/* $OpenBSD: s_cpow.c,v 1.7 2016/09/12 19:47:02 guenther Exp $ */ /* * Copyright (c) 2008 Stephen L. Moshier * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /* cpow * * Complex power function * * * * SYNOPSIS: * * double complex cpow(); * double complex a, z, w; * * w = cpow (a, z); * * * * DESCRIPTION: * * Raises complex A to the complex Zth power. * Definition is per AMS55 # 4.2.8, * analytically equivalent to cpow(a,z) = cexp(z clog(a)). * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * IEEE -10,+10 30000 9.4e-15 1.5e-15 * */ #include #include #include double complex cpow(double complex a, double complex z) { double complex w; double x, y, r, theta, absa, arga; x = creal (z); y = cimag (z); absa = cabs (a); if (absa == 0.0) { return (0.0 + 0.0 * I); } arga = carg (a); r = pow (absa, x); theta = x * arga; if (y != 0.0) { r = r * exp (-y * arga); theta = theta + y * log (absa); } w = r * cos (theta) + (r * sin (theta)) * I; return (w); } DEF_STD(cpow); LDBL_MAYBE_UNUSED_CLONE(cpow);