/* $OpenBSD: bn_isqrt.c,v 1.10 2023/06/04 17:28:35 tb Exp $ */ /* * Copyright (c) 2022 Theo Buehler * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include #include #include #include #include "bn_local.h" #include "crypto_internal.h" /* * Calculate integer square root of |n| using a variant of Newton's method. * * Returns the integer square root of |n| in the caller-provided |out_sqrt|; * |*out_perfect| is set to 1 if and only if |n| is a perfect square. * One of |out_sqrt| and |out_perfect| can be NULL; |in_ctx| can be NULL. * * Returns 0 on error, 1 on success. * * Adapted from pure Python describing cpython's math.isqrt(), without bothering * with any of the optimizations in the C code. A correctness proof is here: * https://github.com/mdickinson/snippets/blob/master/proofs/isqrt/src/isqrt.lean * The comments in the Python code also give a rather detailed proof. */ int bn_isqrt(BIGNUM *out_sqrt, int *out_perfect, const BIGNUM *n, BN_CTX *in_ctx) { BN_CTX *ctx = NULL; BIGNUM *a, *b; int c, d, e, s; int cmp, perfect; int ret = 0; if (out_perfect == NULL && out_sqrt == NULL) { BNerror(ERR_R_PASSED_NULL_PARAMETER); goto err; } if (BN_is_negative(n)) { BNerror(BN_R_INVALID_RANGE); goto err; } if ((ctx = in_ctx) == NULL) ctx = BN_CTX_new(); if (ctx == NULL) goto err; BN_CTX_start(ctx); if ((a = BN_CTX_get(ctx)) == NULL) goto err; if ((b = BN_CTX_get(ctx)) == NULL) goto err; if (BN_is_zero(n)) { perfect = 1; BN_zero(a); goto done; } if (!BN_one(a)) goto err; c = (BN_num_bits(n) - 1) / 2; d = 0; /* Calculate s = floor(log(c)). */ if (!BN_set_word(b, c)) goto err; s = BN_num_bits(b) - 1; /* * By definition, the loop below is run <= floor(log(log(n))) times. * Comments in the cpython code establish the loop invariant that * * (a - 1)^2 < n / 4^(c - d) < (a + 1)^2 * * holds true in every iteration. Once this is proved via induction, * correctness of the algorithm is easy. * * Roughly speaking, A = (a << (d - e)) is used for one Newton step * "a = (A >> 1) + (m >> 1) / A" approximating m = (n >> 2 * (c - d)). */ for (; s >= 0; s--) { e = d; d = c >> s; if (!BN_rshift(b, n, 2 * c - d - e + 1)) goto err; if (!BN_div_ct(b, NULL, b, a, ctx)) goto err; if (!BN_lshift(a, a, d - e - 1)) goto err; if (!BN_add(a, a, b)) goto err; } /* * The loop invariant implies that either a or a - 1 is isqrt(n). * Figure out which one it is. The invariant also implies that for * a perfect square n, a must be the square root. */ if (!BN_sqr(b, a, ctx)) goto err; /* If a^2 > n, we must have isqrt(n) == a - 1. */ if ((cmp = BN_cmp(b, n)) > 0) { if (!BN_sub_word(a, 1)) goto err; } perfect = cmp == 0; done: if (out_perfect != NULL) *out_perfect = perfect; if (out_sqrt != NULL) { if (!bn_copy(out_sqrt, a)) goto err; } ret = 1; err: BN_CTX_end(ctx); if (ctx != in_ctx) BN_CTX_free(ctx); return ret; } /* * is_square_mod_N[r % N] indicates whether r % N has a square root modulo N. * The tables are generated in regress/lib/libcrypto/bn/bn_isqrt.c. */ const uint8_t is_square_mod_11[] = { 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, }; CTASSERT(sizeof(is_square_mod_11) == 11); const uint8_t is_square_mod_63[] = { 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, }; CTASSERT(sizeof(is_square_mod_63) == 63); const uint8_t is_square_mod_64[] = { 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, }; CTASSERT(sizeof(is_square_mod_64) == 64); const uint8_t is_square_mod_65[] = { 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, }; CTASSERT(sizeof(is_square_mod_65) == 65); /* * Determine whether n is a perfect square or not. * * Returns 1 on success and 0 on error. In case of success, |*out_perfect| is * set to 1 if and only if |n| is a perfect square. */ int bn_is_perfect_square(int *out_perfect, const BIGNUM *n, BN_CTX *ctx) { BN_ULONG r; *out_perfect = 0; if (BN_is_negative(n)) return 1; /* * Before performing an expensive bn_isqrt() operation, weed out many * obvious non-squares. See H. Cohen, "A course in computational * algebraic number theory", Algorithm 1.7.3. * * The idea is that a square remains a square when reduced modulo any * number. The moduli are chosen in such a way that a non-square has * probability < 1% of passing the four table lookups. */ /* n % 64 */ r = BN_lsw(n) & 0x3f; if (!is_square_mod_64[r % 64]) return 1; if ((r = BN_mod_word(n, 11 * 63 * 65)) == (BN_ULONG)-1) return 0; if (!is_square_mod_63[r % 63] || !is_square_mod_65[r % 65] || !is_square_mod_11[r % 11]) return 1; return bn_isqrt(NULL, out_perfect, n, ctx); }