/* $OpenBSD: primes.c,v 1.24 2017/11/02 10:37:11 tb Exp $ */ /* $NetBSD: primes.c,v 1.5 1995/04/24 12:24:47 cgd Exp $ */ /* * Copyright (c) 1989, 1993 * The Regents of the University of California. All rights reserved. * * This code is derived from software contributed to Berkeley by * Landon Curt Noll. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * primes - generate a table of primes between two values * * By: Landon Curt Noll chongo@toad.com, ...!{sun,tolsoft}!hoptoad!chongo * * chongo /\oo/\ * * usage: * primes [start [stop]] * * Print primes >= start and < stop. If stop is omitted, * the value 4294967295 (2^32-1) is assumed. If start is * omitted, start is read from standard input. * * validation check: there are 664579 primes between 0 and 10^7 */ #include #include #include #include #include #include #include #include "primes.h" /* * Eratosthenes sieve table * * We only sieve the odd numbers. The base of our sieve windows is always odd. * If the base of the table is 1, table[i] represents 2*i-1. After the sieve, * table[i] == 1 if and only if 2*i-1 is prime. * * We make TABSIZE large to reduce the overhead of inner loop setup. */ char table[TABSIZE]; /* Eratosthenes sieve of odd numbers */ /* * prime[i] is the (i+1)th prime. * * We are able to sieve 2^32-1 because this byte table yields all primes * up to 65537 and 65537^2 > 2^32-1. */ extern const ubig prime[]; extern const ubig *pr_limit; /* largest prime in the prime array */ /* * To avoid excessive sieves for small factors, we use the table below to * setup our sieve blocks. Each element represents an odd number starting * with 1. All non-zero elements are coprime to 3, 5, 7, 11 and 13. */ extern const char pattern[]; extern const int pattern_size; /* length of pattern array */ void primes(ubig, ubig); ubig read_num_buf(void); __dead void usage(void); int main(int argc, char *argv[]) { const char *errstr; ubig start; /* where to start generating */ ubig stop; /* don't generate at or above this value */ int ch; if (pledge("stdio", NULL) == -1) err(1, "pledge"); while ((ch = getopt(argc, argv, "h")) != -1) { switch (ch) { case 'h': default: usage(); } } argc -= optind; argv += optind; start = 0; stop = BIG; switch (argc) { case 2: stop = strtonum(argv[1], 0, BIG, &errstr); if (errstr) errx(1, "stop is %s: %s", errstr, argv[1]); case 1: /* FALLTHROUGH */ start = strtonum(argv[0], 0, BIG, &errstr); if (errstr) errx(1, "start is %s: %s", errstr, argv[0]); break; case 0: start = read_num_buf(); break; default: usage(); } if (start > stop) errx(1, "start value must be less than stop value."); primes(start, stop); return 0; } /* * read_num_buf -- * This routine returns a number n, where 0 <= n && n <= BIG. */ ubig read_num_buf(void) { const char *errstr; ubig val; char *p, buf[100]; /* > max number of digits. */ for (;;) { if (fgets(buf, sizeof(buf), stdin) == NULL) { if (ferror(stdin)) err(1, "stdin"); exit(0); } buf[strcspn(buf, "\n")] = '\0'; for (p = buf; isblank((unsigned char)*p); ++p) ; if (*p == '\0') continue; val = strtonum(buf, 0, BIG, &errstr); if (errstr) errx(1, "start is %s: %s", errstr, buf); return (val); } } /* * primes - sieve and print primes from start up to and but not including stop * start: where to start generating * stop : don't generate at or above this value */ void primes(ubig start, ubig stop) { char *q; /* sieve spot */ ubig factor; /* index and factor */ char *tab_lim; /* the limit to sieve on the table */ const ubig *p; /* prime table pointer */ ubig fact_lim; /* highest prime for current block */ ubig mod; /* * A number of systems can not convert double values into unsigned * longs when the values are larger than the largest signed value. * We don't have this problem, so we can go all the way to BIG. */ if (start < 3) { start = (ubig)2; } if (stop < 3) { stop = (ubig)2; } if (stop <= start) { return; } /* * be sure that the values are odd, or 2 */ if (start != 2 && (start&0x1) == 0) { ++start; } if (stop != 2 && (stop&0x1) == 0) { ++stop; } /* * quick list of primes <= pr_limit */ if (start <= *pr_limit) { /* skip primes up to the start value */ for (p = &prime[0], factor = prime[0]; factor < stop && p <= pr_limit; factor = *(++p)) { if (factor >= start) { printf("%lu\n", (unsigned long) factor); } } /* return early if we are done */ if (p <= pr_limit) { return; } start = *pr_limit+2; } /* * we shall sieve a bytemap window, note primes and move the window * upward until we pass the stop point */ while (start < stop) { /* * factor out 3, 5, 7, 11 and 13 */ /* initial pattern copy */ factor = (start%(2*3*5*7*11*13))/2; /* starting copy spot */ memcpy(table, &pattern[factor], pattern_size-factor); /* main block pattern copies */ for (fact_lim=pattern_size-factor; fact_lim+pattern_size<=TABSIZE; fact_lim+=pattern_size) { memcpy(&table[fact_lim], pattern, pattern_size); } /* final block pattern copy */ memcpy(&table[fact_lim], pattern, TABSIZE-fact_lim); /* * sieve for primes 17 and higher */ /* note highest useful factor and sieve spot */ if (stop-start > TABSIZE+TABSIZE) { tab_lim = &table[TABSIZE]; /* sieve it all */ fact_lim = (int)sqrt( (double)(start)+TABSIZE+TABSIZE+1.0); } else { tab_lim = &table[(stop-start)/2]; /* partial sieve */ fact_lim = (int)sqrt((double)(stop)+1.0); } /* sieve for factors >= 17 */ factor = 17; /* 17 is first prime to use */ p = &prime[7]; /* 19 is next prime, pi(19)=7 */ do { /* determine the factor's initial sieve point */ mod = start % factor; if (mod & 0x1) q = &table[(factor - mod)/2]; else q = &table[mod ? factor-(mod/2) : 0]; /* sieve for our current factor */ for ( ; q < tab_lim; q += factor) { *q = '\0'; /* sieve out a spot */ } } while ((factor=(ubig)(*(p++))) <= fact_lim); /* * print generated primes */ for (q = table; q < tab_lim; ++q, start+=2) { if (*q) { printf("%lu\n", (unsigned long) start); } } } } void usage(void) { (void)fprintf(stderr, "usage: %s [start [stop]]\n", getprogname()); exit(1); }