/* $OpenBSD: e_expl.c,v 1.4 2016/09/12 19:47:02 guenther Exp $ */ /* * Copyright (c) 2008 Stephen L. Moshier * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /* expl.c * * Exponential function, 128-bit long double precision * * * * SYNOPSIS: * * long double x, y, expl(); * * y = expl( x ); * * * * DESCRIPTION: * * Returns e (2.71828...) raised to the x power. * * Range reduction is accomplished by separating the argument * into an integer k and fraction f such that * * x k f * e = 2 e. * * A Pade' form of degree 2/3 is used to approximate exp(f) - 1 * in the basic range [-0.5 ln 2, 0.5 ln 2]. * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * IEEE +-MAXLOG 100,000 2.6e-34 8.6e-35 * * * Error amplification in the exponential function can be * a serious matter. The error propagation involves * exp( X(1+delta) ) = exp(X) ( 1 + X*delta + ... ), * which shows that a 1 lsb error in representing X produces * a relative error of X times 1 lsb in the function. * While the routine gives an accurate result for arguments * that are exactly represented by a long double precision * computer number, the result contains amplified roundoff * error for large arguments not exactly represented. * * * ERROR MESSAGES: * * message condition value returned * exp underflow x < MINLOG 0.0 * exp overflow x > MAXLOG MAXNUM * */ /* Exponential function */ #include #include #include "math_private.h" /* Pade' coefficients for exp(x) - 1 Theoretical peak relative error = 2.2e-37, relative peak error spread = 9.2e-38 */ static long double P[5] = { 3.279723985560247033712687707263393506266E-10L, 6.141506007208645008909088812338454698548E-7L, 2.708775201978218837374512615596512792224E-4L, 3.508710990737834361215404761139478627390E-2L, 9.999999999999999999999999999999999998502E-1L }; static long double Q[6] = { 2.980756652081995192255342779918052538681E-12L, 1.771372078166251484503904874657985291164E-8L, 1.504792651814944826817779302637284053660E-5L, 3.611828913847589925056132680618007270344E-3L, 2.368408864814233538909747618894558968880E-1L, 2.000000000000000000000000000000000000150E0L }; /* C1 + C2 = ln 2 */ static const long double C1 = -6.93145751953125E-1L; static const long double C2 = -1.428606820309417232121458176568075500134E-6L; static const long double LOG2EL = 1.442695040888963407359924681001892137426646L; static const long double MAXLOGL = 1.1356523406294143949491931077970764891253E4L; static const long double MINLOGL = -1.143276959615573793352782661133116431383730e4L; static const long double huge = 0x1p10000L; #if 0 /* XXX Prevent gcc from erroneously constant folding this. */ static const long double twom10000 = 0x1p-10000L; #else static volatile long double twom10000 = 0x1p-10000L; #endif long double expl(long double x) { long double px, xx; int n; if( x > MAXLOGL) return (huge*huge); /* overflow */ if( x < MINLOGL ) return (twom10000*twom10000); /* underflow */ /* Express e**x = e**g 2**n * = e**g e**( n loge(2) ) * = e**( g + n loge(2) ) */ px = floorl( LOG2EL * x + 0.5L ); /* floor() truncates toward -infinity. */ n = px; x += px * C1; x += px * C2; /* rational approximation for exponential * of the fractional part: * e**x = 1 + 2x P(x**2)/( Q(x**2) - P(x**2) ) */ xx = x * x; px = x * __polevll( xx, P, 4 ); xx = __polevll( xx, Q, 5 ); x = px/( xx - px ); x = 1.0L + x + x; x = ldexpl( x, n ); return(x); } DEF_STD(expl);