#!/usr/bin/env perl # # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # # April 2010 # # The module implements "4-bit" GCM GHASH function and underlying # single multiplication operation in GF(2^128). "4-bit" means that it # uses 256 bytes per-key table [+32 bytes shared table]. There is no # experimental performance data available yet. The only approximation # that can be made at this point is based on code size. Inner loop is # 32 instructions long and on single-issue core should execute in <40 # cycles. Having verified that gcc 3.4 didn't unroll corresponding # loop, this assembler loop body was found to be ~3x smaller than # compiler-generated one... # # July 2010 # # Rescheduling for dual-issue pipeline resulted in 8.5% improvement on # Cortex A8 core and ~25 cycles per processed byte (which was observed # to be ~3 times faster than gcc-generated code:-) # # February 2011 # # Profiler-assisted and platform-specific optimization resulted in 7% # improvement on Cortex A8 core and ~23.5 cycles per byte. # # March 2011 # # Add NEON implementation featuring polynomial multiplication, i.e. no # lookup tables involved. On Cortex A8 it was measured to process one # byte in 15 cycles or 55% faster than integer-only code. # ==================================================================== # Note about "528B" variant. In ARM case it makes lesser sense to # implement it for following reasons: # # - performance improvement won't be anywhere near 50%, because 128- # bit shift operation is neatly fused with 128-bit xor here, and # "538B" variant would eliminate only 4-5 instructions out of 32 # in the inner loop (meaning that estimated improvement is ~15%); # - ARM-based systems are often embedded ones and extra memory # consumption might be unappreciated (for so little improvement); # # Byte order [in]dependence. ========================================= # # Caller is expected to maintain specific *dword* order in Htable, # namely with *least* significant dword of 128-bit value at *lower* # address. This differs completely from C code and has everything to # do with ldm instruction and order in which dwords are "consumed" by # algorithm. *Byte* order within these dwords in turn is whatever # *native* byte order on current platform. See gcm128.c for working # example... while (($output=shift) && ($output!~/^\w[\w\-]*\.\w+$/)) {} open STDOUT,">$output"; $Xi="r0"; # argument block $Htbl="r1"; $inp="r2"; $len="r3"; $Zll="r4"; # variables $Zlh="r5"; $Zhl="r6"; $Zhh="r7"; $Tll="r8"; $Tlh="r9"; $Thl="r10"; $Thh="r11"; $nlo="r12"; ################# r13 is stack pointer $nhi="r14"; ################# r15 is program counter $rem_4bit=$inp; # used in gcm_gmult_4bit $cnt=$len; sub Zsmash() { my $i=12; my @args=@_; for ($Zll,$Zlh,$Zhl,$Zhh) { $code.=<<___; #if __ARM_ARCH__>=7 && defined(__ARMEL__) rev $_,$_ str $_,[$Xi,#$i] #elif defined(__ARMEB__) str $_,[$Xi,#$i] #else mov $Tlh,$_,lsr#8 strb $_,[$Xi,#$i+3] mov $Thl,$_,lsr#16 strb $Tlh,[$Xi,#$i+2] mov $Thh,$_,lsr#24 strb $Thl,[$Xi,#$i+1] strb $Thh,[$Xi,#$i] #endif ___ $code.="\t".shift(@args)."\n"; $i-=4; } } $code=<<___; #include "arm_arch.h" .text .syntax unified .code 32 .type rem_4bit,%object .align 5 rem_4bit: .short 0x0000,0x1C20,0x3840,0x2460 .short 0x7080,0x6CA0,0x48C0,0x54E0 .short 0xE100,0xFD20,0xD940,0xC560 .short 0x9180,0x8DA0,0xA9C0,0xB5E0 .size rem_4bit,.-rem_4bit .type rem_4bit_get,%function rem_4bit_get: sub $rem_4bit,pc,#8 sub $rem_4bit,$rem_4bit,#32 @ &rem_4bit b .Lrem_4bit_got nop .size rem_4bit_get,.-rem_4bit_get .global gcm_ghash_4bit .type gcm_ghash_4bit,%function gcm_ghash_4bit: sub r12,pc,#8 add $len,$inp,$len @ $len to point at the end stmdb sp!,{r3-r11,lr} @ save $len/end too sub r12,r12,#48 @ &rem_4bit ldmia r12,{r4-r11} @ copy rem_4bit ... stmdb sp!,{r4-r11} @ ... to stack ldrb $nlo,[$inp,#15] ldrb $nhi,[$Xi,#15] .Louter: eor $nlo,$nlo,$nhi and $nhi,$nlo,#0xf0 and $nlo,$nlo,#0x0f mov $cnt,#14 add $Zhh,$Htbl,$nlo,lsl#4 ldmia $Zhh,{$Zll-$Zhh} @ load Htbl[nlo] add $Thh,$Htbl,$nhi ldrb $nlo,[$inp,#14] and $nhi,$Zll,#0xf @ rem ldmia $Thh,{$Tll-$Thh} @ load Htbl[nhi] add $nhi,$nhi,$nhi eor $Zll,$Tll,$Zll,lsr#4 ldrh $Tll,[sp,$nhi] @ rem_4bit[rem] eor $Zll,$Zll,$Zlh,lsl#28 ldrb $nhi,[$Xi,#14] eor $Zlh,$Tlh,$Zlh,lsr#4 eor $Zlh,$Zlh,$Zhl,lsl#28 eor $Zhl,$Thl,$Zhl,lsr#4 eor $Zhl,$Zhl,$Zhh,lsl#28 eor $Zhh,$Thh,$Zhh,lsr#4 eor $nlo,$nlo,$nhi and $nhi,$nlo,#0xf0 and $nlo,$nlo,#0x0f eor $Zhh,$Zhh,$Tll,lsl#16 .Linner: add $Thh,$Htbl,$nlo,lsl#4 and $nlo,$Zll,#0xf @ rem subs $cnt,$cnt,#1 add $nlo,$nlo,$nlo ldmia $Thh,{$Tll-$Thh} @ load Htbl[nlo] eor $Zll,$Tll,$Zll,lsr#4 eor $Zll,$Zll,$Zlh,lsl#28 eor $Zlh,$Tlh,$Zlh,lsr#4 eor $Zlh,$Zlh,$Zhl,lsl#28 ldrh $Tll,[sp,$nlo] @ rem_4bit[rem] eor $Zhl,$Thl,$Zhl,lsr#4 ldrbpl $nlo,[$inp,$cnt] eor $Zhl,$Zhl,$Zhh,lsl#28 eor $Zhh,$Thh,$Zhh,lsr#4 add $Thh,$Htbl,$nhi and $nhi,$Zll,#0xf @ rem eor $Zhh,$Zhh,$Tll,lsl#16 @ ^= rem_4bit[rem] add $nhi,$nhi,$nhi ldmia $Thh,{$Tll-$Thh} @ load Htbl[nhi] eor $Zll,$Tll,$Zll,lsr#4 ldrbpl $Tll,[$Xi,$cnt] eor $Zll,$Zll,$Zlh,lsl#28 eor $Zlh,$Tlh,$Zlh,lsr#4 ldrh $Tlh,[sp,$nhi] eor $Zlh,$Zlh,$Zhl,lsl#28 eor $Zhl,$Thl,$Zhl,lsr#4 eor $Zhl,$Zhl,$Zhh,lsl#28 eorpl $nlo,$nlo,$Tll eor $Zhh,$Thh,$Zhh,lsr#4 andpl $nhi,$nlo,#0xf0 andpl $nlo,$nlo,#0x0f eor $Zhh,$Zhh,$Tlh,lsl#16 @ ^= rem_4bit[rem] bpl .Linner ldr $len,[sp,#32] @ re-load $len/end add $inp,$inp,#16 mov $nhi,$Zll ___ &Zsmash("cmp\t$inp,$len","ldrbne\t$nlo,[$inp,#15]"); $code.=<<___; bne .Louter add sp,sp,#36 #if __ARM_ARCH__>=5 ldmia sp!,{r4-r11,pc} #else ldmia sp!,{r4-r11,lr} tst lr,#1 moveq pc,lr @ be binary compatible with V4, yet bx lr @ interoperable with Thumb ISA:-) #endif .size gcm_ghash_4bit,.-gcm_ghash_4bit .global gcm_gmult_4bit .type gcm_gmult_4bit,%function gcm_gmult_4bit: stmdb sp!,{r4-r11,lr} ldrb $nlo,[$Xi,#15] b rem_4bit_get .Lrem_4bit_got: and $nhi,$nlo,#0xf0 and $nlo,$nlo,#0x0f mov $cnt,#14 add $Zhh,$Htbl,$nlo,lsl#4 ldmia $Zhh,{$Zll-$Zhh} @ load Htbl[nlo] ldrb $nlo,[$Xi,#14] add $Thh,$Htbl,$nhi and $nhi,$Zll,#0xf @ rem ldmia $Thh,{$Tll-$Thh} @ load Htbl[nhi] add $nhi,$nhi,$nhi eor $Zll,$Tll,$Zll,lsr#4 ldrh $Tll,[$rem_4bit,$nhi] @ rem_4bit[rem] eor $Zll,$Zll,$Zlh,lsl#28 eor $Zlh,$Tlh,$Zlh,lsr#4 eor $Zlh,$Zlh,$Zhl,lsl#28 eor $Zhl,$Thl,$Zhl,lsr#4 eor $Zhl,$Zhl,$Zhh,lsl#28 eor $Zhh,$Thh,$Zhh,lsr#4 and $nhi,$nlo,#0xf0 eor $Zhh,$Zhh,$Tll,lsl#16 and $nlo,$nlo,#0x0f .Loop: add $Thh,$Htbl,$nlo,lsl#4 and $nlo,$Zll,#0xf @ rem subs $cnt,$cnt,#1 add $nlo,$nlo,$nlo ldmia $Thh,{$Tll-$Thh} @ load Htbl[nlo] eor $Zll,$Tll,$Zll,lsr#4 eor $Zll,$Zll,$Zlh,lsl#28 eor $Zlh,$Tlh,$Zlh,lsr#4 eor $Zlh,$Zlh,$Zhl,lsl#28 ldrh $Tll,[$rem_4bit,$nlo] @ rem_4bit[rem] eor $Zhl,$Thl,$Zhl,lsr#4 ldrbpl $nlo,[$Xi,$cnt] eor $Zhl,$Zhl,$Zhh,lsl#28 eor $Zhh,$Thh,$Zhh,lsr#4 add $Thh,$Htbl,$nhi and $nhi,$Zll,#0xf @ rem eor $Zhh,$Zhh,$Tll,lsl#16 @ ^= rem_4bit[rem] add $nhi,$nhi,$nhi ldmia $Thh,{$Tll-$Thh} @ load Htbl[nhi] eor $Zll,$Tll,$Zll,lsr#4 eor $Zll,$Zll,$Zlh,lsl#28 eor $Zlh,$Tlh,$Zlh,lsr#4 ldrh $Tll,[$rem_4bit,$nhi] @ rem_4bit[rem] eor $Zlh,$Zlh,$Zhl,lsl#28 eor $Zhl,$Thl,$Zhl,lsr#4 eor $Zhl,$Zhl,$Zhh,lsl#28 eor $Zhh,$Thh,$Zhh,lsr#4 andpl $nhi,$nlo,#0xf0 andpl $nlo,$nlo,#0x0f eor $Zhh,$Zhh,$Tll,lsl#16 @ ^= rem_4bit[rem] bpl .Loop ___ &Zsmash(); $code.=<<___; #if __ARM_ARCH__>=5 ldmia sp!,{r4-r11,pc} #else ldmia sp!,{r4-r11,lr} tst lr,#1 moveq pc,lr @ be binary compatible with V4, yet bx lr @ interoperable with Thumb ISA:-) #endif .size gcm_gmult_4bit,.-gcm_gmult_4bit ___ { my $cnt=$Htbl; # $Htbl is used once in the very beginning my ($Hhi, $Hlo, $Zo, $T, $xi, $mod) = map("d$_",(0..7)); my ($Qhi, $Qlo, $Z, $R, $zero, $Qpost, $IN) = map("q$_",(8..15)); # Z:Zo keeps 128-bit result shifted by 1 to the right, with bottom bit # in Zo. Or should I say "top bit", because GHASH is specified in # reverse bit order? Otherwise straightforward 128-bt H by one input # byte multiplication and modulo-reduction, times 16. sub Dlo() { shift=~m|q([1]?[0-9])|?"d".($1*2):""; } sub Dhi() { shift=~m|q([1]?[0-9])|?"d".($1*2+1):""; } sub Q() { shift=~m|d([1-3]?[02468])|?"q".($1/2):""; } $code.=<<___; #if __ARM_ARCH__>=7 && !defined(__STRICT_ALIGNMENT) .fpu neon .global gcm_gmult_neon .type gcm_gmult_neon,%function .align 4 gcm_gmult_neon: sub $Htbl,#16 @ point at H in GCM128_CTX vld1.64 `&Dhi("$IN")`,[$Xi,:64]!@ load Xi vmov.i32 $mod,#0xe1 @ our irreducible polynomial vld1.64 `&Dlo("$IN")`,[$Xi,:64]! vshr.u64 $mod,#32 vldmia $Htbl,{$Hhi-$Hlo} @ load H veor $zero,$zero #ifdef __ARMEL__ vrev64.8 $IN,$IN #endif veor $Qpost,$Qpost veor $R,$R mov $cnt,#16 veor $Z,$Z mov $len,#16 veor $Zo,$Zo vdup.8 $xi,`&Dlo("$IN")`[0] @ broadcast lowest byte b .Linner_neon .size gcm_gmult_neon,.-gcm_gmult_neon .global gcm_ghash_neon .type gcm_ghash_neon,%function .align 4 gcm_ghash_neon: vld1.64 `&Dhi("$Z")`,[$Xi,:64]! @ load Xi vmov.i32 $mod,#0xe1 @ our irreducible polynomial vld1.64 `&Dlo("$Z")`,[$Xi,:64]! vshr.u64 $mod,#32 vldmia $Xi,{$Hhi-$Hlo} @ load H veor $zero,$zero nop #ifdef __ARMEL__ vrev64.8 $Z,$Z #endif .Louter_neon: vld1.64 `&Dhi($IN)`,[$inp]! @ load inp veor $Qpost,$Qpost vld1.64 `&Dlo($IN)`,[$inp]! veor $R,$R mov $cnt,#16 #ifdef __ARMEL__ vrev64.8 $IN,$IN #endif veor $Zo,$Zo veor $IN,$Z @ inp^=Xi veor $Z,$Z vdup.8 $xi,`&Dlo("$IN")`[0] @ broadcast lowest byte .Linner_neon: subs $cnt,$cnt,#1 vmull.p8 $Qlo,$Hlo,$xi @ H.lo·Xi[i] vmull.p8 $Qhi,$Hhi,$xi @ H.hi·Xi[i] vext.8 $IN,$zero,#1 @ IN>>=8 veor $Z,$Qpost @ modulo-scheduled part vshl.i64 `&Dlo("$R")`,#48 vdup.8 $xi,`&Dlo("$IN")`[0] @ broadcast lowest byte veor $T,`&Dlo("$Qlo")`,`&Dlo("$Z")` veor `&Dhi("$Z")`,`&Dlo("$R")` vuzp.8 $Qlo,$Qhi vsli.8 $Zo,$T,#1 @ compose the "carry" byte vext.8 $Z,$zero,#1 @ Z>>=8 vmull.p8 $R,$Zo,$mod @ "carry"·0xe1 vshr.u8 $Zo,$T,#7 @ save Z's bottom bit vext.8 $Qpost,$Qlo,$zero,#1 @ Qlo>>=8 veor $Z,$Qhi bne .Linner_neon veor $Z,$Qpost @ modulo-scheduled artefact vshl.i64 `&Dlo("$R")`,#48 veor `&Dhi("$Z")`,`&Dlo("$R")` @ finalization, normalize Z:Zo vand $Zo,$mod @ suffices to mask the bit vshr.u64 `&Dhi(&Q("$Zo"))`,`&Dlo("$Z")`,#63 vshl.i64 $Z,#1 subs $len,#16 vorr $Z,`&Q("$Zo")` @ Z=Z:Zo<<1 bne .Louter_neon #ifdef __ARMEL__ vrev64.8 $Z,$Z #endif sub $Xi,#16 vst1.64 `&Dhi("$Z")`,[$Xi,:64]! @ write out Xi vst1.64 `&Dlo("$Z")`,[$Xi,:64] bx lr .size gcm_ghash_neon,.-gcm_ghash_neon #endif ___ } $code.=<<___; .asciz "GHASH for ARMv4/NEON, CRYPTOGAMS by " .align 2 ___ $code =~ s/\`([^\`]*)\`/eval $1/gem; $code =~ s/\bbx\s+lr\b/.word\t0xe12fff1e/gm; # make it possible to compile with -march=armv4 print $code; close STDOUT; # enforce flush