/* $OpenBSD: ec_lib.c,v 1.85 2024/11/08 13:55:45 tb Exp $ */ /* * Originally written by Bodo Moeller for the OpenSSL project. */ /* ==================================================================== * Copyright (c) 1998-2003 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * openssl-core@openssl.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.openssl.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== * * This product includes cryptographic software written by Eric Young * (eay@cryptsoft.com). This product includes software written by Tim * Hudson (tjh@cryptsoft.com). * */ /* ==================================================================== * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. * Binary polynomial ECC support in OpenSSL originally developed by * SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project. */ #include #include #include #include #include #include #include #include #include "bn_local.h" #include "ec_local.h" /* functions for EC_GROUP objects */ EC_GROUP * EC_GROUP_new(const EC_METHOD *meth) { EC_GROUP *group = NULL; if (meth == NULL) { ECerror(EC_R_SLOT_FULL); goto err; } if (meth->group_init == NULL) { ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); goto err; } if ((group = calloc(1, sizeof(*group))) == NULL) { ECerror(ERR_R_MALLOC_FAILURE); goto err; } group->meth = meth; BN_init(&group->order); BN_init(&group->cofactor); group->asn1_flag = OPENSSL_EC_NAMED_CURVE; group->asn1_form = POINT_CONVERSION_UNCOMPRESSED; if (!meth->group_init(group)) goto err; return group; err: EC_GROUP_free(group); return NULL; } LCRYPTO_ALIAS(EC_GROUP_new); void EC_GROUP_free(EC_GROUP *group) { if (group == NULL) return; if (group->meth->group_finish != NULL) group->meth->group_finish(group); EC_POINT_free(group->generator); BN_free(&group->order); BN_free(&group->cofactor); freezero(group->seed, group->seed_len); freezero(group, sizeof *group); } LCRYPTO_ALIAS(EC_GROUP_free); void EC_GROUP_clear_free(EC_GROUP *group) { EC_GROUP_free(group); } LCRYPTO_ALIAS(EC_GROUP_clear_free); int EC_GROUP_copy(EC_GROUP *dest, const EC_GROUP *src) { if (dest->meth->group_copy == NULL) { ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; } if (dest->meth != src->meth) { ECerror(EC_R_INCOMPATIBLE_OBJECTS); return 0; } if (dest == src) return 1; if (!dest->meth->group_copy(dest, src)) return 0; EC_POINT_free(dest->generator); dest->generator = NULL; if (src->generator != NULL) { if (!EC_GROUP_set_generator(dest, src->generator, &src->order, &src->cofactor)) return 0; } else { /* XXX - should do the sanity checks as in set_generator() */ if (!bn_copy(&dest->order, &src->order)) return 0; if (!bn_copy(&dest->cofactor, &src->cofactor)) return 0; } dest->curve_name = src->curve_name; dest->asn1_flag = src->asn1_flag; dest->asn1_form = src->asn1_form; if (!EC_GROUP_set_seed(dest, src->seed, src->seed_len)) return 0; return dest->meth->group_copy(dest, src); } LCRYPTO_ALIAS(EC_GROUP_copy); EC_GROUP * EC_GROUP_dup(const EC_GROUP *in_group) { EC_GROUP *group = NULL; if (in_group == NULL) goto err; if ((group = EC_GROUP_new(in_group->meth)) == NULL) goto err; if (!EC_GROUP_copy(group, in_group)) goto err; return group; err: EC_GROUP_free(group); return NULL; } LCRYPTO_ALIAS(EC_GROUP_dup); const EC_METHOD * EC_GROUP_method_of(const EC_GROUP *group) { return group->meth; } LCRYPTO_ALIAS(EC_GROUP_method_of); int EC_METHOD_get_field_type(const EC_METHOD *meth) { return meth->field_type; } LCRYPTO_ALIAS(EC_METHOD_get_field_type); int ec_group_get_field_type(const EC_GROUP *group) { if (group == NULL || group->meth == NULL) return NID_undef; return group->meth->field_type; } /* * If there is a user-provided cofactor, sanity check and use it. Otherwise * try computing the cofactor from generator order n and field cardinality q. * This works for all curves of cryptographic interest. * * Hasse's theorem: | h * n - (q + 1) | <= 2 * sqrt(q) * * So: h_min = (q + 1 - 2*sqrt(q)) / n and h_max = (q + 1 + 2*sqrt(q)) / n and * therefore h_max - h_min = 4*sqrt(q) / n. So if n > 4*sqrt(q) holds, there is * only one possible value for h: * * h = \lfloor (h_min + h_max)/2 \rceil = \lfloor (q + 1)/n \rceil * * Otherwise, zero cofactor and return success. */ static int ec_set_cofactor(EC_GROUP *group, const BIGNUM *in_cofactor) { BN_CTX *ctx = NULL; BIGNUM *cofactor; int ret = 0; BN_zero(&group->cofactor); if ((ctx = BN_CTX_new()) == NULL) goto err; BN_CTX_start(ctx); if ((cofactor = BN_CTX_get(ctx)) == NULL) goto err; /* * Unfortunately, the cofactor is an optional field in many standards. * Internally, the library uses a 0 cofactor as a marker for "unknown * cofactor". So accept in_cofactor == NULL or in_cofactor >= 0. */ if (in_cofactor != NULL && !BN_is_zero(in_cofactor)) { if (BN_is_negative(in_cofactor)) { ECerror(EC_R_UNKNOWN_COFACTOR); goto err; } if (!bn_copy(cofactor, in_cofactor)) goto err; goto done; } /* * If the cofactor is too large, we cannot guess it and default to zero. * The RHS of below is a strict overestimate of log(4 * sqrt(q)). */ if (BN_num_bits(&group->order) <= (BN_num_bits(&group->field) + 1) / 2 + 3) goto done; /* * Compute * h = \lfloor (q + 1)/n \rceil = \lfloor (q + 1 + n/2) / n \rfloor. */ /* h = n/2 */ if (!BN_rshift1(cofactor, &group->order)) goto err; /* h = 1 + n/2 */ if (!BN_add_word(cofactor, 1)) goto err; /* h = q + 1 + n/2 */ if (!BN_add(cofactor, cofactor, &group->field)) goto err; /* h = (q + 1 + n/2) / n */ if (!BN_div_ct(cofactor, NULL, cofactor, &group->order, ctx)) goto err; done: /* Use Hasse's theorem to bound the cofactor. */ if (BN_num_bits(cofactor) > BN_num_bits(&group->field) + 1) { ECerror(EC_R_INVALID_GROUP_ORDER); goto err; } if (!bn_copy(&group->cofactor, cofactor)) goto err; ret = 1; err: BN_CTX_end(ctx); BN_CTX_free(ctx); return ret; } int EC_GROUP_set_generator(EC_GROUP *group, const EC_POINT *generator, const BIGNUM *order, const BIGNUM *cofactor) { if (generator == NULL) { ECerror(ERR_R_PASSED_NULL_PARAMETER); return 0; } /* Require group->field >= 1. */ if (BN_is_zero(&group->field) || BN_is_negative(&group->field)) { ECerror(EC_R_INVALID_FIELD); return 0; } /* * Require order > 1 and enforce an upper bound of at most one bit more * than the field cardinality due to Hasse's theorem. */ if (order == NULL || BN_cmp(order, BN_value_one()) <= 0 || BN_num_bits(order) > BN_num_bits(&group->field) + 1) { ECerror(EC_R_INVALID_GROUP_ORDER); return 0; } if (group->generator == NULL) group->generator = EC_POINT_new(group); if (group->generator == NULL) return 0; if (!EC_POINT_copy(group->generator, generator)) return 0; if (!bn_copy(&group->order, order)) return 0; if (!ec_set_cofactor(group, cofactor)) return 0; return 1; } LCRYPTO_ALIAS(EC_GROUP_set_generator); const EC_POINT * EC_GROUP_get0_generator(const EC_GROUP *group) { return group->generator; } LCRYPTO_ALIAS(EC_GROUP_get0_generator); int EC_GROUP_get_order(const EC_GROUP *group, BIGNUM *order, BN_CTX *ctx) { if (!bn_copy(order, &group->order)) return 0; return !BN_is_zero(order); } LCRYPTO_ALIAS(EC_GROUP_get_order); const BIGNUM * EC_GROUP_get0_order(const EC_GROUP *group) { return &group->order; } int EC_GROUP_order_bits(const EC_GROUP *group) { return group->meth->group_order_bits(group); } LCRYPTO_ALIAS(EC_GROUP_order_bits); int EC_GROUP_get_cofactor(const EC_GROUP *group, BIGNUM *cofactor, BN_CTX *ctx) { if (!bn_copy(cofactor, &group->cofactor)) return 0; return !BN_is_zero(&group->cofactor); } LCRYPTO_ALIAS(EC_GROUP_get_cofactor); const BIGNUM * EC_GROUP_get0_cofactor(const EC_GROUP *group) { return &group->cofactor; } void EC_GROUP_set_curve_name(EC_GROUP *group, int nid) { group->curve_name = nid; } LCRYPTO_ALIAS(EC_GROUP_set_curve_name); int EC_GROUP_get_curve_name(const EC_GROUP *group) { return group->curve_name; } LCRYPTO_ALIAS(EC_GROUP_get_curve_name); void EC_GROUP_set_asn1_flag(EC_GROUP *group, int flag) { group->asn1_flag = flag; } LCRYPTO_ALIAS(EC_GROUP_set_asn1_flag); int EC_GROUP_get_asn1_flag(const EC_GROUP *group) { return group->asn1_flag; } LCRYPTO_ALIAS(EC_GROUP_get_asn1_flag); void EC_GROUP_set_point_conversion_form(EC_GROUP *group, point_conversion_form_t form) { group->asn1_form = form; } LCRYPTO_ALIAS(EC_GROUP_set_point_conversion_form); point_conversion_form_t EC_GROUP_get_point_conversion_form(const EC_GROUP *group) { return group->asn1_form; } LCRYPTO_ALIAS(EC_GROUP_get_point_conversion_form); size_t EC_GROUP_set_seed(EC_GROUP *group, const unsigned char *seed, size_t len) { free(group->seed); group->seed = NULL; group->seed_len = 0; if (seed == NULL || len == 0) return 1; if ((group->seed = malloc(len)) == NULL) return 0; memcpy(group->seed, seed, len); group->seed_len = len; return len; } LCRYPTO_ALIAS(EC_GROUP_set_seed); unsigned char * EC_GROUP_get0_seed(const EC_GROUP *group) { return group->seed; } LCRYPTO_ALIAS(EC_GROUP_get0_seed); size_t EC_GROUP_get_seed_len(const EC_GROUP *group) { return group->seed_len; } LCRYPTO_ALIAS(EC_GROUP_get_seed_len); int EC_GROUP_set_curve(EC_GROUP *group, const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx_in) { BN_CTX *ctx; int ret = 0; if ((ctx = ctx_in) == NULL) ctx = BN_CTX_new(); if (ctx == NULL) goto err; if (group->meth->group_set_curve == NULL) { ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); goto err; } ret = group->meth->group_set_curve(group, p, a, b, ctx); err: if (ctx != ctx_in) BN_CTX_free(ctx); return ret; } LCRYPTO_ALIAS(EC_GROUP_set_curve); int EC_GROUP_get_curve(const EC_GROUP *group, BIGNUM *p, BIGNUM *a, BIGNUM *b, BN_CTX *ctx_in) { BN_CTX *ctx; int ret = 0; if ((ctx = ctx_in) == NULL) ctx = BN_CTX_new(); if (ctx == NULL) goto err; if (group->meth->group_get_curve == NULL) { ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); goto err; } ret = group->meth->group_get_curve(group, p, a, b, ctx); err: if (ctx != ctx_in) BN_CTX_free(ctx); return ret; } LCRYPTO_ALIAS(EC_GROUP_get_curve); int EC_GROUP_set_curve_GFp(EC_GROUP *group, const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) { return EC_GROUP_set_curve(group, p, a, b, ctx); } LCRYPTO_ALIAS(EC_GROUP_set_curve_GFp); int EC_GROUP_get_curve_GFp(const EC_GROUP *group, BIGNUM *p, BIGNUM *a, BIGNUM *b, BN_CTX *ctx) { return EC_GROUP_get_curve(group, p, a, b, ctx); } LCRYPTO_ALIAS(EC_GROUP_get_curve_GFp); EC_GROUP * EC_GROUP_new_curve_GFp(const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) { EC_GROUP *group; if ((group = EC_GROUP_new(EC_GFp_mont_method())) == NULL) goto err; if (!EC_GROUP_set_curve(group, p, a, b, ctx)) goto err; return group; err: EC_GROUP_free(group); return NULL; } LCRYPTO_ALIAS(EC_GROUP_new_curve_GFp); int EC_GROUP_get_degree(const EC_GROUP *group) { if (group->meth->group_get_degree == NULL) { ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; } return group->meth->group_get_degree(group); } LCRYPTO_ALIAS(EC_GROUP_get_degree); int EC_GROUP_check_discriminant(const EC_GROUP *group, BN_CTX *ctx_in) { BN_CTX *ctx; int ret = 0; if ((ctx = ctx_in) == NULL) ctx = BN_CTX_new(); if (ctx == NULL) goto err; if (group->meth->group_check_discriminant == NULL) { ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); goto err; } ret = group->meth->group_check_discriminant(group, ctx); err: if (ctx != ctx_in) BN_CTX_free(ctx); return ret; } LCRYPTO_ALIAS(EC_GROUP_check_discriminant); int EC_GROUP_check(const EC_GROUP *group, BN_CTX *ctx_in) { BN_CTX *ctx; EC_POINT *point = NULL; const BIGNUM *order; int ret = 0; if ((ctx = ctx_in) == NULL) ctx = BN_CTX_new(); if (ctx == NULL) goto err; if (!EC_GROUP_check_discriminant(group, ctx)) { ECerror(EC_R_DISCRIMINANT_IS_ZERO); goto err; } if (group->generator == NULL) { ECerror(EC_R_UNDEFINED_GENERATOR); goto err; } if (EC_POINT_is_on_curve(group, group->generator, ctx) <= 0) { ECerror(EC_R_POINT_IS_NOT_ON_CURVE); goto err; } if ((point = EC_POINT_new(group)) == NULL) goto err; if ((order = EC_GROUP_get0_order(group)) == NULL) goto err; if (BN_is_zero(order)) { ECerror(EC_R_UNDEFINED_ORDER); goto err; } if (!EC_POINT_mul(group, point, order, NULL, NULL, ctx)) goto err; if (!EC_POINT_is_at_infinity(group, point)) { ECerror(EC_R_INVALID_GROUP_ORDER); goto err; } ret = 1; err: if (ctx != ctx_in) BN_CTX_free(ctx); EC_POINT_free(point); return ret; } LCRYPTO_ALIAS(EC_GROUP_check); int EC_GROUP_cmp(const EC_GROUP *a, const EC_GROUP *b, BN_CTX *ctx) { int r = 0; BIGNUM *a1, *a2, *a3, *b1, *b2, *b3; BN_CTX *ctx_new = NULL; /* compare the field types */ if (ec_group_get_field_type(a) != ec_group_get_field_type(b)) return 1; /* compare the curve name (if present in both) */ if (EC_GROUP_get_curve_name(a) && EC_GROUP_get_curve_name(b) && EC_GROUP_get_curve_name(a) != EC_GROUP_get_curve_name(b)) return 1; if (!ctx) ctx_new = ctx = BN_CTX_new(); if (!ctx) return -1; BN_CTX_start(ctx); if ((a1 = BN_CTX_get(ctx)) == NULL) goto err; if ((a2 = BN_CTX_get(ctx)) == NULL) goto err; if ((a3 = BN_CTX_get(ctx)) == NULL) goto err; if ((b1 = BN_CTX_get(ctx)) == NULL) goto err; if ((b2 = BN_CTX_get(ctx)) == NULL) goto err; if ((b3 = BN_CTX_get(ctx)) == NULL) goto err; /* * XXX This approach assumes that the external representation of * curves over the same field type is the same. */ if (!a->meth->group_get_curve(a, a1, a2, a3, ctx) || !b->meth->group_get_curve(b, b1, b2, b3, ctx)) r = 1; if (r || BN_cmp(a1, b1) || BN_cmp(a2, b2) || BN_cmp(a3, b3)) r = 1; /* XXX EC_POINT_cmp() assumes that the methods are equal */ if (r || EC_POINT_cmp(a, EC_GROUP_get0_generator(a), EC_GROUP_get0_generator(b), ctx)) r = 1; if (!r) { /* compare the order and cofactor */ if (!EC_GROUP_get_order(a, a1, ctx) || !EC_GROUP_get_order(b, b1, ctx) || !EC_GROUP_get_cofactor(a, a2, ctx) || !EC_GROUP_get_cofactor(b, b2, ctx)) goto err; if (BN_cmp(a1, b1) || BN_cmp(a2, b2)) r = 1; } BN_CTX_end(ctx); if (ctx_new) BN_CTX_free(ctx); return r; err: BN_CTX_end(ctx); if (ctx_new) BN_CTX_free(ctx); return -1; } LCRYPTO_ALIAS(EC_GROUP_cmp); /* * Coordinate blinding for EC_POINT. * * The underlying EC_METHOD can optionally implement this function: * underlying implementations should return 0 on errors, or 1 on success. * * This wrapper returns 1 in case the underlying EC_METHOD does not support * coordinate blinding. */ int ec_point_blind_coordinates(const EC_GROUP *group, EC_POINT *p, BN_CTX *ctx) { if (group->meth->blind_coordinates == NULL) return 1; return group->meth->blind_coordinates(group, p, ctx); } EC_POINT * EC_POINT_new(const EC_GROUP *group) { EC_POINT *point = NULL; if (group == NULL) { ECerror(ERR_R_PASSED_NULL_PARAMETER); goto err; } if (group->meth->point_init == NULL) { ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); goto err; } if ((point = calloc(1, sizeof(*point))) == NULL) { ECerror(ERR_R_MALLOC_FAILURE); goto err; } point->meth = group->meth; if (!point->meth->point_init(point)) goto err; return point; err: EC_POINT_free(point); return NULL; } LCRYPTO_ALIAS(EC_POINT_new); void EC_POINT_free(EC_POINT *point) { if (point == NULL) return; if (point->meth->point_finish != NULL) point->meth->point_finish(point); freezero(point, sizeof *point); } LCRYPTO_ALIAS(EC_POINT_free); void EC_POINT_clear_free(EC_POINT *point) { EC_POINT_free(point); } LCRYPTO_ALIAS(EC_POINT_clear_free); int EC_POINT_copy(EC_POINT *dest, const EC_POINT *src) { if (dest->meth->point_copy == NULL) { ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; } if (dest->meth != src->meth) { ECerror(EC_R_INCOMPATIBLE_OBJECTS); return 0; } if (dest == src) return 1; return dest->meth->point_copy(dest, src); } LCRYPTO_ALIAS(EC_POINT_copy); EC_POINT * EC_POINT_dup(const EC_POINT *in_point, const EC_GROUP *group) { EC_POINT *point = NULL; if (in_point == NULL) goto err; if ((point = EC_POINT_new(group)) == NULL) goto err; if (!EC_POINT_copy(point, in_point)) goto err; return point; err: EC_POINT_free(point); return NULL; } LCRYPTO_ALIAS(EC_POINT_dup); const EC_METHOD * EC_POINT_method_of(const EC_POINT *point) { return point->meth; } LCRYPTO_ALIAS(EC_POINT_method_of); int EC_POINT_set_to_infinity(const EC_GROUP *group, EC_POINT *point) { if (group->meth->point_set_to_infinity == NULL) { ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; } if (group->meth != point->meth) { ECerror(EC_R_INCOMPATIBLE_OBJECTS); return 0; } return group->meth->point_set_to_infinity(group, point); } LCRYPTO_ALIAS(EC_POINT_set_to_infinity); int EC_POINT_set_Jprojective_coordinates(const EC_GROUP *group, EC_POINT *point, const BIGNUM *x, const BIGNUM *y, const BIGNUM *z, BN_CTX *ctx_in) { BN_CTX *ctx; int ret = 0; if ((ctx = ctx_in) == NULL) ctx = BN_CTX_new(); if (ctx == NULL) goto err; if (group->meth->point_set_Jprojective_coordinates == NULL) { ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); goto err; } if (group->meth != point->meth) { ECerror(EC_R_INCOMPATIBLE_OBJECTS); goto err; } if (!group->meth->point_set_Jprojective_coordinates(group, point, x, y, z, ctx)) goto err; if (EC_POINT_is_on_curve(group, point, ctx) <= 0) { ECerror(EC_R_POINT_IS_NOT_ON_CURVE); goto err; } ret = 1; err: if (ctx != ctx_in) BN_CTX_free(ctx); return ret; } int EC_POINT_get_Jprojective_coordinates(const EC_GROUP *group, const EC_POINT *point, BIGNUM *x, BIGNUM *y, BIGNUM *z, BN_CTX *ctx_in) { BN_CTX *ctx; int ret = 0; if ((ctx = ctx_in) == NULL) ctx = BN_CTX_new(); if (ctx == NULL) goto err; if (group->meth->point_get_Jprojective_coordinates == NULL) { ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); goto err; } if (group->meth != point->meth) { ECerror(EC_R_INCOMPATIBLE_OBJECTS); goto err; } ret = group->meth->point_get_Jprojective_coordinates(group, point, x, y, z, ctx); err: if (ctx != ctx_in) BN_CTX_free(ctx); return ret; } int EC_POINT_set_Jprojective_coordinates_GFp(const EC_GROUP *group, EC_POINT *point, const BIGNUM *x, const BIGNUM *y, const BIGNUM *z, BN_CTX *ctx) { return EC_POINT_set_Jprojective_coordinates(group, point, x, y, z, ctx); } LCRYPTO_ALIAS(EC_POINT_set_Jprojective_coordinates_GFp); int EC_POINT_get_Jprojective_coordinates_GFp(const EC_GROUP *group, const EC_POINT *point, BIGNUM *x, BIGNUM *y, BIGNUM *z, BN_CTX *ctx) { return EC_POINT_get_Jprojective_coordinates(group, point, x, y, z, ctx); } LCRYPTO_ALIAS(EC_POINT_get_Jprojective_coordinates_GFp); int EC_POINT_set_affine_coordinates(const EC_GROUP *group, EC_POINT *point, const BIGNUM *x, const BIGNUM *y, BN_CTX *ctx_in) { BN_CTX *ctx; int ret = 0; if ((ctx = ctx_in) == NULL) ctx = BN_CTX_new(); if (ctx == NULL) goto err; if (group->meth->point_set_affine_coordinates == NULL) { ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); goto err; } if (group->meth != point->meth) { ECerror(EC_R_INCOMPATIBLE_OBJECTS); goto err; } if (!group->meth->point_set_affine_coordinates(group, point, x, y, ctx)) goto err; if (EC_POINT_is_on_curve(group, point, ctx) <= 0) { ECerror(EC_R_POINT_IS_NOT_ON_CURVE); goto err; } ret = 1; err: if (ctx != ctx_in) BN_CTX_free(ctx); return ret; } LCRYPTO_ALIAS(EC_POINT_set_affine_coordinates); int EC_POINT_set_affine_coordinates_GFp(const EC_GROUP *group, EC_POINT *point, const BIGNUM *x, const BIGNUM *y, BN_CTX *ctx) { return EC_POINT_set_affine_coordinates(group, point, x, y, ctx); } LCRYPTO_ALIAS(EC_POINT_set_affine_coordinates_GFp); int EC_POINT_get_affine_coordinates(const EC_GROUP *group, const EC_POINT *point, BIGNUM *x, BIGNUM *y, BN_CTX *ctx_in) { BN_CTX *ctx = NULL; int ret = 0; if (EC_POINT_is_at_infinity(group, point) > 0) { ECerror(EC_R_POINT_AT_INFINITY); goto err; } if ((ctx = ctx_in) == NULL) ctx = BN_CTX_new(); if (ctx == NULL) goto err; if (group->meth->point_get_affine_coordinates == NULL) { ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); goto err; } if (group->meth != point->meth) { ECerror(EC_R_INCOMPATIBLE_OBJECTS); goto err; } ret = group->meth->point_get_affine_coordinates(group, point, x, y, ctx); err: if (ctx != ctx_in) BN_CTX_free(ctx); return ret; } LCRYPTO_ALIAS(EC_POINT_get_affine_coordinates); int EC_POINT_get_affine_coordinates_GFp(const EC_GROUP *group, const EC_POINT *point, BIGNUM *x, BIGNUM *y, BN_CTX *ctx) { return EC_POINT_get_affine_coordinates(group, point, x, y, ctx); } LCRYPTO_ALIAS(EC_POINT_get_affine_coordinates_GFp); int EC_POINT_set_compressed_coordinates(const EC_GROUP *group, EC_POINT *point, const BIGNUM *x, int y_bit, BN_CTX *ctx_in) { BN_CTX *ctx; int ret = 0; if ((ctx = ctx_in) == NULL) ctx = BN_CTX_new(); if (ctx == NULL) goto err; if (group->meth->point_set_compressed_coordinates == NULL) { ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); goto err; } if (group->meth != point->meth) { ECerror(EC_R_INCOMPATIBLE_OBJECTS); goto err; } ret = group->meth->point_set_compressed_coordinates(group, point, x, y_bit, ctx); err: if (ctx != ctx_in) BN_CTX_free(ctx); return ret; } LCRYPTO_ALIAS(EC_POINT_set_compressed_coordinates); int EC_POINT_set_compressed_coordinates_GFp(const EC_GROUP *group, EC_POINT *point, const BIGNUM *x, int y_bit, BN_CTX *ctx) { return EC_POINT_set_compressed_coordinates(group, point, x, y_bit, ctx); } LCRYPTO_ALIAS(EC_POINT_set_compressed_coordinates_GFp); int EC_POINT_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, const EC_POINT *b, BN_CTX *ctx_in) { BN_CTX *ctx; int ret = 0; if ((ctx = ctx_in) == NULL) ctx = BN_CTX_new(); if (ctx == NULL) goto err; if (group->meth->add == NULL) { ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); goto err; } if (group->meth != r->meth || group->meth != a->meth || group->meth != b->meth) { ECerror(EC_R_INCOMPATIBLE_OBJECTS); goto err; } ret = group->meth->add(group, r, a, b, ctx); err: if (ctx != ctx_in) BN_CTX_free(ctx); return ret; } LCRYPTO_ALIAS(EC_POINT_add); int EC_POINT_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, BN_CTX *ctx_in) { BN_CTX *ctx; int ret = 0; if ((ctx = ctx_in) == NULL) ctx = BN_CTX_new(); if (ctx == NULL) goto err; if (group->meth->dbl == NULL) { ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); goto err; } if (group->meth != r->meth || r->meth != a->meth) { ECerror(EC_R_INCOMPATIBLE_OBJECTS); goto err; } ret = group->meth->dbl(group, r, a, ctx); err: if (ctx != ctx_in) BN_CTX_free(ctx); return ret; } LCRYPTO_ALIAS(EC_POINT_dbl); int EC_POINT_invert(const EC_GROUP *group, EC_POINT *a, BN_CTX *ctx_in) { BN_CTX *ctx; int ret = 0; if ((ctx = ctx_in) == NULL) ctx = BN_CTX_new(); if (ctx == NULL) goto err; if (group->meth->invert == NULL) { ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); goto err; } if (group->meth != a->meth) { ECerror(EC_R_INCOMPATIBLE_OBJECTS); goto err; } ret = group->meth->invert(group, a, ctx); err: if (ctx != ctx_in) BN_CTX_free(ctx); return ret; } LCRYPTO_ALIAS(EC_POINT_invert); int EC_POINT_is_at_infinity(const EC_GROUP *group, const EC_POINT *point) { if (group->meth->is_at_infinity == NULL) { ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; } if (group->meth != point->meth) { ECerror(EC_R_INCOMPATIBLE_OBJECTS); return 0; } return group->meth->is_at_infinity(group, point); } LCRYPTO_ALIAS(EC_POINT_is_at_infinity); int EC_POINT_is_on_curve(const EC_GROUP *group, const EC_POINT *point, BN_CTX *ctx_in) { BN_CTX *ctx; int ret = -1; if ((ctx = ctx_in) == NULL) ctx = BN_CTX_new(); if (ctx == NULL) goto err; if (group->meth->is_on_curve == NULL) { ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); goto err; } if (group->meth != point->meth) { ECerror(EC_R_INCOMPATIBLE_OBJECTS); goto err; } ret = group->meth->is_on_curve(group, point, ctx); err: if (ctx != ctx_in) BN_CTX_free(ctx); return ret; } LCRYPTO_ALIAS(EC_POINT_is_on_curve); int EC_POINT_cmp(const EC_GROUP *group, const EC_POINT *a, const EC_POINT *b, BN_CTX *ctx_in) { BN_CTX *ctx; int ret = -1; if ((ctx = ctx_in) == NULL) ctx = BN_CTX_new(); if (ctx == NULL) goto err; if (group->meth->point_cmp == NULL) { ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); goto err; } if (group->meth != a->meth || a->meth != b->meth) { ECerror(EC_R_INCOMPATIBLE_OBJECTS); goto err; } ret = group->meth->point_cmp(group, a, b, ctx); err: if (ctx != ctx_in) BN_CTX_free(ctx); return ret; } LCRYPTO_ALIAS(EC_POINT_cmp); int EC_POINT_make_affine(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx_in) { BN_CTX *ctx; int ret = 0; if ((ctx = ctx_in) == NULL) ctx = BN_CTX_new(); if (ctx == NULL) goto err; if (group->meth->make_affine == NULL) { ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); goto err; } if (group->meth != point->meth) { ECerror(EC_R_INCOMPATIBLE_OBJECTS); goto err; } ret = group->meth->make_affine(group, point, ctx); err: if (ctx != ctx_in) BN_CTX_free(ctx); return ret; } LCRYPTO_ALIAS(EC_POINT_make_affine); int EC_POINTs_make_affine(const EC_GROUP *group, size_t num, EC_POINT *points[], BN_CTX *ctx_in) { BN_CTX *ctx; size_t i; int ret = 0; if ((ctx = ctx_in) == NULL) ctx = BN_CTX_new(); if (ctx == NULL) goto err; if (group->meth->points_make_affine == NULL) { ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); goto err; } for (i = 0; i < num; i++) { if (group->meth != points[i]->meth) { ECerror(EC_R_INCOMPATIBLE_OBJECTS); goto err; } } ret = group->meth->points_make_affine(group, num, points, ctx); err: if (ctx != ctx_in) BN_CTX_free(ctx); return ret; } LCRYPTO_ALIAS(EC_POINTs_make_affine); int EC_POINTs_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar, size_t num, const EC_POINT *points[], const BIGNUM *scalars[], BN_CTX *ctx_in) { BN_CTX *ctx; int ret = 0; if ((ctx = ctx_in) == NULL) ctx = BN_CTX_new(); if (ctx == NULL) goto err; /* Only num == 0 and num == 1 is supported. */ if (group->meth->mul_generator_ct == NULL || group->meth->mul_single_ct == NULL || group->meth->mul_double_nonct == NULL || num > 1) { ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); goto err; } if (num == 1 && points != NULL && scalars != NULL) { /* Either bP or aG + bP, this is sane. */ ret = EC_POINT_mul(group, r, scalar, points[0], scalars[0], ctx); } else if (scalar != NULL && points == NULL && scalars == NULL) { /* aG, this is sane */ ret = EC_POINT_mul(group, r, scalar, NULL, NULL, ctx); } else { /* anything else is an error */ ECerror(ERR_R_EC_LIB); goto err; } err: if (ctx != ctx_in) BN_CTX_free(ctx); return ret; } LCRYPTO_ALIAS(EC_POINTs_mul); int EC_POINT_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *g_scalar, const EC_POINT *point, const BIGNUM *p_scalar, BN_CTX *ctx_in) { BN_CTX *ctx; int ret = 0; if ((ctx = ctx_in) == NULL) ctx = BN_CTX_new(); if (ctx == NULL) goto err; if (group->meth->mul_generator_ct == NULL || group->meth->mul_single_ct == NULL || group->meth->mul_double_nonct == NULL) { ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); goto err; } if (g_scalar != NULL && point == NULL && p_scalar == NULL) { /* * In this case we want to compute g_scalar * GeneratorPoint: * this codepath is reached most prominently by (ephemeral) key * generation of EC cryptosystems (i.e. ECDSA keygen and sign * setup, ECDH keygen/first half), where the scalar is always * secret. This is why we ignore if BN_FLG_CONSTTIME is actually * set and we always call the constant time version. */ ret = group->meth->mul_generator_ct(group, r, g_scalar, ctx); } else if (g_scalar == NULL && point != NULL && p_scalar != NULL) { /* * In this case we want to compute p_scalar * GenericPoint: * this codepath is reached most prominently by the second half * of ECDH, where the secret scalar is multiplied by the peer's * public point. To protect the secret scalar, we ignore if * BN_FLG_CONSTTIME is actually set and we always call the * constant time version. */ ret = group->meth->mul_single_ct(group, r, p_scalar, point, ctx); } else if (g_scalar != NULL && point != NULL && p_scalar != NULL) { /* * In this case we want to compute * g_scalar * GeneratorPoint + p_scalar * GenericPoint: * this codepath is reached most prominently by ECDSA signature * verification. So we call the non-ct version. */ ret = group->meth->mul_double_nonct(group, r, g_scalar, p_scalar, point, ctx); } else { /* Anything else is an error. */ ECerror(ERR_R_EC_LIB); goto err; } err: if (ctx != ctx_in) BN_CTX_free(ctx); return ret; } LCRYPTO_ALIAS(EC_POINT_mul); int EC_GROUP_precompute_mult(EC_GROUP *group, BN_CTX *ctx_in) { return 1; } LCRYPTO_ALIAS(EC_GROUP_precompute_mult); int EC_GROUP_have_precompute_mult(const EC_GROUP *group) { return 0; } LCRYPTO_ALIAS(EC_GROUP_have_precompute_mult); int ec_group_simple_order_bits(const EC_GROUP *group) { /* XXX change group->order to a pointer? */ #if 0 if (group->order == NULL) return 0; #endif return BN_num_bits(&group->order); }