#!/usr/bin/env perl # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # March 2010 # # The module implements "4-bit" GCM GHASH function and underlying # single multiplication operation in GF(2^128). "4-bit" means that it # uses 256 bytes per-key table [+128 bytes shared table]. Performance # results are for streamed GHASH subroutine on UltraSPARC pre-Tx CPU # and are expressed in cycles per processed byte, less is better: # # gcc 3.3.x cc 5.2 this assembler # # 32-bit build 81.4 43.3 12.6 (+546%/+244%) # 64-bit build 20.2 21.2 12.6 (+60%/+68%) # # Here is data collected on UltraSPARC T1 system running Linux: # # gcc 4.4.1 this assembler # # 32-bit build 566 50 (+1000%) # 64-bit build 56 50 (+12%) # # I don't quite understand why difference between 32-bit and 64-bit # compiler-generated code is so big. Compilers *were* instructed to # generate code for UltraSPARC and should have used 64-bit registers # for Z vector (see C code) even in 32-bit build... Oh well, it only # means more impressive improvement coefficients for this assembler # module;-) Loops are aggressively modulo-scheduled in respect to # references to input data and Z.hi updates to achieve 12 cycles # timing. To anchor to something else, sha1-sparcv9.pl spends 11.6 # cycles to process one byte on UltraSPARC pre-Tx CPU and ~24 on T1. $bits=32; for (@ARGV) { $bits=64 if (/\-m64/ || /\-xarch\=v9/); } if ($bits==64) { $bias=2047; $frame=192; } else { $bias=0; $frame=112; } $output=shift; open STDOUT,">$output"; $Zhi="%o0"; # 64-bit values $Zlo="%o1"; $Thi="%o2"; $Tlo="%o3"; $rem="%o4"; $tmp="%o5"; $nhi="%l0"; # small values and pointers $nlo="%l1"; $xi0="%l2"; $xi1="%l3"; $rem_4bit="%l4"; $remi="%l5"; $Htblo="%l6"; $cnt="%l7"; $Xi="%i0"; # input argument block $Htbl="%i1"; $inp="%i2"; $len="%i3"; $code.=<<___; .section ".rodata",#alloc .align 64 rem_4bit: .long `0x0000<<16`,0,`0x1C20<<16`,0,`0x3840<<16`,0,`0x2460<<16`,0 .long `0x7080<<16`,0,`0x6CA0<<16`,0,`0x48C0<<16`,0,`0x54E0<<16`,0 .long `0xE100<<16`,0,`0xFD20<<16`,0,`0xD940<<16`,0,`0xC560<<16`,0 .long `0x9180<<16`,0,`0x8DA0<<16`,0,`0xA9C0<<16`,0,`0xB5E0<<16`,0 .type rem_4bit,#object .size rem_4bit,(.-rem_4bit) .section ".text",#alloc,#execinstr .globl gcm_ghash_4bit .align 32 gcm_ghash_4bit: save %sp,-$frame,%sp #ifdef __PIC__ sethi %hi(_GLOBAL_OFFSET_TABLE_-4), $tmp rd %pc, $rem or $tmp, %lo(_GLOBAL_OFFSET_TABLE_+4), $tmp add $tmp, $rem, $tmp #endif ldub [$inp+15],$nlo ldub [$Xi+15],$xi0 ldub [$Xi+14],$xi1 add $len,$inp,$len add $Htbl,8,$Htblo #ifdef __PIC__ set rem_4bit, $rem_4bit ldx [$rem_4bit+$tmp], $rem_4bit #else set rem_4bit, $rem_4bit #endif .Louter: xor $xi0,$nlo,$nlo and $nlo,0xf0,$nhi and $nlo,0x0f,$nlo sll $nlo,4,$nlo ldx [$Htblo+$nlo],$Zlo ldx [$Htbl+$nlo],$Zhi ldub [$inp+14],$nlo ldx [$Htblo+$nhi],$Tlo and $Zlo,0xf,$remi ldx [$Htbl+$nhi],$Thi sll $remi,3,$remi ldx [$rem_4bit+$remi],$rem srlx $Zlo,4,$Zlo mov 13,$cnt sllx $Zhi,60,$tmp xor $Tlo,$Zlo,$Zlo srlx $Zhi,4,$Zhi xor $Zlo,$tmp,$Zlo xor $xi1,$nlo,$nlo and $Zlo,0xf,$remi and $nlo,0xf0,$nhi and $nlo,0x0f,$nlo ba .Lghash_inner sll $nlo,4,$nlo .align 32 .Lghash_inner: ldx [$Htblo+$nlo],$Tlo sll $remi,3,$remi xor $Thi,$Zhi,$Zhi ldx [$Htbl+$nlo],$Thi srlx $Zlo,4,$Zlo xor $rem,$Zhi,$Zhi ldx [$rem_4bit+$remi],$rem sllx $Zhi,60,$tmp xor $Tlo,$Zlo,$Zlo ldub [$inp+$cnt],$nlo srlx $Zhi,4,$Zhi xor $Zlo,$tmp,$Zlo ldub [$Xi+$cnt],$xi1 xor $Thi,$Zhi,$Zhi and $Zlo,0xf,$remi ldx [$Htblo+$nhi],$Tlo sll $remi,3,$remi xor $rem,$Zhi,$Zhi ldx [$Htbl+$nhi],$Thi srlx $Zlo,4,$Zlo ldx [$rem_4bit+$remi],$rem sllx $Zhi,60,$tmp xor $xi1,$nlo,$nlo srlx $Zhi,4,$Zhi and $nlo,0xf0,$nhi addcc $cnt,-1,$cnt xor $Zlo,$tmp,$Zlo and $nlo,0x0f,$nlo xor $Tlo,$Zlo,$Zlo sll $nlo,4,$nlo blu .Lghash_inner and $Zlo,0xf,$remi ldx [$Htblo+$nlo],$Tlo sll $remi,3,$remi xor $Thi,$Zhi,$Zhi ldx [$Htbl+$nlo],$Thi srlx $Zlo,4,$Zlo xor $rem,$Zhi,$Zhi ldx [$rem_4bit+$remi],$rem sllx $Zhi,60,$tmp xor $Tlo,$Zlo,$Zlo srlx $Zhi,4,$Zhi xor $Zlo,$tmp,$Zlo xor $Thi,$Zhi,$Zhi add $inp,16,$inp cmp $inp,$len be,pn `$bits==64?"%xcc":"%icc"`,.Ldone and $Zlo,0xf,$remi ldx [$Htblo+$nhi],$Tlo sll $remi,3,$remi xor $rem,$Zhi,$Zhi ldx [$Htbl+$nhi],$Thi srlx $Zlo,4,$Zlo ldx [$rem_4bit+$remi],$rem sllx $Zhi,60,$tmp xor $Tlo,$Zlo,$Zlo ldub [$inp+15],$nlo srlx $Zhi,4,$Zhi xor $Zlo,$tmp,$Zlo xor $Thi,$Zhi,$Zhi stx $Zlo,[$Xi+8] xor $rem,$Zhi,$Zhi stx $Zhi,[$Xi] srl $Zlo,8,$xi1 and $Zlo,0xff,$xi0 ba .Louter and $xi1,0xff,$xi1 .align 32 .Ldone: ldx [$Htblo+$nhi],$Tlo sll $remi,3,$remi xor $rem,$Zhi,$Zhi ldx [$Htbl+$nhi],$Thi srlx $Zlo,4,$Zlo ldx [$rem_4bit+$remi],$rem sllx $Zhi,60,$tmp xor $Tlo,$Zlo,$Zlo srlx $Zhi,4,$Zhi xor $Zlo,$tmp,$Zlo xor $Thi,$Zhi,$Zhi stx $Zlo,[$Xi+8] xor $rem,$Zhi,$Zhi stx $Zhi,[$Xi] ret restore .type gcm_ghash_4bit,#function .size gcm_ghash_4bit,(.-gcm_ghash_4bit) ___ undef $inp; undef $len; $code.=<<___; .globl gcm_gmult_4bit .align 32 gcm_gmult_4bit: save %sp,-$frame,%sp #ifdef __PIC__ sethi %hi(_GLOBAL_OFFSET_TABLE_-4), $tmp rd %pc, $rem or $tmp, %lo(_GLOBAL_OFFSET_TABLE_+4), $tmp add $tmp, $rem, $tmp #endif ldub [$Xi+15],$nlo add $Htbl,8,$Htblo #ifdef __PIC__ set rem_4bit, $rem_4bit ldx [$rem_4bit+$tmp], $rem_4bit #else set rem_4bit, $rem_4bit #endif and $nlo,0xf0,$nhi and $nlo,0x0f,$nlo sll $nlo,4,$nlo ldx [$Htblo+$nlo],$Zlo ldx [$Htbl+$nlo],$Zhi ldub [$Xi+14],$nlo ldx [$Htblo+$nhi],$Tlo and $Zlo,0xf,$remi ldx [$Htbl+$nhi],$Thi sll $remi,3,$remi ldx [$rem_4bit+$remi],$rem srlx $Zlo,4,$Zlo mov 13,$cnt sllx $Zhi,60,$tmp xor $Tlo,$Zlo,$Zlo srlx $Zhi,4,$Zhi xor $Zlo,$tmp,$Zlo and $Zlo,0xf,$remi and $nlo,0xf0,$nhi and $nlo,0x0f,$nlo ba .Lgmult_inner sll $nlo,4,$nlo .align 32 .Lgmult_inner: ldx [$Htblo+$nlo],$Tlo sll $remi,3,$remi xor $Thi,$Zhi,$Zhi ldx [$Htbl+$nlo],$Thi srlx $Zlo,4,$Zlo xor $rem,$Zhi,$Zhi ldx [$rem_4bit+$remi],$rem sllx $Zhi,60,$tmp xor $Tlo,$Zlo,$Zlo ldub [$Xi+$cnt],$nlo srlx $Zhi,4,$Zhi xor $Zlo,$tmp,$Zlo xor $Thi,$Zhi,$Zhi and $Zlo,0xf,$remi ldx [$Htblo+$nhi],$Tlo sll $remi,3,$remi xor $rem,$Zhi,$Zhi ldx [$Htbl+$nhi],$Thi srlx $Zlo,4,$Zlo ldx [$rem_4bit+$remi],$rem sllx $Zhi,60,$tmp srlx $Zhi,4,$Zhi and $nlo,0xf0,$nhi addcc $cnt,-1,$cnt xor $Zlo,$tmp,$Zlo and $nlo,0x0f,$nlo xor $Tlo,$Zlo,$Zlo sll $nlo,4,$nlo blu .Lgmult_inner and $Zlo,0xf,$remi ldx [$Htblo+$nlo],$Tlo sll $remi,3,$remi xor $Thi,$Zhi,$Zhi ldx [$Htbl+$nlo],$Thi srlx $Zlo,4,$Zlo xor $rem,$Zhi,$Zhi ldx [$rem_4bit+$remi],$rem sllx $Zhi,60,$tmp xor $Tlo,$Zlo,$Zlo srlx $Zhi,4,$Zhi xor $Zlo,$tmp,$Zlo xor $Thi,$Zhi,$Zhi and $Zlo,0xf,$remi ldx [$Htblo+$nhi],$Tlo sll $remi,3,$remi xor $rem,$Zhi,$Zhi ldx [$Htbl+$nhi],$Thi srlx $Zlo,4,$Zlo ldx [$rem_4bit+$remi],$rem sllx $Zhi,60,$tmp xor $Tlo,$Zlo,$Zlo srlx $Zhi,4,$Zhi xor $Zlo,$tmp,$Zlo xor $Thi,$Zhi,$Zhi stx $Zlo,[$Xi+8] xor $rem,$Zhi,$Zhi stx $Zhi,[$Xi] ret restore .type gcm_gmult_4bit,#function .size gcm_gmult_4bit,(.-gcm_gmult_4bit) ___ $code =~ s/\`([^\`]*)\`/eval $1/gem; print $code; close STDOUT;