/* $OpenBSD: dsa_ossl.c,v 1.56 2024/05/11 06:43:50 tb Exp $ */ /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ /* Original version from Steven Schoch */ #include #include #include #include #include #include #include "bn_local.h" #include "dsa_local.h" /* * Since DSA parameters are entirely arbitrary and checking them to be * consistent is very expensive, we cannot do so on every sign operation. * Instead, cap the number of retries so we do not loop indefinitely if * the generator of the multiplicative group happens to be nilpotent. * The probability of needing a retry with valid parameters is negligible, * so trying 32 times is amply enough. */ #define DSA_MAX_SIGN_ITERATIONS 32 static DSA_SIG * dsa_do_sign(const unsigned char *dgst, int dlen, DSA *dsa) { BIGNUM *b = NULL, *bm = NULL, *bxr = NULL, *binv = NULL, *m = NULL; BIGNUM *kinv = NULL, *r = NULL, *s = NULL; BN_CTX *ctx = NULL; int reason = ERR_R_BN_LIB; DSA_SIG *ret = NULL; int attempts = 0; int noredo = 0; if (!dsa_check_key(dsa)) { reason = DSA_R_INVALID_PARAMETERS; goto err; } if ((s = BN_new()) == NULL) goto err; if ((ctx = BN_CTX_new()) == NULL) goto err; BN_CTX_start(ctx); if ((b = BN_CTX_get(ctx)) == NULL) goto err; if ((binv = BN_CTX_get(ctx)) == NULL) goto err; if ((bm = BN_CTX_get(ctx)) == NULL) goto err; if ((bxr = BN_CTX_get(ctx)) == NULL) goto err; if ((m = BN_CTX_get(ctx)) == NULL) goto err; /* * If the digest length is greater than N (the bit length of q), the * leftmost N bits of the digest shall be used, see FIPS 186-3, 4.2. * In this case the digest length is given in bytes. */ if (dlen > BN_num_bytes(dsa->q)) dlen = BN_num_bytes(dsa->q); if (BN_bin2bn(dgst, dlen, m) == NULL) goto err; redo: if (dsa->kinv == NULL || dsa->r == NULL) { if (!DSA_sign_setup(dsa, ctx, &kinv, &r)) goto err; } else { kinv = dsa->kinv; dsa->kinv = NULL; r = dsa->r; dsa->r = NULL; noredo = 1; } /* * Compute: * * s = inv(k)(m + xr) mod q * * In order to reduce the possibility of a side-channel attack, the * following is calculated using a blinding value: * * s = inv(b)(bm + bxr)inv(k) mod q * * Where b is a random value in the range [1, q). */ if (!bn_rand_interval(b, 1, dsa->q)) goto err; if (BN_mod_inverse_ct(binv, b, dsa->q, ctx) == NULL) goto err; if (!BN_mod_mul(bxr, b, dsa->priv_key, dsa->q, ctx)) /* bx */ goto err; if (!BN_mod_mul(bxr, bxr, r, dsa->q, ctx)) /* bxr */ goto err; if (!BN_mod_mul(bm, b, m, dsa->q, ctx)) /* bm */ goto err; if (!BN_mod_add(s, bxr, bm, dsa->q, ctx)) /* s = bm + bxr */ goto err; if (!BN_mod_mul(s, s, kinv, dsa->q, ctx)) /* s = b(m + xr)k^-1 */ goto err; if (!BN_mod_mul(s, s, binv, dsa->q, ctx)) /* s = (m + xr)k^-1 */ goto err; /* * Redo if r or s is zero as required by FIPS 186-3: this is very * unlikely. */ if (BN_is_zero(r) || BN_is_zero(s)) { if (noredo) { reason = DSA_R_NEED_NEW_SETUP_VALUES; goto err; } if (++attempts > DSA_MAX_SIGN_ITERATIONS) { reason = DSA_R_INVALID_PARAMETERS; goto err; } goto redo; } if ((ret = DSA_SIG_new()) == NULL) { reason = ERR_R_MALLOC_FAILURE; goto err; } ret->r = r; ret->s = s; err: if (!ret) { DSAerror(reason); BN_free(r); BN_free(s); } BN_CTX_end(ctx); BN_CTX_free(ctx); BN_free(kinv); return ret; } static int dsa_sign_setup(DSA *dsa, BN_CTX *ctx_in, BIGNUM **kinvp, BIGNUM **rp) { BIGNUM *k = NULL, *l = NULL, *m = NULL, *kinv = NULL, *r = NULL; BN_CTX *ctx = NULL; int q_bits; int ret = 0; if (!dsa_check_key(dsa)) goto err; if ((r = BN_new()) == NULL) goto err; if ((ctx = ctx_in) == NULL) ctx = BN_CTX_new(); if (ctx == NULL) goto err; BN_CTX_start(ctx); if ((k = BN_CTX_get(ctx)) == NULL) goto err; if ((l = BN_CTX_get(ctx)) == NULL) goto err; if ((m = BN_CTX_get(ctx)) == NULL) goto err; /* Preallocate space */ q_bits = BN_num_bits(dsa->q); if (!BN_set_bit(k, q_bits) || !BN_set_bit(l, q_bits) || !BN_set_bit(m, q_bits)) goto err; if (!bn_rand_interval(k, 1, dsa->q)) goto err; BN_set_flags(k, BN_FLG_CONSTTIME); if (dsa->flags & DSA_FLAG_CACHE_MONT_P) { if (!BN_MONT_CTX_set_locked(&dsa->method_mont_p, CRYPTO_LOCK_DSA, dsa->p, ctx)) goto err; } /* Compute r = (g^k mod p) mod q */ /* * We do not want timing information to leak the length of k, * so we compute G^k using an equivalent exponent of fixed * bit-length. * * We unconditionally perform both of these additions to prevent a * small timing information leakage. We then choose the sum that is * one bit longer than the modulus. * * TODO: revisit the bn_copy aiming for a memory access agnostic * conditional copy. */ if (!BN_add(l, k, dsa->q) || !BN_add(m, l, dsa->q) || !bn_copy(k, BN_num_bits(l) > q_bits ? l : m)) goto err; if (!BN_mod_exp_mont_ct(r, dsa->g, k, dsa->p, ctx, dsa->method_mont_p)) goto err; if (!BN_mod_ct(r, r, dsa->q, ctx)) goto err; /* Compute part of 's = inv(k) (m + xr) mod q' */ if ((kinv = BN_mod_inverse_ct(NULL, k, dsa->q, ctx)) == NULL) goto err; BN_free(*kinvp); *kinvp = kinv; kinv = NULL; BN_free(*rp); *rp = r; ret = 1; err: if (!ret) { DSAerror(ERR_R_BN_LIB); BN_free(r); } BN_CTX_end(ctx); if (ctx != ctx_in) BN_CTX_free(ctx); return ret; } static int dsa_do_verify(const unsigned char *dgst, int dgst_len, DSA_SIG *sig, DSA *dsa) { BIGNUM *u1 = NULL, *u2 = NULL, *t1 = NULL; BN_CTX *ctx = NULL; BN_MONT_CTX *mont = NULL; int qbits; int ret = -1; if (!dsa_check_key(dsa)) goto err; if ((ctx = BN_CTX_new()) == NULL) goto err; BN_CTX_start(ctx); if ((u1 = BN_CTX_get(ctx)) == NULL) goto err; if ((u2 = BN_CTX_get(ctx)) == NULL) goto err; if ((t1 = BN_CTX_get(ctx)) == NULL) goto err; if (BN_is_zero(sig->r) || BN_is_negative(sig->r) || BN_ucmp(sig->r, dsa->q) >= 0) { ret = 0; goto err; } if (BN_is_zero(sig->s) || BN_is_negative(sig->s) || BN_ucmp(sig->s, dsa->q) >= 0) { ret = 0; goto err; } /* Calculate w = inv(s) mod q, saving w in u2. */ if ((BN_mod_inverse_ct(u2, sig->s, dsa->q, ctx)) == NULL) goto err; /* * If the digest length is greater than the size of q use the * BN_num_bits(dsa->q) leftmost bits of the digest, see FIPS 186-4, 4.2. */ qbits = BN_num_bits(dsa->q); if (dgst_len > (qbits >> 3)) dgst_len = (qbits >> 3); /* Save m in u1. */ if (BN_bin2bn(dgst, dgst_len, u1) == NULL) goto err; /* u1 = m * w mod q */ if (!BN_mod_mul(u1, u1, u2, dsa->q, ctx)) goto err; /* u2 = r * w mod q */ if (!BN_mod_mul(u2, sig->r, u2, dsa->q, ctx)) goto err; if (dsa->flags & DSA_FLAG_CACHE_MONT_P) { mont = BN_MONT_CTX_set_locked(&dsa->method_mont_p, CRYPTO_LOCK_DSA, dsa->p, ctx); if (!mont) goto err; } if (!BN_mod_exp2_mont(t1, dsa->g, u1, dsa->pub_key, u2, dsa->p, ctx, mont)) goto err; /* let u1 = u1 mod q */ if (!BN_mod_ct(u1, t1, dsa->q, ctx)) goto err; /* v is in u1 - if the signature is correct, it will be equal to r. */ ret = BN_ucmp(u1, sig->r) == 0; err: if (ret < 0) DSAerror(ERR_R_BN_LIB); BN_CTX_end(ctx); BN_CTX_free(ctx); return ret; } static int dsa_init(DSA *dsa) { dsa->flags |= DSA_FLAG_CACHE_MONT_P; return 1; } static int dsa_finish(DSA *dsa) { BN_MONT_CTX_free(dsa->method_mont_p); return 1; } static const DSA_METHOD openssl_dsa_meth = { .name = "OpenSSL DSA method", .dsa_do_sign = dsa_do_sign, .dsa_sign_setup = dsa_sign_setup, .dsa_do_verify = dsa_do_verify, .init = dsa_init, .finish = dsa_finish, }; const DSA_METHOD * DSA_OpenSSL(void) { return &openssl_dsa_meth; } LCRYPTO_ALIAS(DSA_OpenSSL); DSA_SIG * DSA_SIG_new(void) { return calloc(1, sizeof(DSA_SIG)); } LCRYPTO_ALIAS(DSA_SIG_new); void DSA_SIG_free(DSA_SIG *sig) { if (sig == NULL) return; BN_free(sig->r); BN_free(sig->s); free(sig); } LCRYPTO_ALIAS(DSA_SIG_free); int DSA_sign_setup(DSA *dsa, BN_CTX *ctx_in, BIGNUM **kinvp, BIGNUM **rp) { return dsa->meth->dsa_sign_setup(dsa, ctx_in, kinvp, rp); } LCRYPTO_ALIAS(DSA_sign_setup); DSA_SIG * DSA_do_sign(const unsigned char *dgst, int dlen, DSA *dsa) { return dsa->meth->dsa_do_sign(dgst, dlen, dsa); } LCRYPTO_ALIAS(DSA_do_sign); int DSA_do_verify(const unsigned char *dgst, int dgst_len, DSA_SIG *sig, DSA *dsa) { return dsa->meth->dsa_do_verify(dgst, dgst_len, sig, dsa); } LCRYPTO_ALIAS(DSA_do_verify);