#!/usr/bin/env perl # ==================================================================== # [Re]written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # At some point it became apparent that the original SSLeay RC4 # assembler implementation performs suboptimally on latest IA-32 # microarchitectures. After re-tuning performance has changed as # following: # # Pentium -10% # Pentium III +12% # AMD +50%(*) # P4 +250%(**) # # (*) This number is actually a trade-off:-) It's possible to # achieve +72%, but at the cost of -48% off PIII performance. # In other words code performing further 13% faster on AMD # would perform almost 2 times slower on Intel PIII... # For reference! This code delivers ~80% of rc4-amd64.pl # performance on the same Opteron machine. # (**) This number requires compressed key schedule set up by # RC4_set_key [see commentary below for further details]. # # # May 2011 # # Optimize for Core2 and Westmere [and incidentally Opteron]. Current # performance in cycles per processed byte (less is better) and # improvement relative to previous version of this module is: # # Pentium 10.2 # original numbers # Pentium III 7.8(*) # Intel P4 7.5 # # Opteron 6.1/+20% # new MMX numbers # Core2 5.3/+67%(**) # Westmere 5.1/+94%(**) # Sandy Bridge 5.0/+8% # Atom 12.6/+6% # # (*) PIII can actually deliver 6.6 cycles per byte with MMX code, # but this specific code performs poorly on Core2. And vice # versa, below MMX/SSE code delivering 5.8/7.1 on Core2 performs # poorly on PIII, at 8.0/14.5:-( As PIII is not a "hot" CPU # [anymore], I chose to discard PIII-specific code path and opt # for original IALU-only code, which is why MMX/SSE code path # is guarded by SSE2 bit (see below), not MMX/SSE. # (**) Performance vs. block size on Core2 and Westmere had a maximum # at ... 64 bytes block size. And it was quite a maximum, 40-60% # in comparison to largest 8KB block size. Above improvement # coefficients are for the largest block size. $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; push(@INC,"${dir}","${dir}../../perlasm"); require "x86asm.pl"; &asm_init($ARGV[0],"rc4-586.pl"); $xx="eax"; $yy="ebx"; $tx="ecx"; $ty="edx"; $inp="esi"; $out="ebp"; $dat="edi"; sub RC4_loop { my $i=shift; my $func = ($i==0)?*mov:*or; &add (&LB($yy),&LB($tx)); &mov ($ty,&DWP(0,$dat,$yy,4)); &mov (&DWP(0,$dat,$yy,4),$tx); &mov (&DWP(0,$dat,$xx,4),$ty); &add ($ty,$tx); &inc (&LB($xx)); &and ($ty,0xff); &ror ($out,8) if ($i!=0); if ($i<3) { &mov ($tx,&DWP(0,$dat,$xx,4)); } else { &mov ($tx,&wparam(3)); # reload [re-biased] out } &$func ($out,&DWP(0,$dat,$ty,4)); } if ($alt=0) { # >20% faster on Atom and Sandy Bridge[!], 8% faster on Opteron, # but ~40% slower on Core2 and Westmere... Attempt to add movz # brings down Opteron by 25%, Atom and Sandy Bridge by 15%, yet # on Core2 with movz it's almost 20% slower than below alternative # code... Yes, it's a total mess... my @XX=($xx,$out); $RC4_loop_mmx = sub { # SSE actually... my $i=shift; my $j=$i<=0?0:$i>>1; my $mm=$i<=0?"mm0":"mm".($i&1); &add (&LB($yy),&LB($tx)); &lea (@XX[1],&DWP(1,@XX[0])); &pxor ("mm2","mm0") if ($i==0); &psllq ("mm1",8) if ($i==0); &and (@XX[1],0xff); &pxor ("mm0","mm0") if ($i<=0); &mov ($ty,&DWP(0,$dat,$yy,4)); &mov (&DWP(0,$dat,$yy,4),$tx); &pxor ("mm1","mm2") if ($i==0); &mov (&DWP(0,$dat,$XX[0],4),$ty); &add (&LB($ty),&LB($tx)); &movd (@XX[0],"mm7") if ($i==0); &mov ($tx,&DWP(0,$dat,@XX[1],4)); &pxor ("mm1","mm1") if ($i==1); &movq ("mm2",&QWP(0,$inp)) if ($i==1); &movq (&QWP(-8,(@XX[0],$inp)),"mm1") if ($i==0); &pinsrw ($mm,&DWP(0,$dat,$ty,4),$j); push (@XX,shift(@XX)) if ($i>=0); } } else { # Using pinsrw here improves performance on Intel CPUs by 2-3%, but # brings down AMD by 7%... $RC4_loop_mmx = sub { my $i=shift; &add (&LB($yy),&LB($tx)); &psllq ("mm1",8*(($i-1)&7)) if (abs($i)!=1); &mov ($ty,&DWP(0,$dat,$yy,4)); &mov (&DWP(0,$dat,$yy,4),$tx); &mov (&DWP(0,$dat,$xx,4),$ty); &inc ($xx); &add ($ty,$tx); &movz ($xx,&LB($xx)); # (*) &movz ($ty,&LB($ty)); # (*) &pxor ("mm2",$i==1?"mm0":"mm1") if ($i>=0); &movq ("mm0",&QWP(0,$inp)) if ($i<=0); &movq (&QWP(-8,($out,$inp)),"mm2") if ($i==0); &mov ($tx,&DWP(0,$dat,$xx,4)); &movd ($i>0?"mm1":"mm2",&DWP(0,$dat,$ty,4)); # (*) This is the key to Core2 and Westmere performance. # Without movz out-of-order execution logic confuses # itself and fails to reorder loads and stores. Problem # appears to be fixed in Sandy Bridge... } } &external_label("OPENSSL_ia32cap_P"); # void rc4_internal(RC4_KEY *key, size_t len, const unsigned char *inp, # unsigned char *out); &function_begin("rc4_internal"); &mov ($dat,&wparam(0)); # load key schedule pointer &mov ($ty, &wparam(1)); # load len &mov ($inp,&wparam(2)); # load inp &mov ($out,&wparam(3)); # load out &xor ($xx,$xx); # avoid partial register stalls &xor ($yy,$yy); &cmp ($ty,0); # safety net &je (&label("abort")); &mov (&LB($xx),&BP(0,$dat)); # load key->x &mov (&LB($yy),&BP(4,$dat)); # load key->y &add ($dat,8); &lea ($tx,&DWP(0,$inp,$ty)); &sub ($out,$inp); # re-bias out &mov (&wparam(1),$tx); # save input+len &inc (&LB($xx)); # detect compressed key schedule... &cmp (&DWP(256,$dat),-1); &je (&label("RC4_CHAR")); &mov ($tx,&DWP(0,$dat,$xx,4)); &and ($ty,-4); # how many 4-byte chunks? &jz (&label("loop1")); &test ($ty,-8); &mov (&wparam(3),$out); # $out as accumulator in these loops &jz (&label("go4loop4")); &picsetup($out); &picsymbol($out, "OPENSSL_ia32cap_P", $out); # check SSE2 bit [could have been MMX] &bt (&DWP(0,$out),"\$IA32CAP_BIT0_SSE2"); &jnc (&label("go4loop4")); &mov ($out,&wparam(3)) if (!$alt); &movd ("mm7",&wparam(3)) if ($alt); &and ($ty,-8); &lea ($ty,&DWP(-8,$inp,$ty)); &mov (&DWP(-4,$dat),$ty); # save input+(len/8)*8-8 &$RC4_loop_mmx(-1); &jmp(&label("loop_mmx_enter")); &set_label("loop_mmx",16); &$RC4_loop_mmx(0); &set_label("loop_mmx_enter"); for ($i=1;$i<8;$i++) { &$RC4_loop_mmx($i); } &mov ($ty,$yy); &xor ($yy,$yy); # this is second key to Core2 &mov (&LB($yy),&LB($ty)); # and Westmere performance... &cmp ($inp,&DWP(-4,$dat)); &lea ($inp,&DWP(8,$inp)); &jb (&label("loop_mmx")); if ($alt) { &movd ($out,"mm7"); &pxor ("mm2","mm0"); &psllq ("mm1",8); &pxor ("mm1","mm2"); &movq (&QWP(-8,$out,$inp),"mm1"); } else { &psllq ("mm1",56); &pxor ("mm2","mm1"); &movq (&QWP(-8,$out,$inp),"mm2"); } &emms (); &cmp ($inp,&wparam(1)); # compare to input+len &je (&label("done")); &jmp (&label("loop1")); &set_label("go4loop4",16); &lea ($ty,&DWP(-4,$inp,$ty)); &mov (&wparam(2),$ty); # save input+(len/4)*4-4 &set_label("loop4"); for ($i=0;$i<4;$i++) { RC4_loop($i); } &ror ($out,8); &xor ($out,&DWP(0,$inp)); &cmp ($inp,&wparam(2)); # compare to input+(len/4)*4-4 &mov (&DWP(0,$tx,$inp),$out);# $tx holds re-biased out here &lea ($inp,&DWP(4,$inp)); &mov ($tx,&DWP(0,$dat,$xx,4)); &jb (&label("loop4")); &cmp ($inp,&wparam(1)); # compare to input+len &je (&label("done")); &mov ($out,&wparam(3)); # restore $out &set_label("loop1",16); &add (&LB($yy),&LB($tx)); &mov ($ty,&DWP(0,$dat,$yy,4)); &mov (&DWP(0,$dat,$yy,4),$tx); &mov (&DWP(0,$dat,$xx,4),$ty); &add ($ty,$tx); &inc (&LB($xx)); &and ($ty,0xff); &mov ($ty,&DWP(0,$dat,$ty,4)); &xor (&LB($ty),&BP(0,$inp)); &lea ($inp,&DWP(1,$inp)); &mov ($tx,&DWP(0,$dat,$xx,4)); &cmp ($inp,&wparam(1)); # compare to input+len &mov (&BP(-1,$out,$inp),&LB($ty)); &jb (&label("loop1")); &jmp (&label("done")); # this is essentially Intel P4 specific codepath... &set_label("RC4_CHAR",16); &movz ($tx,&BP(0,$dat,$xx)); # strangely enough unrolled loop performs over 20% slower... &set_label("cloop1"); &add (&LB($yy),&LB($tx)); &movz ($ty,&BP(0,$dat,$yy)); &mov (&BP(0,$dat,$yy),&LB($tx)); &mov (&BP(0,$dat,$xx),&LB($ty)); &add (&LB($ty),&LB($tx)); &movz ($ty,&BP(0,$dat,$ty)); &add (&LB($xx),1); &xor (&LB($ty),&BP(0,$inp)); &lea ($inp,&DWP(1,$inp)); &movz ($tx,&BP(0,$dat,$xx)); &cmp ($inp,&wparam(1)); &mov (&BP(-1,$out,$inp),&LB($ty)); &jb (&label("cloop1")); &set_label("done"); &dec (&LB($xx)); &mov (&DWP(-4,$dat),$yy); # save key->y &mov (&BP(-8,$dat),&LB($xx)); # save key->x &set_label("abort"); &function_end("rc4_internal"); ######################################################################## $inp="esi"; $out="edi"; $idi="ebp"; $ido="ecx"; $idx="edx"; # void rc4_set_key_internal(RC4_KEY *key,int len,const unsigned char *data); &function_begin("rc4_set_key_internal"); &mov ($out,&wparam(0)); # load key &mov ($idi,&wparam(1)); # load len &mov ($inp,&wparam(2)); # load data &picsetup($idx); &picsymbol($idx, "OPENSSL_ia32cap_P", $idx); &lea ($out,&DWP(2*4,$out)); # &key->data &lea ($inp,&DWP(0,$inp,$idi)); # $inp to point at the end &neg ($idi); &xor ("eax","eax"); &mov (&DWP(-4,$out),$idi); # borrow key->y &bt (&DWP(0,$idx),"\$IA32CAP_BIT0_INTELP4"); &jc (&label("c1stloop")); &set_label("w1stloop",16); &mov (&DWP(0,$out,"eax",4),"eax"); # key->data[i]=i; &add (&LB("eax"),1); # i++; &jnc (&label("w1stloop")); &xor ($ido,$ido); &xor ($idx,$idx); &set_label("w2ndloop",16); &mov ("eax",&DWP(0,$out,$ido,4)); &add (&LB($idx),&BP(0,$inp,$idi)); &add (&LB($idx),&LB("eax")); &add ($idi,1); &mov ("ebx",&DWP(0,$out,$idx,4)); &jnz (&label("wnowrap")); &mov ($idi,&DWP(-4,$out)); &set_label("wnowrap"); &mov (&DWP(0,$out,$idx,4),"eax"); &mov (&DWP(0,$out,$ido,4),"ebx"); &add (&LB($ido),1); &jnc (&label("w2ndloop")); &jmp (&label("exit")); # Unlike all other x86 [and x86_64] implementations, Intel P4 core # [including EM64T] was found to perform poorly with above "32-bit" key # schedule, a.k.a. RC4_INT. Performance improvement for IA-32 hand-coded # assembler turned out to be 3.5x if re-coded for compressed 8-bit one, # a.k.a. RC4_CHAR! It's however inappropriate to just switch to 8-bit # schedule for x86[_64], because non-P4 implementations suffer from # significant performance losses then, e.g. PIII exhibits >2x # deterioration, and so does Opteron. In order to assure optimal # all-round performance, we detect P4 at run-time and set up compressed # key schedule, which is recognized by RC4 procedure. &set_label("c1stloop",16); &mov (&BP(0,$out,"eax"),&LB("eax")); # key->data[i]=i; &add (&LB("eax"),1); # i++; &jnc (&label("c1stloop")); &xor ($ido,$ido); &xor ($idx,$idx); &xor ("ebx","ebx"); &set_label("c2ndloop",16); &mov (&LB("eax"),&BP(0,$out,$ido)); &add (&LB($idx),&BP(0,$inp,$idi)); &add (&LB($idx),&LB("eax")); &add ($idi,1); &mov (&LB("ebx"),&BP(0,$out,$idx)); &jnz (&label("cnowrap")); &mov ($idi,&DWP(-4,$out)); &set_label("cnowrap"); &mov (&BP(0,$out,$idx),&LB("eax")); &mov (&BP(0,$out,$ido),&LB("ebx")); &add (&LB($ido),1); &jnc (&label("c2ndloop")); &mov (&DWP(256,$out),-1); # mark schedule as compressed &set_label("exit"); &xor ("eax","eax"); &mov (&DWP(-8,$out),"eax"); # key->x=0; &mov (&DWP(-4,$out),"eax"); # key->y=0; &function_end("rc4_set_key_internal"); &asm_finish();