/*- * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * Copyright (c) 2009-2011, Bruce D. Evans, Steven G. Kargl, David Schultz. * * Developed at SunPro, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * ==================================================== * * The argument reduction and testing for exceptional cases was * written by Steven G. Kargl with input from Bruce D. Evans * and David A. Schultz. */ #include #include #include #include "math_private.h" #define BIAS (LDBL_MAX_EXP - 1) static const unsigned B1 = 709958130; /* B1 = (127-127.0/3-0.03306235651)*2**23 */ long double cbrtl(long double x) { long double v, r, s, t, w; double dr, dt, dx; float ft, fx; uint32_t hx, lx; uint16_t expsign, es; int k; volatile double vd1, vd2; GET_LDOUBLE_EXP(expsign,x); k = expsign & 0x7fff; /* * If x = +-Inf, then cbrt(x) = +-Inf. * If x = NaN, then cbrt(x) = NaN. */ if (k == BIAS + LDBL_MAX_EXP) return (x + x); if (k == 0) { /* If x = +-0, then cbrt(x) = +-0. */ GET_LDOUBLE_WORDS(es,hx,lx,x); if ((hx|lx) == 0) { return (x); } /* Adjust subnormal numbers. */ x *= 0x1.0p514; GET_LDOUBLE_EXP(k,x); k &= 0x7fff; k -= BIAS + 514; } else k -= BIAS; SET_LDOUBLE_EXP(x,BIAS); v = 1; switch (k % 3) { case 1: case -2: x = 2*x; k--; break; case 2: case -1: x = 4*x; k -= 2; break; } SET_LDOUBLE_EXP(v, (expsign & 0x8000) | (BIAS + k / 3)); /* * The following is the guts of s_cbrtf, with the handling of * special values removed and extra care for accuracy not taken, * but with most of the extra accuracy not discarded. */ /* ~5-bit estimate: */ fx = x; GET_FLOAT_WORD(hx, fx); SET_FLOAT_WORD(ft, ((hx & 0x7fffffff) / 3 + B1)); /* ~16-bit estimate: */ dx = x; dt = ft; dr = dt * dt * dt; dt = dt * (dx + dx + dr) / (dx + dr + dr); /* ~47-bit estimate: */ dr = dt * dt * dt; dt = dt * (dx + dx + dr) / (dx + dr + dr); /* * dt is cbrtl(x) to ~47 bits (after x has been reduced to 1 <= x < 8). * Round it away from zero to 32 bits (32 so that t*t is exact, and * away from zero for technical reasons). */ vd2 = 0x1.0p32; vd1 = 0x1.0p-31; #define vd ((long double)vd2 + vd1) t = dt + vd - 0x1.0p32; /* * Final step Newton iteration to 64 or 113 bits with * error < 0.667 ulps */ s=t*t; /* t*t is exact */ r=x/s; /* error <= 0.5 ulps; |r| < |t| */ w=t+t; /* t+t is exact */ r=(r-t)/(w+r); /* r-t is exact; w+r ~= 3*t */ t=t+t*r; /* error <= 0.5 + 0.5/3 + epsilon */ t *= v; return (t); }