/* $OpenBSD: bn_mont.c,v 1.63 2024/03/26 04:23:04 jsing Exp $ */ /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ /* ==================================================================== * Copyright (c) 1998-2006 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * openssl-core@openssl.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.openssl.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== * * This product includes cryptographic software written by Eric Young * (eay@cryptsoft.com). This product includes software written by Tim * Hudson (tjh@cryptsoft.com). * */ /* * Details about Montgomery multiplication algorithms can be found at * http://security.ece.orst.edu/publications.html, e.g. * http://security.ece.orst.edu/koc/papers/j37acmon.pdf and * sections 3.8 and 4.2 in http://security.ece.orst.edu/koc/papers/r01rsasw.pdf */ #include #include #include #include "bn_internal.h" #include "bn_local.h" BN_MONT_CTX * BN_MONT_CTX_new(void) { BN_MONT_CTX *mctx; if ((mctx = calloc(1, sizeof(BN_MONT_CTX))) == NULL) return NULL; mctx->flags = BN_FLG_MALLOCED; BN_init(&mctx->RR); BN_init(&mctx->N); return mctx; } LCRYPTO_ALIAS(BN_MONT_CTX_new); void BN_MONT_CTX_free(BN_MONT_CTX *mctx) { if (mctx == NULL) return; BN_free(&mctx->RR); BN_free(&mctx->N); if (mctx->flags & BN_FLG_MALLOCED) free(mctx); } LCRYPTO_ALIAS(BN_MONT_CTX_free); BN_MONT_CTX * BN_MONT_CTX_copy(BN_MONT_CTX *dst, BN_MONT_CTX *src) { if (dst == src) return dst; if (!bn_copy(&dst->RR, &src->RR)) return NULL; if (!bn_copy(&dst->N, &src->N)) return NULL; dst->ri = src->ri; dst->n0[0] = src->n0[0]; dst->n0[1] = src->n0[1]; return dst; } LCRYPTO_ALIAS(BN_MONT_CTX_copy); int BN_MONT_CTX_set(BN_MONT_CTX *mont, const BIGNUM *mod, BN_CTX *ctx) { BIGNUM *N, *Ninv, *Rinv, *R; int ret = 0; BN_CTX_start(ctx); if ((N = BN_CTX_get(ctx)) == NULL) goto err; if ((Ninv = BN_CTX_get(ctx)) == NULL) goto err; if ((R = BN_CTX_get(ctx)) == NULL) goto err; if ((Rinv = BN_CTX_get(ctx)) == NULL) goto err; /* Save modulus and determine length of R. */ if (BN_is_zero(mod)) goto err; if (!bn_copy(&mont->N, mod)) goto err; mont->N.neg = 0; mont->ri = ((BN_num_bits(mod) + BN_BITS2 - 1) / BN_BITS2) * BN_BITS2; if (mont->ri * 2 < mont->ri) goto err; /* * Compute Ninv = (R * Rinv - 1)/N mod R, for R = 2^64. This provides * a single or double word result (dependent on BN word size), that is * later used to implement Montgomery reduction. */ BN_zero(R); if (!BN_set_bit(R, 64)) goto err; /* N = N mod R. */ if (!bn_wexpand(N, 2)) goto err; if (!BN_set_word(N, mod->d[0])) goto err; #if BN_BITS2 == 32 if (mod->top > 1) { N->d[1] = mod->d[1]; N->top += bn_ct_ne_zero(N->d[1]); } #endif /* Rinv = R^-1 mod N */ if ((BN_mod_inverse_ct(Rinv, R, N, ctx)) == NULL) goto err; /* Ninv = (R * Rinv - 1) / N */ if (!BN_lshift(Ninv, Rinv, 64)) goto err; if (BN_is_zero(Ninv)) { /* R * Rinv == 0, set to R so that R * Rinv - 1 is mod R. */ if (!BN_set_bit(Ninv, 64)) goto err; } if (!BN_sub_word(Ninv, 1)) goto err; if (!BN_div_ct(Ninv, NULL, Ninv, N, ctx)) goto err; /* Store least significant word(s) of Ninv. */ mont->n0[0] = mont->n0[1] = 0; if (Ninv->top > 0) mont->n0[0] = Ninv->d[0]; #if BN_BITS2 == 32 /* Some BN_BITS2 == 32 platforms (namely parisc) use two words of Ninv. */ if (Ninv->top > 1) mont->n0[1] = Ninv->d[1]; #endif /* Compute RR = R * R mod N, for use when converting to Montgomery form. */ BN_zero(&mont->RR); if (!BN_set_bit(&mont->RR, mont->ri * 2)) goto err; if (!BN_mod_ct(&mont->RR, &mont->RR, &mont->N, ctx)) goto err; ret = 1; err: BN_CTX_end(ctx); return ret; } LCRYPTO_ALIAS(BN_MONT_CTX_set); BN_MONT_CTX * BN_MONT_CTX_set_locked(BN_MONT_CTX **pmctx, int lock, const BIGNUM *mod, BN_CTX *ctx) { BN_MONT_CTX *mctx = NULL; CRYPTO_r_lock(lock); mctx = *pmctx; CRYPTO_r_unlock(lock); if (mctx != NULL) goto done; if ((mctx = BN_MONT_CTX_new()) == NULL) goto err; if (!BN_MONT_CTX_set(mctx, mod, ctx)) goto err; CRYPTO_w_lock(lock); if (*pmctx != NULL) { /* Someone else raced us... */ BN_MONT_CTX_free(mctx); mctx = *pmctx; } else { *pmctx = mctx; } CRYPTO_w_unlock(lock); goto done; err: BN_MONT_CTX_free(mctx); mctx = NULL; done: return mctx; } LCRYPTO_ALIAS(BN_MONT_CTX_set_locked); /* * bn_montgomery_reduce() performs Montgomery reduction, reducing the input * from its Montgomery form aR to a, returning the result in r. Note that the * input is mutated in the process of performing the reduction, destroying its * original value. */ static int bn_montgomery_reduce(BIGNUM *r, BIGNUM *a, BN_MONT_CTX *mctx) { BIGNUM *n; BN_ULONG *ap, *rp, n0, v, carry, mask; int i, max, n_len; n = &mctx->N; n_len = mctx->N.top; if (n_len == 0) { BN_zero(r); return 1; } if (!bn_wexpand(r, n_len)) return 0; /* * Expand a to twice the length of the modulus, zero if necessary. * XXX - make this a requirement of the caller. */ if ((max = 2 * n_len) < n_len) return 0; if (!bn_wexpand(a, max)) return 0; for (i = a->top; i < max; i++) a->d[i] = 0; carry = 0; n0 = mctx->n0[0]; /* Add multiples of the modulus, so that it becomes divisible by R. */ for (i = 0; i < n_len; i++) { v = bn_mul_add_words(&a->d[i], n->d, n_len, a->d[i] * n0); bn_addw_addw(v, a->d[i + n_len], carry, &carry, &a->d[i + n_len]); } /* Divide by R (this is the equivalent of right shifting by n_len). */ ap = &a->d[n_len]; /* * The output is now in the range of [0, 2N). Attempt to reduce once by * subtracting the modulus. If the reduction was necessary then the * result is already in r, otherwise copy the value prior to reduction * from the top half of a. */ mask = carry - bn_sub_words(r->d, ap, n->d, n_len); rp = r->d; for (i = 0; i < n_len; i++) { *rp = (*rp & ~mask) | (*ap & mask); rp++; ap++; } r->top = n_len; bn_correct_top(r); BN_set_negative(r, a->neg ^ n->neg); return 1; } static int bn_mod_mul_montgomery_simple(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_MONT_CTX *mctx, BN_CTX *ctx) { BIGNUM *tmp; int ret = 0; BN_CTX_start(ctx); if ((tmp = BN_CTX_get(ctx)) == NULL) goto err; if (a == b) { if (!BN_sqr(tmp, a, ctx)) goto err; } else { if (!BN_mul(tmp, a, b, ctx)) goto err; } /* Reduce from aRR to aR. */ if (!bn_montgomery_reduce(r, tmp, mctx)) goto err; ret = 1; err: BN_CTX_end(ctx); return ret; } static void bn_montgomery_multiply_word(const BN_ULONG *ap, BN_ULONG b, const BN_ULONG *np, BN_ULONG *tp, BN_ULONG w, BN_ULONG *carry_a, BN_ULONG *carry_n, int n_len) { BN_ULONG x3, x2, x1, x0; *carry_a = *carry_n = 0; while (n_len & ~3) { bn_qwmulw_addqw_addw(ap[3], ap[2], ap[1], ap[0], b, tp[3], tp[2], tp[1], tp[0], *carry_a, carry_a, &x3, &x2, &x1, &x0); bn_qwmulw_addqw_addw(np[3], np[2], np[1], np[0], w, x3, x2, x1, x0, *carry_n, carry_n, &tp[3], &tp[2], &tp[1], &tp[0]); ap += 4; np += 4; tp += 4; n_len -= 4; } while (n_len > 0) { bn_mulw_addw_addw(ap[0], b, tp[0], *carry_a, carry_a, &x0); bn_mulw_addw_addw(np[0], w, x0, *carry_n, carry_n, &tp[0]); ap++; np++; tp++; n_len--; } } /* * bn_montgomery_multiply_words() computes r = aR * bR * R^-1 = abR for the * given word arrays. The caller must ensure that rp, ap, bp and np are all * n_len words in length, while tp must be n_len * 2 + 2 words in length. */ static void bn_montgomery_multiply_words(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np, BN_ULONG *tp, BN_ULONG n0, int n_len) { BN_ULONG a0, b, carry_a, carry_n, carry, mask, w; int i; carry = 0; for (i = 0; i < n_len; i++) tp[i] = 0; a0 = ap[0]; for (i = 0; i < n_len; i++) { b = bp[i]; /* Compute new t[0] * n0, as we need it for this iteration. */ w = (a0 * b + tp[0]) * n0; bn_montgomery_multiply_word(ap, b, np, tp, w, &carry_a, &carry_n, n_len); bn_addw_addw(carry_a, carry_n, carry, &carry, &tp[n_len]); tp++; } tp[n_len] = carry; /* * The output is now in the range of [0, 2N). Attempt to reduce once by * subtracting the modulus. If the reduction was necessary then the * result is already in r, otherwise copy the value prior to reduction * from tp. */ mask = bn_ct_ne_zero(tp[n_len]) - bn_sub_words(rp, tp, np, n_len); for (i = 0; i < n_len; i++) { *rp = (*rp & ~mask) | (*tp & mask); rp++; tp++; } } /* * bn_montgomery_multiply() computes r = aR * bR * R^-1 = abR for the given * BIGNUMs. The caller must ensure that the modulus is two or more words in * length and that a and b have the same number of words as the modulus. */ static int bn_montgomery_multiply(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_MONT_CTX *mctx, BN_CTX *ctx) { BIGNUM *t; int ret = 0; BN_CTX_start(ctx); if (mctx->N.top <= 1 || a->top != mctx->N.top || b->top != mctx->N.top) goto err; if (!bn_wexpand(r, mctx->N.top)) goto err; if ((t = BN_CTX_get(ctx)) == NULL) goto err; if (!bn_wexpand(t, mctx->N.top * 2 + 2)) goto err; bn_montgomery_multiply_words(r->d, a->d, b->d, mctx->N.d, t->d, mctx->n0[0], mctx->N.top); r->top = mctx->N.top; bn_correct_top(r); BN_set_negative(r, a->neg ^ b->neg); ret = 1; err: BN_CTX_end(ctx); return ret; } #ifndef OPENSSL_BN_ASM_MONT static int bn_mod_mul_montgomery(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_MONT_CTX *mctx, BN_CTX *ctx) { if (mctx->N.top <= 1 || a->top != mctx->N.top || b->top != mctx->N.top) return bn_mod_mul_montgomery_simple(r, a, b, mctx, ctx); return bn_montgomery_multiply(r, a, b, mctx, ctx); } #else static int bn_mod_mul_montgomery(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_MONT_CTX *mctx, BN_CTX *ctx) { if (mctx->N.top <= 1 || a->top != mctx->N.top || b->top != mctx->N.top) return bn_mod_mul_montgomery_simple(r, a, b, mctx, ctx); /* * Legacy bn_mul_mont() performs stack based allocation, without * size limitation. Allowing a large size results in the stack * being blown. */ if (mctx->N.top > (8 * 1024 / sizeof(BN_ULONG))) return bn_montgomery_multiply(r, a, b, mctx, ctx); if (!bn_wexpand(r, mctx->N.top)) return 0; /* * Legacy bn_mul_mont() can indicate that we should "fallback" to * another implementation. */ if (!bn_mul_mont(r->d, a->d, b->d, mctx->N.d, mctx->n0, mctx->N.top)) return bn_montgomery_multiply(r, a, b, mctx, ctx); r->top = mctx->N.top; bn_correct_top(r); BN_set_negative(r, a->neg ^ b->neg); return (1); } #endif int BN_mod_mul_montgomery(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_MONT_CTX *mctx, BN_CTX *ctx) { /* Compute r = aR * bR * R^-1 mod N = abR mod N */ return bn_mod_mul_montgomery(r, a, b, mctx, ctx); } LCRYPTO_ALIAS(BN_mod_mul_montgomery); int BN_to_montgomery(BIGNUM *r, const BIGNUM *a, BN_MONT_CTX *mctx, BN_CTX *ctx) { /* Compute r = a * R * R * R^-1 mod N = aR mod N */ return bn_mod_mul_montgomery(r, a, &mctx->RR, mctx, ctx); } LCRYPTO_ALIAS(BN_to_montgomery); int BN_from_montgomery(BIGNUM *r, const BIGNUM *a, BN_MONT_CTX *mctx, BN_CTX *ctx) { BIGNUM *tmp; int ret = 0; BN_CTX_start(ctx); if ((tmp = BN_CTX_get(ctx)) == NULL) goto err; if (!bn_copy(tmp, a)) goto err; if (!bn_montgomery_reduce(r, tmp, mctx)) goto err; ret = 1; err: BN_CTX_end(ctx); return ret; } LCRYPTO_ALIAS(BN_from_montgomery);