/* $OpenBSD: evp_pbe.c,v 1.50 2024/04/09 13:52:41 beck Exp $ */ /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL * project 1999. */ /* ==================================================================== * Copyright (c) 1999-2006 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * licensing@OpenSSL.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== * * This product includes cryptographic software written by Eric Young * (eay@cryptsoft.com). This product includes software written by Tim * Hudson (tjh@cryptsoft.com). * */ #include #include #include #include #include #include #include #include #include #include "evp_local.h" #include "hmac_local.h" #include "pkcs12_local.h" #include "x509_local.h" /* Password based encryption (PBE) functions */ int PKCS5_PBE_keyivgen(EVP_CIPHER_CTX *ctx, const char *pass, int passlen, ASN1_TYPE *param, const EVP_CIPHER *cipher, const EVP_MD *md, int en_de); int PKCS5_v2_PBKDF2_keyivgen(EVP_CIPHER_CTX *ctx, const char *pass, int passlen, ASN1_TYPE *param, const EVP_CIPHER *c, const EVP_MD *md, int en_de); int PKCS12_PBE_keyivgen(EVP_CIPHER_CTX *ctx, const char *pass, int passlen, ASN1_TYPE *param, const EVP_CIPHER *cipher, const EVP_MD *md_type, int en_de); int PKCS5_v2_PBE_keyivgen(EVP_CIPHER_CTX *ctx, const char *pass, int passlen, ASN1_TYPE *param, const EVP_CIPHER *c, const EVP_MD *md, int en_de); static const struct pbe_config { int pbe_nid; int cipher_nid; int md_nid; EVP_PBE_KEYGEN *keygen; } pbe_outer[] = { { .pbe_nid = NID_pbeWithMD2AndDES_CBC, .cipher_nid = NID_des_cbc, .md_nid = NID_md2, .keygen = PKCS5_PBE_keyivgen, }, { .pbe_nid = NID_pbeWithMD5AndDES_CBC, .cipher_nid = NID_des_cbc, .md_nid = NID_md5, .keygen = PKCS5_PBE_keyivgen, }, { .pbe_nid = NID_pbeWithSHA1AndRC2_CBC, .cipher_nid = NID_rc2_64_cbc, .md_nid = NID_sha1, .keygen = PKCS5_PBE_keyivgen, }, { .pbe_nid = NID_id_pbkdf2, .cipher_nid = -1, .md_nid = -1, .keygen = PKCS5_v2_PBKDF2_keyivgen, }, { .pbe_nid = NID_pbe_WithSHA1And128BitRC4, .cipher_nid = NID_rc4, .md_nid = NID_sha1, .keygen = PKCS12_PBE_keyivgen, }, { .pbe_nid = NID_pbe_WithSHA1And40BitRC4, .cipher_nid = NID_rc4_40, .md_nid = NID_sha1, .keygen = PKCS12_PBE_keyivgen, }, { .pbe_nid = NID_pbe_WithSHA1And3_Key_TripleDES_CBC, .cipher_nid = NID_des_ede3_cbc, .md_nid = NID_sha1, .keygen = PKCS12_PBE_keyivgen, }, { .pbe_nid = NID_pbe_WithSHA1And2_Key_TripleDES_CBC, .cipher_nid = NID_des_ede_cbc, .md_nid = NID_sha1, .keygen = PKCS12_PBE_keyivgen, }, { .pbe_nid = NID_pbe_WithSHA1And128BitRC2_CBC, .cipher_nid = NID_rc2_cbc, .md_nid = NID_sha1, .keygen = PKCS12_PBE_keyivgen, }, { .pbe_nid = NID_pbe_WithSHA1And40BitRC2_CBC, .cipher_nid = NID_rc2_40_cbc, .md_nid = NID_sha1, .keygen = PKCS12_PBE_keyivgen, }, { .pbe_nid = NID_pbes2, .cipher_nid = -1, .md_nid = -1, .keygen = PKCS5_v2_PBE_keyivgen, }, { .pbe_nid = NID_pbeWithMD2AndRC2_CBC, .cipher_nid = NID_rc2_64_cbc, .md_nid = NID_md2, .keygen = PKCS5_PBE_keyivgen, }, { .pbe_nid = NID_pbeWithMD5AndRC2_CBC, .cipher_nid = NID_rc2_64_cbc, .md_nid = NID_md5, .keygen = PKCS5_PBE_keyivgen, }, { .pbe_nid = NID_pbeWithSHA1AndDES_CBC, .cipher_nid = NID_des_cbc, .md_nid = NID_sha1, .keygen = PKCS5_PBE_keyivgen, }, }; #define N_PBE_OUTER (sizeof(pbe_outer) / sizeof(pbe_outer[0])) int EVP_PBE_CipherInit(ASN1_OBJECT *pbe_obj, const char *pass, int passlen, ASN1_TYPE *param, EVP_CIPHER_CTX *ctx, int en_de) { const struct pbe_config *cfg = NULL; const EVP_CIPHER *cipher = NULL; const EVP_MD *md = NULL; int pbe_nid; size_t i; if ((pbe_nid = OBJ_obj2nid(pbe_obj)) == NID_undef) { EVPerror(EVP_R_UNKNOWN_PBE_ALGORITHM); return 0; } for (i = 0; i < N_PBE_OUTER; i++) { if (pbe_nid == pbe_outer[i].pbe_nid) { cfg = &pbe_outer[i]; break; } } if (cfg == NULL) { EVPerror(EVP_R_UNKNOWN_PBE_ALGORITHM); ERR_asprintf_error_data("NID=%d", pbe_nid); return 0; } if (pass == NULL) passlen = 0; if (passlen == -1) passlen = strlen(pass); if (cfg->cipher_nid != -1) { if ((cipher = EVP_get_cipherbynid(cfg->cipher_nid)) == NULL) { EVPerror(EVP_R_UNKNOWN_CIPHER); return 0; } } if (cfg->md_nid != -1) { if ((md = EVP_get_digestbynid(cfg->md_nid)) == NULL) { EVPerror(EVP_R_UNKNOWN_DIGEST); return 0; } } if (!cfg->keygen(ctx, pass, passlen, param, cipher, md, en_de)) { EVPerror(EVP_R_KEYGEN_FAILURE); return 0; } return 1; } int PKCS5_PBE_keyivgen(EVP_CIPHER_CTX *cctx, const char *pass, int passlen, ASN1_TYPE *param, const EVP_CIPHER *cipher, const EVP_MD *md, int en_de) { EVP_MD_CTX *md_ctx; unsigned char md_tmp[EVP_MAX_MD_SIZE]; unsigned char key[EVP_MAX_KEY_LENGTH], iv[EVP_MAX_IV_LENGTH]; int i; PBEPARAM *pbe; int saltlen, iter; unsigned char *salt; const unsigned char *pbuf; int mdsize; int ret = 0; /* Extract useful info from parameter */ if (param == NULL || param->type != V_ASN1_SEQUENCE || param->value.sequence == NULL) { EVPerror(EVP_R_DECODE_ERROR); return 0; } mdsize = EVP_MD_size(md); if (mdsize < 0) return 0; pbuf = param->value.sequence->data; if (!(pbe = d2i_PBEPARAM(NULL, &pbuf, param->value.sequence->length))) { EVPerror(EVP_R_DECODE_ERROR); return 0; } if (!pbe->iter) iter = 1; else if ((iter = ASN1_INTEGER_get(pbe->iter)) <= 0) { EVPerror(EVP_R_UNSUPORTED_NUMBER_OF_ROUNDS); PBEPARAM_free(pbe); return 0; } salt = pbe->salt->data; saltlen = pbe->salt->length; if (!pass) passlen = 0; else if (passlen == -1) passlen = strlen(pass); if ((md_ctx = EVP_MD_CTX_new()) == NULL) goto err; if (!EVP_DigestInit_ex(md_ctx, md, NULL)) goto err; if (!EVP_DigestUpdate(md_ctx, pass, passlen)) goto err; if (!EVP_DigestUpdate(md_ctx, salt, saltlen)) goto err; if (!EVP_DigestFinal_ex(md_ctx, md_tmp, NULL)) goto err; for (i = 1; i < iter; i++) { if (!EVP_DigestInit_ex(md_ctx, md, NULL)) goto err; if (!EVP_DigestUpdate(md_ctx, md_tmp, mdsize)) goto err; if (!EVP_DigestFinal_ex(md_ctx, md_tmp, NULL)) goto err; } if ((size_t)EVP_CIPHER_key_length(cipher) > sizeof(md_tmp)) { EVPerror(EVP_R_BAD_KEY_LENGTH); goto err; } memcpy(key, md_tmp, EVP_CIPHER_key_length(cipher)); if ((size_t)EVP_CIPHER_iv_length(cipher) > 16) { EVPerror(EVP_R_IV_TOO_LARGE); goto err; } memcpy(iv, md_tmp + (16 - EVP_CIPHER_iv_length(cipher)), EVP_CIPHER_iv_length(cipher)); if (!EVP_CipherInit_ex(cctx, cipher, NULL, key, iv, en_de)) goto err; explicit_bzero(md_tmp, EVP_MAX_MD_SIZE); explicit_bzero(key, EVP_MAX_KEY_LENGTH); explicit_bzero(iv, EVP_MAX_IV_LENGTH); ret = 1; err: EVP_MD_CTX_free(md_ctx); PBEPARAM_free(pbe); return ret; } /* * PKCS#5 v2.0 password based encryption key derivation function PBKDF2. */ int PKCS5_PBKDF2_HMAC(const char *pass, int passlen, const unsigned char *salt, int saltlen, int iter, const EVP_MD *digest, int keylen, unsigned char *out) { unsigned char digtmp[EVP_MAX_MD_SIZE], *p, itmp[4]; int cplen, j, k, tkeylen, mdlen; unsigned long i = 1; HMAC_CTX hctx_tpl, hctx; mdlen = EVP_MD_size(digest); if (mdlen < 0) return 0; HMAC_CTX_init(&hctx_tpl); p = out; tkeylen = keylen; if (!pass) passlen = 0; else if (passlen == -1) passlen = strlen(pass); if (!HMAC_Init_ex(&hctx_tpl, pass, passlen, digest, NULL)) { HMAC_CTX_cleanup(&hctx_tpl); return 0; } while (tkeylen) { if (tkeylen > mdlen) cplen = mdlen; else cplen = tkeylen; /* * We are unlikely to ever use more than 256 blocks (5120 bits!) * but just in case... */ itmp[0] = (unsigned char)((i >> 24) & 0xff); itmp[1] = (unsigned char)((i >> 16) & 0xff); itmp[2] = (unsigned char)((i >> 8) & 0xff); itmp[3] = (unsigned char)(i & 0xff); if (!HMAC_CTX_copy(&hctx, &hctx_tpl)) { HMAC_CTX_cleanup(&hctx_tpl); return 0; } if (!HMAC_Update(&hctx, salt, saltlen) || !HMAC_Update(&hctx, itmp, 4) || !HMAC_Final(&hctx, digtmp, NULL)) { HMAC_CTX_cleanup(&hctx_tpl); HMAC_CTX_cleanup(&hctx); return 0; } HMAC_CTX_cleanup(&hctx); memcpy(p, digtmp, cplen); for (j = 1; j < iter; j++) { if (!HMAC_CTX_copy(&hctx, &hctx_tpl)) { HMAC_CTX_cleanup(&hctx_tpl); return 0; } if (!HMAC_Update(&hctx, digtmp, mdlen) || !HMAC_Final(&hctx, digtmp, NULL)) { HMAC_CTX_cleanup(&hctx_tpl); HMAC_CTX_cleanup(&hctx); return 0; } HMAC_CTX_cleanup(&hctx); for (k = 0; k < cplen; k++) p[k] ^= digtmp[k]; } tkeylen -= cplen; i++; p += cplen; } HMAC_CTX_cleanup(&hctx_tpl); return 1; } LCRYPTO_ALIAS(PKCS5_PBKDF2_HMAC); int PKCS5_PBKDF2_HMAC_SHA1(const char *pass, int passlen, const unsigned char *salt, int saltlen, int iter, int keylen, unsigned char *out) { return PKCS5_PBKDF2_HMAC(pass, passlen, salt, saltlen, iter, EVP_sha1(), keylen, out); } LCRYPTO_ALIAS(PKCS5_PBKDF2_HMAC_SHA1); /* * Now the key derivation function itself. This is a bit evil because * it has to check the ASN1 parameters are valid: and there are quite a * few of them... */ int PKCS5_v2_PBE_keyivgen(EVP_CIPHER_CTX *ctx, const char *pass, int passlen, ASN1_TYPE *param, const EVP_CIPHER *c, const EVP_MD *md, int en_de) { const unsigned char *pbuf; int plen; PBE2PARAM *pbe2 = NULL; const EVP_CIPHER *cipher; int ret = 0; if (param == NULL || param->type != V_ASN1_SEQUENCE || param->value.sequence == NULL) { EVPerror(EVP_R_DECODE_ERROR); goto err; } pbuf = param->value.sequence->data; plen = param->value.sequence->length; if (!(pbe2 = d2i_PBE2PARAM(NULL, &pbuf, plen))) { EVPerror(EVP_R_DECODE_ERROR); goto err; } /* See if we recognise the key derivation function */ if (OBJ_obj2nid(pbe2->keyfunc->algorithm) != NID_id_pbkdf2) { EVPerror(EVP_R_UNSUPPORTED_KEY_DERIVATION_FUNCTION); goto err; } /* Let's see if we recognise the encryption algorithm. */ cipher = EVP_get_cipherbyobj(pbe2->encryption->algorithm); if (!cipher) { EVPerror(EVP_R_UNSUPPORTED_CIPHER); goto err; } /* Fixup cipher based on AlgorithmIdentifier */ if (!EVP_CipherInit_ex(ctx, cipher, NULL, NULL, NULL, en_de)) goto err; if (EVP_CIPHER_asn1_to_param(ctx, pbe2->encryption->parameter) < 0) { EVPerror(EVP_R_CIPHER_PARAMETER_ERROR); goto err; } ret = PKCS5_v2_PBKDF2_keyivgen(ctx, pass, passlen, pbe2->keyfunc->parameter, c, md, en_de); err: PBE2PARAM_free(pbe2); return ret; } static int md_nid_from_prf_nid(int nid) { switch (nid) { case NID_hmacWithMD5: return NID_md5; case NID_hmacWithSHA1: return NID_sha1; case NID_hmacWithSHA224: return NID_sha224; case NID_hmacWithSHA256: return NID_sha256; case NID_hmacWithSHA384: return NID_sha384; case NID_hmacWithSHA512: return NID_sha512; case NID_hmacWithSHA512_224: return NID_sha512_224; case NID_hmacWithSHA512_256: return NID_sha512_256; case NID_hmac_sha3_224: return NID_sha3_224; case NID_hmac_sha3_256: return NID_sha3_256; case NID_hmac_sha3_384: return NID_sha3_384; case NID_hmac_sha3_512: return NID_sha3_512; default: return NID_undef; } } int PKCS5_v2_PBKDF2_keyivgen(EVP_CIPHER_CTX *ctx, const char *pass, int passlen, ASN1_TYPE *param, const EVP_CIPHER *c, const EVP_MD *md, int en_de) { unsigned char *salt, key[EVP_MAX_KEY_LENGTH]; const unsigned char *pbuf; int saltlen, iter, plen; unsigned int keylen = 0; int prf_nid, hmac_md_nid; PBKDF2PARAM *kdf = NULL; const EVP_MD *prfmd; int ret = 0; if (EVP_CIPHER_CTX_cipher(ctx) == NULL) { EVPerror(EVP_R_NO_CIPHER_SET); return 0; } keylen = EVP_CIPHER_CTX_key_length(ctx); if (keylen > sizeof key) { EVPerror(EVP_R_BAD_KEY_LENGTH); return 0; } /* Decode parameter */ if (!param || (param->type != V_ASN1_SEQUENCE)) { EVPerror(EVP_R_DECODE_ERROR); return 0; } pbuf = param->value.sequence->data; plen = param->value.sequence->length; if (!(kdf = d2i_PBKDF2PARAM(NULL, &pbuf, plen)) ) { EVPerror(EVP_R_DECODE_ERROR); return 0; } /* Now check the parameters of the kdf */ if (kdf->keylength && (ASN1_INTEGER_get(kdf->keylength) != (int)keylen)){ EVPerror(EVP_R_UNSUPPORTED_KEYLENGTH); goto err; } if (kdf->prf) prf_nid = OBJ_obj2nid(kdf->prf->algorithm); else prf_nid = NID_hmacWithSHA1; if ((hmac_md_nid = md_nid_from_prf_nid(prf_nid)) == NID_undef) { EVPerror(EVP_R_UNSUPPORTED_PRF); goto err; } prfmd = EVP_get_digestbynid(hmac_md_nid); if (prfmd == NULL) { EVPerror(EVP_R_UNSUPPORTED_PRF); goto err; } if (kdf->salt->type != V_ASN1_OCTET_STRING) { EVPerror(EVP_R_UNSUPPORTED_SALT_TYPE); goto err; } /* it seems that its all OK */ salt = kdf->salt->value.octet_string->data; saltlen = kdf->salt->value.octet_string->length; if ((iter = ASN1_INTEGER_get(kdf->iter)) <= 0) { EVPerror(EVP_R_UNSUPORTED_NUMBER_OF_ROUNDS); goto err; } if (!PKCS5_PBKDF2_HMAC(pass, passlen, salt, saltlen, iter, prfmd, keylen, key)) goto err; ret = EVP_CipherInit_ex(ctx, NULL, NULL, key, NULL, en_de); err: explicit_bzero(key, keylen); PBKDF2PARAM_free(kdf); return ret; } void PKCS12_PBE_add(void) { } LCRYPTO_ALIAS(PKCS12_PBE_add); int PKCS12_PBE_keyivgen(EVP_CIPHER_CTX *ctx, const char *pass, int passlen, ASN1_TYPE *param, const EVP_CIPHER *cipher, const EVP_MD *md, int en_de) { PBEPARAM *pbe; int saltlen, iter, ret; unsigned char *salt; const unsigned char *pbuf; unsigned char key[EVP_MAX_KEY_LENGTH], iv[EVP_MAX_IV_LENGTH]; /* Extract useful info from parameter */ if (param == NULL || param->type != V_ASN1_SEQUENCE || param->value.sequence == NULL) { PKCS12error(PKCS12_R_DECODE_ERROR); return 0; } pbuf = param->value.sequence->data; if (!(pbe = d2i_PBEPARAM(NULL, &pbuf, param->value.sequence->length))) { PKCS12error(PKCS12_R_DECODE_ERROR); return 0; } if (!pbe->iter) iter = 1; else if ((iter = ASN1_INTEGER_get(pbe->iter)) <= 0) { PKCS12error(PKCS12_R_DECODE_ERROR); PBEPARAM_free(pbe); return 0; } salt = pbe->salt->data; saltlen = pbe->salt->length; if (!PKCS12_key_gen(pass, passlen, salt, saltlen, PKCS12_KEY_ID, iter, EVP_CIPHER_key_length(cipher), key, md)) { PKCS12error(PKCS12_R_KEY_GEN_ERROR); PBEPARAM_free(pbe); return 0; } if (!PKCS12_key_gen(pass, passlen, salt, saltlen, PKCS12_IV_ID, iter, EVP_CIPHER_iv_length(cipher), iv, md)) { PKCS12error(PKCS12_R_IV_GEN_ERROR); PBEPARAM_free(pbe); return 0; } PBEPARAM_free(pbe); ret = EVP_CipherInit_ex(ctx, cipher, NULL, key, iv, en_de); explicit_bzero(key, EVP_MAX_KEY_LENGTH); explicit_bzero(iv, EVP_MAX_IV_LENGTH); return ret; }