/* $OpenBSD: kvm_proc.c,v 1.64 2024/05/10 06:46:14 asou Exp $ */ /* $NetBSD: kvm_proc.c,v 1.30 1999/03/24 05:50:50 mrg Exp $ */ /*- * Copyright (c) 1998 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Charles M. Hannum. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /*- * Copyright (c) 1994, 1995 Charles M. Hannum. All rights reserved. * Copyright (c) 1989, 1992, 1993 * The Regents of the University of California. All rights reserved. * * This code is derived from software developed by the Computer Systems * Engineering group at Lawrence Berkeley Laboratory under DARPA contract * BG 91-66 and contributed to Berkeley. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * Proc traversal interface for kvm. ps and w are (probably) the exclusive * users of this code, so we've factored it out into a separate module. * Thus, we keep this grunge out of the other kvm applications (i.e., * most other applications are interested only in open/close/read/nlist). */ #define __need_process #include /* VM_MIN_ADDRESS PAGE_SIZE */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "kvm_private.h" #define MINIMUM(a, b) (((a) < (b)) ? (a) : (b)) #define MAXIMUM(a, b) (((a) > (b)) ? (a) : (b)) static char *_kvm_ureadm(kvm_t *, const struct kinfo_proc *, u_long, u_long *); static ssize_t kvm_ureadm(kvm_t *, const struct kinfo_proc *, u_long, char *, size_t); static char **kvm_argv(kvm_t *, const struct kinfo_proc *, u_long, int, int, int); static char **kvm_doargv(kvm_t *, const struct kinfo_proc *, int, int, void (*)(struct ps_strings *, u_long *, int *)); static int proc_verify(kvm_t *, const struct kinfo_proc *); static void ps_str_a(struct ps_strings *, u_long *, int *); static void ps_str_e(struct ps_strings *, u_long *, int *); static struct vm_anon * _kvm_findanon(kvm_t *kd, struct vm_amap *amapp, int slot) { u_long addr; int bucket; struct vm_amap amap; struct vm_amap_chunk chunk, *chunkp; struct vm_anon *anonp; addr = (u_long)amapp; if (KREAD(kd, addr, &amap)) return (NULL); /* sanity-check slot number */ if (slot > amap.am_nslot) return (NULL); if (UVM_AMAP_SMALL(&amap)) chunkp = &amapp->am_small; else { bucket = UVM_AMAP_BUCKET(&amap, slot); addr = (u_long)(amap.am_buckets + bucket); if (KREAD(kd, addr, &chunkp)) return (NULL); while (chunkp != NULL) { addr = (u_long)chunkp; if (KREAD(kd, addr, &chunk)) return (NULL); if (UVM_AMAP_BUCKET(&amap, chunk.ac_baseslot) != bucket) return (NULL); if (slot >= chunk.ac_baseslot && slot < chunk.ac_baseslot + chunk.ac_nslot) break; chunkp = TAILQ_NEXT(&chunk, ac_list); } if (chunkp == NULL) return (NULL); } addr = (u_long)&chunkp->ac_anon[UVM_AMAP_SLOTIDX(slot)]; if (KREAD(kd, addr, &anonp)) return (NULL); return (anonp); } static char * _kvm_ureadm(kvm_t *kd, const struct kinfo_proc *p, u_long va, u_long *cnt) { u_long addr, offset, slot; struct vmspace vm; struct vm_anon *anonp, anon; struct vm_map_entry vme; struct vm_page pg; unsigned long rboff; if (kd->swapspc == 0) { kd->swapspc = _kvm_malloc(kd, kd->nbpg); if (kd->swapspc == 0) return (NULL); } rboff = (unsigned long)&vme.daddrs.addr_entry - (unsigned long)&vme; /* * Look through the address map for the memory object * that corresponds to the given virtual address. */ if (KREAD(kd, (u_long)p->p_vmspace, &vm)) return (NULL); addr = (u_long)vm.vm_map.addr.rbh_root.rbt_root; while (1) { if (addr == 0) return (NULL); addr -= rboff; if (KREAD(kd, addr, &vme)) return (NULL); if (va < vme.start) addr = (u_long)vme.daddrs.addr_entry.rbt_left; else if (va >= vme.end + vme.guard + vme.fspace) addr = (u_long)vme.daddrs.addr_entry.rbt_right; else if (va >= vme.end) return (NULL); else break; } /* * we found the map entry, now to find the object... */ if (vme.aref.ar_amap == NULL) return (NULL); offset = va - vme.start; slot = offset / kd->nbpg + vme.aref.ar_pageoff; anonp = _kvm_findanon(kd, vme.aref.ar_amap, slot); if (anonp == NULL) return (NULL); addr = (u_long)anonp; if (KREAD(kd, addr, &anon)) return (NULL); addr = (u_long)anon.an_page; if (addr) { if (KREAD(kd, addr, &pg)) return (NULL); if (_kvm_pread(kd, kd->pmfd, (void *)kd->swapspc, (size_t)kd->nbpg, _kvm_pa2off(kd, pg.phys_addr)) != kd->nbpg) return (NULL); } else { if (kd->swfd == -1 || _kvm_pread(kd, kd->swfd, (void *)kd->swapspc, (size_t)kd->nbpg, (off_t)(anon.an_swslot * kd->nbpg)) != kd->nbpg) return (NULL); } /* Found the page. */ offset %= kd->nbpg; *cnt = kd->nbpg - offset; return (&kd->swapspc[offset]); } void * _kvm_reallocarray(kvm_t *kd, void *p, size_t i, size_t n) { void *np = reallocarray(p, i, n); if (np == 0) _kvm_err(kd, kd->program, "out of memory"); return (np); } /* * Read in an argument vector from the user address space of process p. * addr if the user-space base address of narg null-terminated contiguous * strings. This is used to read in both the command arguments and * environment strings. Read at most maxcnt characters of strings. */ static char ** kvm_argv(kvm_t *kd, const struct kinfo_proc *p, u_long addr, int narg, int maxcnt, int isenv) { char *np, *cp, *ep, *ap, **argv, ***pargv, **pargspc, **pargbuf; u_long oaddr = -1; int len, cc, *parglen, *pargc; size_t argc; /* * Check that there aren't an unreasonable number of arguments, * and that the address is in user space. */ if (narg > ARG_MAX || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS) return (0); if (isenv) { pargspc = &kd->envspc; pargbuf = &kd->envbuf; parglen = &kd->envlen; pargv = &kd->envp; pargc = &kd->envc; } else { pargspc = &kd->argspc; pargbuf = &kd->argbuf; parglen = &kd->arglen; pargv = &kd->argv; pargc = &kd->argc; } if (*pargv == 0) argc = MAXIMUM(narg + 1, 32); else if (narg + 1 > *pargc) argc = MAXIMUM(2 * (*pargc), narg + 1); else goto argv_allocated; argv = _kvm_reallocarray(kd, *pargv, argc, sizeof(**pargv)); if (argv == 0) return (0); *pargv = argv; *pargc = argc; argv_allocated: if (*pargspc == 0) { *pargspc = _kvm_malloc(kd, kd->nbpg); if (*pargspc == 0) return (0); *parglen = kd->nbpg; } if (*pargbuf == 0) { *pargbuf = _kvm_malloc(kd, kd->nbpg); if (*pargbuf == 0) return (0); } cc = sizeof(char *) * narg; if (kvm_ureadm(kd, p, addr, (char *)*pargv, cc) != cc) return (0); ap = np = *pargspc; argv = *pargv; len = 0; /* * Loop over pages, filling in the argument vector. */ while (argv < *pargv + narg && *argv != 0) { addr = (u_long)*argv & ~(kd->nbpg - 1); if (addr != oaddr) { if (kvm_ureadm(kd, p, addr, *pargbuf, kd->nbpg) != kd->nbpg) return (0); oaddr = addr; } addr = (u_long)*argv & (kd->nbpg - 1); cp = *pargbuf + addr; cc = kd->nbpg - addr; if (maxcnt > 0 && cc > maxcnt - len) cc = maxcnt - len; ep = memchr(cp, '\0', cc); if (ep != 0) cc = ep - cp + 1; if (len + cc > *parglen) { ptrdiff_t off; char **pp; char *op = *pargspc; char *newp; newp = _kvm_reallocarray(kd, *pargspc, *parglen, 2); if (newp == 0) return (0); *pargspc = newp; *parglen *= 2; /* * Adjust argv pointers in case realloc moved * the string space. */ off = *pargspc - op; for (pp = *pargv; pp < argv; pp++) *pp += off; ap += off; np += off; } memcpy(np, cp, cc); np += cc; len += cc; if (ep != 0) { *argv++ = ap; ap = np; } else *argv += cc; if (maxcnt > 0 && len >= maxcnt) { /* * We're stopping prematurely. Terminate the * current string. */ if (ep == 0) { *np = '\0'; *argv++ = ap; } break; } } /* Make sure argv is terminated. */ *argv = 0; return (*pargv); } static void ps_str_a(struct ps_strings *p, u_long *addr, int *n) { *addr = (u_long)p->ps_argvstr; *n = p->ps_nargvstr; } static void ps_str_e(struct ps_strings *p, u_long *addr, int *n) { *addr = (u_long)p->ps_envstr; *n = p->ps_nenvstr; } /* * Determine if the proc indicated by p is still active. * This test is not 100% foolproof in theory, but chances of * being wrong are very low. */ static int proc_verify(kvm_t *kd, const struct kinfo_proc *p) { struct proc kernproc; struct process kernprocess; if (p->p_psflags & (PS_EMBRYO | PS_ZOMBIE)) return (0); /* * Just read in the whole proc. It's not that big relative * to the cost of the read system call. */ if (KREAD(kd, (u_long)p->p_paddr, &kernproc)) return (0); if (KREAD(kd, (u_long)kernproc.p_p, &kernprocess)) return (0); if (p->p_pid != kernprocess.ps_pid) return (0); return ((kernprocess.ps_flags & (PS_EMBRYO | PS_ZOMBIE)) == 0); } static char ** kvm_doargv(kvm_t *kd, const struct kinfo_proc *p, int nchr, int isenv, void (*info)(struct ps_strings *, u_long *, int *)) { struct proc pp; struct process pr; struct ps_strings *ps; struct ps_strings arginfo; u_long addr; char **ap; int cnt; /* get ps_strings address */ if (KREAD(kd, (u_long)p->p_paddr, &pp)) return (0); if (KREAD(kd, (u_long)pp.p_p, &pr)) return (0); ps = (struct ps_strings *)pr.ps_strings; /* * Pointers are stored at the top of the user stack. */ if (p->p_psflags & (PS_EMBRYO | PS_ZOMBIE) || kvm_ureadm(kd, p, (u_long)ps, (char *)&arginfo, sizeof(arginfo)) != sizeof(arginfo)) return (0); (*info)(&arginfo, &addr, &cnt); if (cnt == 0) return (0); ap = kvm_argv(kd, p, addr, cnt, nchr, isenv); /* * For live kernels, make sure this process didn't go away. */ if (ap != 0 && ISALIVE(kd) && !proc_verify(kd, p)) ap = 0; return (ap); } static char ** kvm_arg_sysctl(kvm_t *kd, pid_t pid, int nchr, int isenv) { size_t len, orglen; int mib[4], ret; char *buf, **pargbuf; if (isenv) { pargbuf = &kd->envbuf; orglen = kd->nbpg; } else { pargbuf = &kd->argbuf; orglen = 8 * kd->nbpg; /* XXX - should be ARG_MAX */ } if (*pargbuf == NULL && (*pargbuf = _kvm_malloc(kd, orglen)) == NULL) return (NULL); again: mib[0] = CTL_KERN; mib[1] = KERN_PROC_ARGS; mib[2] = (int)pid; mib[3] = isenv ? KERN_PROC_ENV : KERN_PROC_ARGV; len = orglen; ret = (sysctl(mib, 4, *pargbuf, &len, NULL, 0) == -1); if (ret && errno == ENOMEM) { buf = _kvm_reallocarray(kd, *pargbuf, orglen, 2); if (buf == NULL) return (NULL); orglen *= 2; *pargbuf = buf; goto again; } if (ret) { free(*pargbuf); *pargbuf = NULL; _kvm_syserr(kd, kd->program, "kvm_arg_sysctl"); return (NULL); } #if 0 for (argv = (char **)*pargbuf; *argv != NULL; argv++) if (strlen(*argv) > nchr) *argv[nchr] = '\0'; #endif return (char **)(*pargbuf); } /* * Get the command args. This code is now machine independent. */ char ** kvm_getargv(kvm_t *kd, const struct kinfo_proc *kp, int nchr) { if (ISALIVE(kd)) return (kvm_arg_sysctl(kd, kp->p_pid, nchr, 0)); return (kvm_doargv(kd, kp, nchr, 0, ps_str_a)); } char ** kvm_getenvv(kvm_t *kd, const struct kinfo_proc *kp, int nchr) { if (ISALIVE(kd)) return (kvm_arg_sysctl(kd, kp->p_pid, nchr, 1)); return (kvm_doargv(kd, kp, nchr, 1, ps_str_e)); } /* * Read from user space. The user context is given by p. */ static ssize_t kvm_ureadm(kvm_t *kd, const struct kinfo_proc *p, u_long uva, char *buf, size_t len) { char *cp = buf; while (len > 0) { u_long cnt; size_t cc; char *dp; dp = _kvm_ureadm(kd, p, uva, &cnt); if (dp == 0) { _kvm_err(kd, 0, "invalid address (%lx)", uva); return (0); } cc = (size_t)MINIMUM(cnt, len); memcpy(cp, dp, cc); cp += cc; uva += cc; len -= cc; } return (ssize_t)(cp - buf); }