/* @(#)e_fmod.c 1.3 95/01/18 */ /*- * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunSoft, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * ==================================================== */ #include #include #include #include #include #include "math_private.h" #define BIAS (LDBL_MAX_EXP - 1) /* * These macros add and remove an explicit integer bit in front of the * fractional mantissa, if the architecture doesn't have such a bit by * default already. */ #ifdef LDBL_IMPLICIT_NBIT #define LDBL_NBIT 0 #define SET_NBIT(hx) ((hx) | (1ULL << LDBL_MANH_SIZE)) #define HFRAC_BITS EXT_FRACHBITS #else #define LDBL_NBIT 0x80000000 #define SET_NBIT(hx) (hx) #define HFRAC_BITS (EXT_FRACHBITS - 1) #endif #define MANL_SHIFT (EXT_FRACLBITS - 1) static const long double Zero[] = {0.0L, -0.0L}; /* * Return the IEEE remainder and set *quo to the last n bits of the * quotient, rounded to the nearest integer. We choose n=31 because * we wind up computing all the integer bits of the quotient anyway as * a side-effect of computing the remainder by the shift and subtract * method. In practice, this is far more bits than are needed to use * remquo in reduction algorithms. * * Assumptions: * - The low part of the mantissa fits in a manl_t exactly. * - The high part of the mantissa fits in an int64_t with enough room * for an explicit integer bit in front of the fractional bits. */ long double remquol(long double x, long double y, int *quo) { int64_t hx,hz; /* We need a carry bit even if LDBL_MANH_SIZE is 32. */ uint32_t hy; uint32_t lx,ly,lz; uint32_t esx, esy; int ix,iy,n,q,sx,sxy; GET_LDOUBLE_WORDS(esx,hx,lx,x); GET_LDOUBLE_WORDS(esy,hy,ly,y); sx = esx & 0x8000; sxy = sx ^ (esy & 0x8000); esx &= 0x7fff; /* |x| */ esy &= 0x7fff; /* |y| */ SET_LDOUBLE_EXP(x,esx); SET_LDOUBLE_EXP(y,esy); /* purge off exception values */ if((esy|hy|ly)==0 || /* y=0 */ (esx == BIAS + LDBL_MAX_EXP) || /* or x not finite */ (esy == BIAS + LDBL_MAX_EXP && ((hy&~LDBL_NBIT)|ly)!=0)) /* or y is NaN */ return (x*y)/(x*y); if(esx<=esy) { if((esx>MANL_SHIFT); lx = lx+lx;} else {hx = hz+hz+(lz>>MANL_SHIFT); lx = lz+lz; q++;} q <<= 1; } hz=hx-hy;lz=lx-ly; if(lx=0) {hx=hz;lx=lz;q++;} /* convert back to floating value and restore the sign */ if((hx|lx)==0) { /* return sign(x)*0 */ *quo = (sxy ? -q : q); return Zero[sx!=0]; } while(hx<(1ULL<>MANL_SHIFT); lx = lx+lx; iy -= 1; } if (iy < LDBL_MIN_EXP) { esx = (iy + BIAS + 512) & 0x7fff; SET_LDOUBLE_WORDS(x,esx,hx,lx); x *= 0x1p-512; GET_LDOUBLE_WORDS(esx,hx,lx,x); } else { esx = (iy + BIAS) & 0x7fff; } SET_LDOUBLE_WORDS(x,esx,hx,lx); fixup: y = fabsl(y); if (y < LDBL_MIN * 2) { if (x+x>y || (x+x==y && (q & 1))) { q++; x-=y; } } else if (x>0.5*y || (x==0.5*y && (q & 1))) { q++; x-=y; } GET_LDOUBLE_EXP(esx,x); esx ^= sx; SET_LDOUBLE_EXP(x,esx); q &= 0x7fffffff; *quo = (sxy ? -q : q); return x; } DEF_STD(remquol);