/* $OpenBSD: s_tanl.c,v 1.1 2008/12/09 20:00:35 martynas Exp $ */ /*- * Copyright (c) 2007 Steven G. Kargl * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice unmodified, this list of conditions, and the following * disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * Compute tan(x) for x where x is reduced to y = x - k * pi / 2. * Limited testing on pseudorandom numbers drawn within [0:4e8] shows * an accuracy of <= 1.5 ULP where 247024 values of x out of 40 million * possibles resulted in tan(x) that exceeded 0.5 ULP (ie., 0.6%). */ #include #include #include #include #include "math_private.h" #if LDBL_MANT_DIG == 64 #define NX 3 #define PREC 2 #elif LDBL_MANT_DIG == 113 #define NX 5 #define PREC 3 #else #error "Unsupported long double format" #endif static const long double two24 = 1.67772160000000000000e+07L; long double tanl(long double x) { union { long double e; struct ieee_ext bits; } z; int i, e0, s; double xd[NX], yd[PREC]; long double hi, lo; z.e = x; s = z.bits.ext_sign; z.bits.ext_sign = 0; /* If x = +-0 or x is subnormal, then tan(x) = x. */ if (z.bits.ext_exp == 0) return (x); /* If x = NaN or Inf, then tan(x) = NaN. */ if (z.bits.ext_exp == 32767) return ((x - x) / (x - x)); /* Optimize the case where x is already within range. */ if (z.e < M_PI_4) { hi = __kernel_tanl(z.e, 0, 0); return (s ? -hi : hi); } /* Split z.e into a 24-bit representation. */ e0 = ilogbl(z.e) - 23; z.e = scalbnl(z.e, -e0); for (i = 0; i < NX; i++) { xd[i] = (double)((int32_t)z.e); z.e = (z.e - xd[i]) * two24; } /* yd contains the pieces of xd rem pi/2 such that |yd| < pi/4. */ e0 = __kernel_rem_pio2(xd, yd, e0, NX, PREC); #if PREC == 2 hi = (long double)yd[0] + yd[1]; lo = yd[1] - (hi - yd[0]); #else /* PREC == 3 */ long double t; t = (long double)yd[2] + yd[1]; hi = t + yd[0]; lo = yd[0] - (hi - t); #endif switch (e0 & 3) { case 0: case 2: hi = __kernel_tanl(hi, lo, 0); break; case 1: case 3: hi = __kernel_tanl(hi, lo, 1); break; } return (s ? -hi : hi); }