/* $OpenBSD: rc2.c,v 1.1 2025/05/25 05:29:54 jsing Exp $ */ /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ #include #include "rc2_local.h" static const unsigned char key_table[256]={ 0xd9,0x78,0xf9,0xc4,0x19,0xdd,0xb5,0xed,0x28,0xe9,0xfd,0x79, 0x4a,0xa0,0xd8,0x9d,0xc6,0x7e,0x37,0x83,0x2b,0x76,0x53,0x8e, 0x62,0x4c,0x64,0x88,0x44,0x8b,0xfb,0xa2,0x17,0x9a,0x59,0xf5, 0x87,0xb3,0x4f,0x13,0x61,0x45,0x6d,0x8d,0x09,0x81,0x7d,0x32, 0xbd,0x8f,0x40,0xeb,0x86,0xb7,0x7b,0x0b,0xf0,0x95,0x21,0x22, 0x5c,0x6b,0x4e,0x82,0x54,0xd6,0x65,0x93,0xce,0x60,0xb2,0x1c, 0x73,0x56,0xc0,0x14,0xa7,0x8c,0xf1,0xdc,0x12,0x75,0xca,0x1f, 0x3b,0xbe,0xe4,0xd1,0x42,0x3d,0xd4,0x30,0xa3,0x3c,0xb6,0x26, 0x6f,0xbf,0x0e,0xda,0x46,0x69,0x07,0x57,0x27,0xf2,0x1d,0x9b, 0xbc,0x94,0x43,0x03,0xf8,0x11,0xc7,0xf6,0x90,0xef,0x3e,0xe7, 0x06,0xc3,0xd5,0x2f,0xc8,0x66,0x1e,0xd7,0x08,0xe8,0xea,0xde, 0x80,0x52,0xee,0xf7,0x84,0xaa,0x72,0xac,0x35,0x4d,0x6a,0x2a, 0x96,0x1a,0xd2,0x71,0x5a,0x15,0x49,0x74,0x4b,0x9f,0xd0,0x5e, 0x04,0x18,0xa4,0xec,0xc2,0xe0,0x41,0x6e,0x0f,0x51,0xcb,0xcc, 0x24,0x91,0xaf,0x50,0xa1,0xf4,0x70,0x39,0x99,0x7c,0x3a,0x85, 0x23,0xb8,0xb4,0x7a,0xfc,0x02,0x36,0x5b,0x25,0x55,0x97,0x31, 0x2d,0x5d,0xfa,0x98,0xe3,0x8a,0x92,0xae,0x05,0xdf,0x29,0x10, 0x67,0x6c,0xba,0xc9,0xd3,0x00,0xe6,0xcf,0xe1,0x9e,0xa8,0x2c, 0x63,0x16,0x01,0x3f,0x58,0xe2,0x89,0xa9,0x0d,0x38,0x34,0x1b, 0xab,0x33,0xff,0xb0,0xbb,0x48,0x0c,0x5f,0xb9,0xb1,0xcd,0x2e, 0xc5,0xf3,0xdb,0x47,0xe5,0xa5,0x9c,0x77,0x0a,0xa6,0x20,0x68, 0xfe,0x7f,0xc1,0xad, }; /* It has come to my attention that there are 2 versions of the RC2 * key schedule. One which is normal, and anther which has a hook to * use a reduced key length. * BSAFE uses the 'retarded' version. What I previously shipped is * the same as specifying 1024 for the 'bits' parameter. Bsafe uses * a version where the bits parameter is the same as len*8 */ void RC2_set_key(RC2_KEY *key, int len, const unsigned char *data, int bits) { int i, j; unsigned char *k; RC2_INT *ki; unsigned int c, d; k = (unsigned char *)&(key->data[0]); *k = 0; /* for if there is a zero length key */ if (len > 128) len = 128; if (bits <= 0) bits = 1024; if (bits > 1024) bits = 1024; for (i = 0; i < len; i++) k[i] = data[i]; /* expand table */ d = k[len - 1]; j = 0; for (i = len; i < 128; i++, j++) { d = key_table[(k[j] + d) & 0xff]; k[i] = d; } /* hmm.... key reduction to 'bits' bits */ j = (bits + 7) >> 3; i = 128 - j; c = (0xff >> (-bits & 0x07)); d = key_table[k[i] & c]; k[i] = d; while (i--) { d = key_table[k[i + j] ^ d]; k[i] = d; } /* copy from bytes into RC2_INT's */ ki = &(key->data[63]); for (i = 127; i >= 0; i -= 2) *(ki--) = ((k[i] << 8)|k[i - 1]) & 0xffff; } LCRYPTO_ALIAS(RC2_set_key); void RC2_encrypt(unsigned long *d, RC2_KEY *key) { int i, n; RC2_INT *p0, *p1; RC2_INT x0, x1, x2, x3, t; unsigned long l; l = d[0]; x0 = (RC2_INT)l & 0xffff; x1 = (RC2_INT)(l >> 16L); l = d[1]; x2 = (RC2_INT)l & 0xffff; x3 = (RC2_INT)(l >> 16L); n = 3; i = 5; p0 = p1 = &(key->data[0]); for (;;) { t = (x0 + (x1 & ~x3) + (x2 & x3) + *(p0++)) & 0xffff; x0 = (t << 1)|(t >> 15); t = (x1 + (x2 & ~x0) + (x3 & x0) + *(p0++)) & 0xffff; x1 = (t << 2)|(t >> 14); t = (x2 + (x3 & ~x1) + (x0 & x1) + *(p0++)) & 0xffff; x2 = (t << 3)|(t >> 13); t = (x3 + (x0 & ~x2) + (x1 & x2) + *(p0++)) & 0xffff; x3 = (t << 5)|(t >> 11); if (--i == 0) { if (--n == 0) break; i = (n == 2) ? 6 : 5; x0 += p1[x3 & 0x3f]; x1 += p1[x0 & 0x3f]; x2 += p1[x1 & 0x3f]; x3 += p1[x2 & 0x3f]; } } d[0] = (unsigned long)(x0 & 0xffff)|((unsigned long)(x1 & 0xffff) << 16L); d[1] = (unsigned long)(x2 & 0xffff)|((unsigned long)(x3 & 0xffff) << 16L); } LCRYPTO_ALIAS(RC2_encrypt); void RC2_decrypt(unsigned long *d, RC2_KEY *key) { int i, n; RC2_INT *p0, *p1; RC2_INT x0, x1, x2, x3, t; unsigned long l; l = d[0]; x0 = (RC2_INT)l & 0xffff; x1 = (RC2_INT)(l >> 16L); l = d[1]; x2 = (RC2_INT)l & 0xffff; x3 = (RC2_INT)(l >> 16L); n = 3; i = 5; p0 = &(key->data[63]); p1 = &(key->data[0]); for (;;) { t = ((x3 << 11)|(x3 >> 5)) & 0xffff; x3 = (t - (x0 & ~x2) - (x1 & x2) - *(p0--)) & 0xffff; t = ((x2 << 13)|(x2 >> 3)) & 0xffff; x2 = (t - (x3 & ~x1) - (x0 & x1) - *(p0--)) & 0xffff; t = ((x1 << 14)|(x1 >> 2)) & 0xffff; x1 = (t - (x2 & ~x0) - (x3 & x0) - *(p0--)) & 0xffff; t = ((x0 << 15)|(x0 >> 1)) & 0xffff; x0 = (t - (x1 & ~x3) - (x2 & x3) - *(p0--)) & 0xffff; if (--i == 0) { if (--n == 0) break; i = (n == 2) ? 6 : 5; x3 = (x3 - p1[x2 & 0x3f]) & 0xffff; x2 = (x2 - p1[x1 & 0x3f]) & 0xffff; x1 = (x1 - p1[x0 & 0x3f]) & 0xffff; x0 = (x0 - p1[x3 & 0x3f]) & 0xffff; } } d[0] = (unsigned long)(x0 & 0xffff)|((unsigned long)(x1 & 0xffff) << 16L); d[1] = (unsigned long)(x2 & 0xffff)|((unsigned long)(x3 & 0xffff) << 16L); } LCRYPTO_ALIAS(RC2_decrypt); void RC2_cbc_encrypt(const unsigned char *in, unsigned char *out, long length, RC2_KEY *ks, unsigned char *iv, int encrypt) { unsigned long tin0, tin1; unsigned long tout0, tout1, xor0, xor1; long l = length; unsigned long tin[2]; if (encrypt) { c2l(iv, tout0); c2l(iv, tout1); iv -= 8; for (l -= 8; l >= 0; l -= 8) { c2l(in, tin0); c2l(in, tin1); tin0 ^= tout0; tin1 ^= tout1; tin[0] = tin0; tin[1] = tin1; RC2_encrypt(tin, ks); tout0 = tin[0]; l2c(tout0, out); tout1 = tin[1]; l2c(tout1, out); } if (l != -8) { c2ln(in, tin0, tin1, l + 8); tin0 ^= tout0; tin1 ^= tout1; tin[0] = tin0; tin[1] = tin1; RC2_encrypt(tin, ks); tout0 = tin[0]; l2c(tout0, out); tout1 = tin[1]; l2c(tout1, out); } l2c(tout0, iv); l2c(tout1, iv); } else { c2l(iv, xor0); c2l(iv, xor1); iv -= 8; for (l -= 8; l >= 0; l -= 8) { c2l(in, tin0); tin[0] = tin0; c2l(in, tin1); tin[1] = tin1; RC2_decrypt(tin, ks); tout0 = tin[0] ^ xor0; tout1 = tin[1] ^ xor1; l2c(tout0, out); l2c(tout1, out); xor0 = tin0; xor1 = tin1; } if (l != -8) { c2l(in, tin0); tin[0] = tin0; c2l(in, tin1); tin[1] = tin1; RC2_decrypt(tin, ks); tout0 = tin[0] ^ xor0; tout1 = tin[1] ^ xor1; l2cn(tout0, tout1, out, l + 8); xor0 = tin0; xor1 = tin1; } l2c(xor0, iv); l2c(xor1, iv); } tin0 = tin1 = tout0 = tout1 = xor0 = xor1 = 0; tin[0] = tin[1] = 0; } LCRYPTO_ALIAS(RC2_cbc_encrypt); /* The input and output encrypted as though 64bit cfb mode is being * used. The extra state information to record how much of the * 64bit block we have used is contained in *num; */ void RC2_cfb64_encrypt(const unsigned char *in, unsigned char *out, long length, RC2_KEY *schedule, unsigned char *ivec, int *num, int encrypt) { unsigned long v0, v1, t; int n = *num; long l = length; unsigned long ti[2]; unsigned char *iv, c, cc; iv = (unsigned char *)ivec; if (encrypt) { while (l--) { if (n == 0) { c2l(iv, v0); ti[0] = v0; c2l(iv, v1); ti[1] = v1; RC2_encrypt((unsigned long *)ti, schedule); iv = (unsigned char *)ivec; t = ti[0]; l2c(t, iv); t = ti[1]; l2c(t, iv); iv = (unsigned char *)ivec; } c = *(in++) ^ iv[n]; *(out++) = c; iv[n] = c; n = (n + 1) & 0x07; } } else { while (l--) { if (n == 0) { c2l(iv, v0); ti[0] = v0; c2l(iv, v1); ti[1] = v1; RC2_encrypt((unsigned long *)ti, schedule); iv = (unsigned char *)ivec; t = ti[0]; l2c(t, iv); t = ti[1]; l2c(t, iv); iv = (unsigned char *)ivec; } cc = *(in++); c = iv[n]; iv[n] = cc; *(out++) = c ^ cc; n = (n + 1) & 0x07; } } v0 = v1 = ti[0] = ti[1] = t = c = cc = 0; *num = n; } LCRYPTO_ALIAS(RC2_cfb64_encrypt); /* RC2 as implemented frm a posting from * Newsgroups: sci.crypt * Sender: pgut01@cs.auckland.ac.nz (Peter Gutmann) * Subject: Specification for Ron Rivests Cipher No.2 * Message-ID: <4fk39f$f70@net.auckland.ac.nz> * Date: 11 Feb 1996 06:45:03 GMT */ void RC2_ecb_encrypt(const unsigned char *in, unsigned char *out, RC2_KEY *ks, int encrypt) { unsigned long l, d[2]; c2l(in, l); d[0] = l; c2l(in, l); d[1] = l; if (encrypt) RC2_encrypt(d, ks); else RC2_decrypt(d, ks); l = d[0]; l2c(l, out); l = d[1]; l2c(l, out); l = d[0] = d[1] = 0; } LCRYPTO_ALIAS(RC2_ecb_encrypt); /* The input and output encrypted as though 64bit ofb mode is being * used. The extra state information to record how much of the * 64bit block we have used is contained in *num; */ void RC2_ofb64_encrypt(const unsigned char *in, unsigned char *out, long length, RC2_KEY *schedule, unsigned char *ivec, int *num) { unsigned long v0, v1, t; int n = *num; long l = length; unsigned char d[8]; char *dp; unsigned long ti[2]; unsigned char *iv; int save = 0; iv = (unsigned char *)ivec; c2l(iv, v0); c2l(iv, v1); ti[0] = v0; ti[1] = v1; dp = (char *)d; l2c(v0, dp); l2c(v1, dp); while (l--) { if (n == 0) { RC2_encrypt((unsigned long *)ti, schedule); dp = (char *)d; t = ti[0]; l2c(t, dp); t = ti[1]; l2c(t, dp); save++; } *(out++) = *(in++) ^ d[n]; n = (n + 1) & 0x07; } if (save) { v0 = ti[0]; v1 = ti[1]; iv = (unsigned char *)ivec; l2c(v0, iv); l2c(v1, iv); } t = v0 = v1 = ti[0] = ti[1] = 0; *num = n; } LCRYPTO_ALIAS(RC2_ofb64_encrypt);