_lock); nevents += nkev; nkev = 0; kevp = kevbuf; } count--; if (error != 0 || count == 0) { /* remove marker */ TAILQ_REMOVE(&kq->kq_head, marker, kn_tqe); break; } } KQ_FLUX_WAKEUP(kq); mutex_spin_exit(&kq->kq_lock); mutex_exit(&fdp->fd_lock); done: if (nkev != 0) { /* copyout remaining events */ error = (*keops->keo_put_events)(keops->keo_private, kevbuf, ulistp, nevents, nkev); } *retval = maxevents - count; return error; } /* * fileops ioctl method for a kqueue descriptor. * * Two ioctls are currently supported. They both use struct kfilter_mapping: * KFILTER_BYNAME find name for filter, and return result in * name, which is of size len. * KFILTER_BYFILTER find filter for name. len is ignored. */ /*ARGSUSED*/ static int kqueue_ioctl(file_t *fp, u_long com, void *data) { struct kfilter_mapping *km; const struct kfilter *kfilter; char *name; int error; km = data; error = 0; name = kmem_alloc(KFILTER_MAXNAME, KM_SLEEP); switch (com) { case KFILTER_BYFILTER: /* convert filter -> name */ rw_enter(&kqueue_filter_lock, RW_READER); kfilter = kfilter_byfilter(km->filter); if (kfilter != NULL) { strlcpy(name, kfilter->name, KFILTER_MAXNAME); rw_exit(&kqueue_filter_lock); error = copyoutstr(name, km->name, km->len, NULL); } else { rw_exit(&kqueue_filter_lock); error = ENOENT; } break; case KFILTER_BYNAME: /* convert name -> filter */ error = copyinstr(km->name, name, KFILTER_MAXNAME, NULL); if (error) { break; } rw_enter(&kqueue_filter_lock, RW_READER); kfilter = kfilter_byname(name); if (kfilter != NULL) km->filter = kfilter->filter; else error = ENOENT; rw_exit(&kqueue_filter_lock); break; default: error = ENOTTY; break; } kmem_free(name, KFILTER_MAXNAME); return (error); } /* * fileops fcntl method for a kqueue descriptor. */ static int kqueue_fcntl(file_t *fp, u_int com, void *data) { return (ENOTTY); } /* * fileops poll method for a kqueue descriptor. * Determine if kqueue has events pending. */ static int kqueue_poll(file_t *fp, int events) { struct kqueue *kq; int revents; kq = fp->f_kqueue; revents = 0; if (events & (POLLIN | POLLRDNORM)) { mutex_spin_enter(&kq->kq_lock); if (KQ_COUNT(kq) != 0) { revents |= events & (POLLIN | POLLRDNORM); } else { selrecord(curlwp, &kq->kq_sel); } kq_check(kq); mutex_spin_exit(&kq->kq_lock); } return revents; } /* * fileops stat method for a kqueue descriptor. * Returns dummy info, with st_size being number of events pending. */ static int kqueue_stat(file_t *fp, struct stat *st) { struct kqueue *kq; kq = fp->f_kqueue; memset(st, 0, sizeof(*st)); st->st_size = KQ_COUNT(kq); st->st_blksize = sizeof(struct kevent); st->st_mode = S_IFIFO | S_IRUSR | S_IWUSR; st->st_blocks = 1; st->st_uid = kauth_cred_geteuid(fp->f_cred); st->st_gid = kauth_cred_getegid(fp->f_cred); return 0; } static void kqueue_doclose(struct kqueue *kq, struct klist *list, int fd) { struct knote *kn; filedesc_t *fdp; fdp = kq->kq_fdp; KASSERT(mutex_owned(&fdp->fd_lock)); again: for (kn = SLIST_FIRST(list); kn != NULL;) { if (kq != kn->kn_kq) { kn = SLIST_NEXT(kn, kn_link); continue; } if (knote_detach_quiesce(kn)) { mutex_enter(&fdp->fd_lock); goto again; } knote_detach(kn, fdp, true); mutex_enter(&fdp->fd_lock); kn = SLIST_FIRST(list); } } /* * fileops close method for a kqueue descriptor. */ static int kqueue_close(file_t *fp) { struct kqueue *kq; filedesc_t *fdp; fdfile_t *ff; int i; kq = fp->f_kqueue; fp->f_kqueue = NULL; fp->f_type = 0; fdp = curlwp->l_fd; KASSERT(kq->kq_fdp == fdp); mutex_enter(&fdp->fd_lock); /* * We're doing to drop the fd_lock multiple times while * we detach knotes. During this time, attempts to register * knotes via the back door (e.g. knote_proc_fork_track()) * need to fail, lest they sneak in to attach a knote after * we've already drained the list it's destined for. * * We must acquire kq_lock here to set KQ_CLOSING (to serialize * with other code paths that modify kq_count without holding * the fd_lock), but once this bit is set, it's only safe to * test it while holding the fd_lock, and holding kq_lock while * doing so is not necessary. */ mutex_enter(&kq->kq_lock); kq->kq_count |= KQ_CLOSING; mutex_exit(&kq->kq_lock); for (i = 0; i <= fdp->fd_lastkqfile; i++) { if ((ff = fdp->fd_dt->dt_ff[i]) == NULL) continue; kqueue_doclose(kq, (struct klist *)&ff->ff_knlist, i); } if (fdp->fd_knhashmask != 0) { for (i = 0; i < fdp->fd_knhashmask + 1; i++) { kqueue_doclose(kq, &fdp->fd_knhash[i], -1); } } mutex_exit(&fdp->fd_lock); #if defined(DEBUG) mutex_enter(&kq->kq_lock); kq_check(kq); mutex_exit(&kq->kq_lock); #endif /* DEBUG */ KASSERT(TAILQ_EMPTY(&kq->kq_head)); KASSERT(KQ_COUNT(kq) == 0); mutex_destroy(&kq->kq_lock); cv_destroy(&kq->kq_cv); seldestroy(&kq->kq_sel); kmem_free(kq, sizeof(*kq)); return (0); } /* * struct fileops kqfilter method for a kqueue descriptor. * Event triggered when monitored kqueue changes. */ static int kqueue_kqfilter(file_t *fp, struct knote *kn) { struct kqueue *kq; kq = ((file_t *)kn->kn_obj)->f_kqueue; KASSERT(fp == kn->kn_obj); if (kn->kn_filter != EVFILT_READ) return EINVAL; kn->kn_fop = &kqread_filtops; mutex_enter(&kq->kq_lock); selrecord_knote(&kq->kq_sel, kn); mutex_exit(&kq->kq_lock); return 0; } /* * Walk down a list of knotes, activating them if their event has * triggered. The caller's object lock (e.g. device driver lock) * must be held. */ void knote(struct klist *list, long hint) { struct knote *kn, *tmpkn; SLIST_FOREACH_SAFE(kn, list, kn_selnext, tmpkn) { /* * We assume here that the backing object's lock is * already held if we're traversing the klist, and * so acquiring the knote foplock would create a * deadlock scenario. But we also know that the klist * won't disappear on us while we're here, so not * acquiring it is safe. */ if (filter_event(kn, hint, true)) { knote_activate(kn); } } } /* * Remove all knotes referencing a specified fd */ void knote_fdclose(int fd) { struct klist *list; struct knote *kn; filedesc_t *fdp; again: fdp = curlwp->l_fd; mutex_enter(&fdp->fd_lock); list = (struct klist *)&fdp->fd_dt->dt_ff[fd]->ff_knlist; while ((kn = SLIST_FIRST(list)) != NULL) { if (knote_detach_quiesce(kn)) { goto again; } knote_detach(kn, fdp, true); mutex_enter(&fdp->fd_lock); } mutex_exit(&fdp->fd_lock); } /* * Drop knote. Called with fdp->fd_lock held, and will drop before * returning. */ static void knote_detach(struct knote *kn, filedesc_t *fdp, bool dofop) { struct klist *list; struct kqueue *kq; kq = kn->kn_kq; KASSERT((kn->kn_status & KN_MARKER) == 0); KASSERT((kn->kn_status & KN_WILLDETACH) != 0); KASSERT(kn->kn_fop != NULL); KASSERT(mutex_owned(&fdp->fd_lock)); /* Remove from monitored object. */ if (dofop) { knote_foplock_enter(kn); filter_detach(kn); knote_foplock_exit(kn); } /* Remove from descriptor table. */ if (kn->kn_fop->f_flags & FILTEROP_ISFD) list = (struct klist *)&fdp->fd_dt->dt_ff[kn->kn_id]->ff_knlist; else list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)]; SLIST_REMOVE(list, kn, knote, kn_link); /* Remove from kqueue. */ again: mutex_spin_enter(&kq->kq_lock); KASSERT(kn_in_flux(kn) == false); if ((kn->kn_status & KN_QUEUED) != 0) { kq_check(kq); KASSERT(KQ_COUNT(kq) != 0); kq->kq_count--; TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe); kn->kn_status &= ~KN_QUEUED; kq_check(kq); } else if (kn->kn_status & KN_BUSY) { mutex_spin_exit(&kq->kq_lock); goto again; } mutex_spin_exit(&kq->kq_lock); mutex_exit(&fdp->fd_lock); if (kn->kn_fop->f_flags & FILTEROP_ISFD) fd_putfile(kn->kn_id); atomic_dec_uint(&kn->kn_kfilter->refcnt); knote_free(kn); } /* * Queue new event for knote. */ static void knote_enqueue(struct knote *kn) { struct kqueue *kq; KASSERT((kn->kn_status & KN_MARKER) == 0); kq = kn->kn_kq; mutex_spin_enter(&kq->kq_lock); if (__predict_false(kn->kn_status & KN_WILLDETACH)) { /* Don't bother enqueueing a dying knote. */ goto out; } if ((kn->kn_status & KN_DISABLED) != 0) { kn->kn_status &= ~KN_DISABLED; } if ((kn->kn_status & (KN_ACTIVE | KN_QUEUED)) == KN_ACTIVE) { kq_check(kq); kn->kn_status |= KN_QUEUED; TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe); KASSERT(KQ_COUNT(kq) < KQ_MAXCOUNT); kq->kq_count++; kq_check(kq); cv_broadcast(&kq->kq_cv); selnotify(&kq->kq_sel, 0, NOTE_SUBMIT); } out: mutex_spin_exit(&kq->kq_lock); } /* * Queue new event for knote. */ static void knote_activate_locked(struct knote *kn) { struct kqueue *kq; KASSERT((kn->kn_status & KN_MARKER) == 0); kq = kn->kn_kq; if (__predict_false(kn->kn_status & KN_WILLDETACH)) { /* Don't bother enqueueing a dying knote. */ return; } kn->kn_status |= KN_ACTIVE; if ((kn->kn_status & (KN_QUEUED | KN_DISABLED)) == 0) { kq_check(kq); kn->kn_status |= KN_QUEUED; TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe); KASSERT(KQ_COUNT(kq) < KQ_MAXCOUNT); kq->kq_count++; kq_check(kq); cv_broadcast(&kq->kq_cv); selnotify(&kq->kq_sel, 0, NOTE_SUBMIT); } } static void knote_activate(struct knote *kn) { struct kqueue *kq = kn->kn_kq; mutex_spin_enter(&kq->kq_lock); knote_activate_locked(kn); mutex_spin_exit(&kq->kq_lock); } static void knote_deactivate_locked(struct knote *kn) { struct kqueue *kq = kn->kn_kq; if (kn->kn_status & KN_QUEUED) { kq_check(kq); kn->kn_status &= ~KN_QUEUED; TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe); KASSERT(KQ_COUNT(kq) > 0); kq->kq_count--; kq_check(kq); } kn->kn_status &= ~KN_ACTIVE; } /* * Set EV_EOF on the specified knote. Also allows additional * EV_* flags to be set (e.g. EV_ONESHOT). */ void knote_set_eof(struct knote *kn, uint32_t flags) { struct kqueue *kq = kn->kn_kq; mutex_spin_enter(&kq->kq_lock); kn->kn_flags |= EV_EOF | flags; mutex_spin_exit(&kq->kq_lock); } /* * Clear EV_EOF on the specified knote. */ void knote_clear_eof(struct knote *kn) { struct kqueue *kq = kn->kn_kq; mutex_spin_enter(&kq->kq_lock); kn->kn_flags &= ~EV_EOF; mutex_spin_exit(&kq->kq_lock); } /* * Initialize a klist. */ void klist_init(struct klist *list) { SLIST_INIT(list); } /* * Finalize a klist. */ void klist_fini(struct klist *list) { struct knote *kn; /* * Neuter all existing knotes on the klist because the list is * being destroyed. The caller has guaranteed that no additional * knotes will be added to the list, that the backing object's * locks are not held (otherwise there is a locking order issue * with acquiring the knote foplock ), and that we can traverse * the list safely in this state. */ SLIST_FOREACH(kn, list, kn_selnext) { knote_foplock_enter(kn); KASSERT(kn->kn_fop != NULL); if (kn->kn_fop->f_flags & FILTEROP_ISFD) { kn->kn_fop = &nop_fd_filtops; } else { kn->kn_fop = &nop_filtops; } knote_foplock_exit(kn); } } /* * Insert a knote into a klist. */ void klist_insert(struct klist *list, struct knote *kn) { SLIST_INSERT_HEAD(list, kn, kn_selnext); } /* * Remove a knote from a klist. Returns true if the last * knote was removed and the list is now empty. */ bool klist_remove(struct klist *list, struct knote *kn) { SLIST_REMOVE(list, kn, knote, kn_selnext); return SLIST_EMPTY(list); }