/* $OpenBSD: tls12_record_layer.c,v 1.42 2024/02/03 15:58:34 beck Exp $ */ /* * Copyright (c) 2020 Joel Sing * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include #include #include #include "ssl_local.h" #define TLS12_RECORD_SEQ_NUM_LEN 8 #define TLS12_AEAD_FIXED_NONCE_MAX_LEN 12 struct tls12_record_protection { uint16_t epoch; uint8_t seq_num[TLS12_RECORD_SEQ_NUM_LEN]; EVP_AEAD_CTX *aead_ctx; uint8_t *aead_nonce; size_t aead_nonce_len; uint8_t *aead_fixed_nonce; size_t aead_fixed_nonce_len; size_t aead_variable_nonce_len; size_t aead_tag_len; int aead_xor_nonces; int aead_variable_nonce_in_record; EVP_CIPHER_CTX *cipher_ctx; EVP_MD_CTX *hash_ctx; int stream_mac; uint8_t *mac_key; size_t mac_key_len; }; static struct tls12_record_protection * tls12_record_protection_new(void) { return calloc(1, sizeof(struct tls12_record_protection)); } static void tls12_record_protection_clear(struct tls12_record_protection *rp) { EVP_AEAD_CTX_free(rp->aead_ctx); freezero(rp->aead_nonce, rp->aead_nonce_len); freezero(rp->aead_fixed_nonce, rp->aead_fixed_nonce_len); EVP_CIPHER_CTX_free(rp->cipher_ctx); EVP_MD_CTX_free(rp->hash_ctx); freezero(rp->mac_key, rp->mac_key_len); memset(rp, 0, sizeof(*rp)); } static void tls12_record_protection_free(struct tls12_record_protection *rp) { if (rp == NULL) return; tls12_record_protection_clear(rp); freezero(rp, sizeof(struct tls12_record_protection)); } static int tls12_record_protection_engaged(struct tls12_record_protection *rp) { return rp->aead_ctx != NULL || rp->cipher_ctx != NULL; } static int tls12_record_protection_unused(struct tls12_record_protection *rp) { return rp->aead_ctx == NULL && rp->cipher_ctx == NULL && rp->hash_ctx == NULL && rp->mac_key == NULL; } static int tls12_record_protection_eiv_len(struct tls12_record_protection *rp, size_t *out_eiv_len) { int eiv_len; *out_eiv_len = 0; if (rp->cipher_ctx == NULL) return 0; eiv_len = 0; if (EVP_CIPHER_CTX_mode(rp->cipher_ctx) == EVP_CIPH_CBC_MODE) eiv_len = EVP_CIPHER_CTX_iv_length(rp->cipher_ctx); if (eiv_len < 0 || eiv_len > EVP_MAX_IV_LENGTH) return 0; *out_eiv_len = eiv_len; return 1; } static int tls12_record_protection_block_size(struct tls12_record_protection *rp, size_t *out_block_size) { int block_size; *out_block_size = 0; if (rp->cipher_ctx == NULL) return 0; block_size = EVP_CIPHER_CTX_block_size(rp->cipher_ctx); if (block_size < 0 || block_size > EVP_MAX_BLOCK_LENGTH) return 0; *out_block_size = block_size; return 1; } static int tls12_record_protection_mac_len(struct tls12_record_protection *rp, size_t *out_mac_len) { int mac_len; *out_mac_len = 0; if (rp->hash_ctx == NULL) return 0; mac_len = EVP_MD_CTX_size(rp->hash_ctx); if (mac_len <= 0 || mac_len > EVP_MAX_MD_SIZE) return 0; *out_mac_len = mac_len; return 1; } struct tls12_record_layer { uint16_t version; uint16_t initial_epoch; int dtls; uint8_t alert_desc; const EVP_AEAD *aead; const EVP_CIPHER *cipher; const EVP_MD *handshake_hash; const EVP_MD *mac_hash; /* Pointers to active record protection (memory is not owned). */ struct tls12_record_protection *read; struct tls12_record_protection *write; struct tls12_record_protection *read_current; struct tls12_record_protection *write_current; struct tls12_record_protection *write_previous; }; struct tls12_record_layer * tls12_record_layer_new(void) { struct tls12_record_layer *rl; if ((rl = calloc(1, sizeof(struct tls12_record_layer))) == NULL) goto err; if ((rl->read_current = tls12_record_protection_new()) == NULL) goto err; if ((rl->write_current = tls12_record_protection_new()) == NULL) goto err; rl->read = rl->read_current; rl->write = rl->write_current; return rl; err: tls12_record_layer_free(rl); return NULL; } void tls12_record_layer_free(struct tls12_record_layer *rl) { if (rl == NULL) return; tls12_record_protection_free(rl->read_current); tls12_record_protection_free(rl->write_current); tls12_record_protection_free(rl->write_previous); freezero(rl, sizeof(struct tls12_record_layer)); } void tls12_record_layer_alert(struct tls12_record_layer *rl, uint8_t *alert_desc) { *alert_desc = rl->alert_desc; } int tls12_record_layer_write_overhead(struct tls12_record_layer *rl, size_t *overhead) { size_t block_size, eiv_len, mac_len; *overhead = 0; if (rl->write->aead_ctx != NULL) { *overhead = rl->write->aead_tag_len; } else if (rl->write->cipher_ctx != NULL) { eiv_len = 0; if (rl->version != TLS1_VERSION) { if (!tls12_record_protection_eiv_len(rl->write, &eiv_len)) return 0; } if (!tls12_record_protection_block_size(rl->write, &block_size)) return 0; if (!tls12_record_protection_mac_len(rl->write, &mac_len)) return 0; *overhead = eiv_len + block_size + mac_len; } return 1; } int tls12_record_layer_read_protected(struct tls12_record_layer *rl) { return tls12_record_protection_engaged(rl->read); } int tls12_record_layer_write_protected(struct tls12_record_layer *rl) { return tls12_record_protection_engaged(rl->write); } void tls12_record_layer_set_aead(struct tls12_record_layer *rl, const EVP_AEAD *aead) { rl->aead = aead; } void tls12_record_layer_set_cipher_hash(struct tls12_record_layer *rl, const EVP_CIPHER *cipher, const EVP_MD *handshake_hash, const EVP_MD *mac_hash) { rl->cipher = cipher; rl->handshake_hash = handshake_hash; rl->mac_hash = mac_hash; } void tls12_record_layer_set_version(struct tls12_record_layer *rl, uint16_t version) { rl->version = version; rl->dtls = ((version >> 8) == DTLS1_VERSION_MAJOR); } void tls12_record_layer_set_initial_epoch(struct tls12_record_layer *rl, uint16_t epoch) { rl->initial_epoch = epoch; } uint16_t tls12_record_layer_read_epoch(struct tls12_record_layer *rl) { return rl->read->epoch; } uint16_t tls12_record_layer_write_epoch(struct tls12_record_layer *rl) { return rl->write->epoch; } int tls12_record_layer_use_write_epoch(struct tls12_record_layer *rl, uint16_t epoch) { if (rl->write->epoch == epoch) return 1; if (rl->write_current->epoch == epoch) { rl->write = rl->write_current; return 1; } if (rl->write_previous != NULL && rl->write_previous->epoch == epoch) { rl->write = rl->write_previous; return 1; } return 0; } void tls12_record_layer_write_epoch_done(struct tls12_record_layer *rl, uint16_t epoch) { if (rl->write_previous == NULL || rl->write_previous->epoch != epoch) return; rl->write = rl->write_current; tls12_record_protection_free(rl->write_previous); rl->write_previous = NULL; } void tls12_record_layer_clear_read_state(struct tls12_record_layer *rl) { tls12_record_protection_clear(rl->read); rl->read->epoch = rl->initial_epoch; } void tls12_record_layer_clear_write_state(struct tls12_record_layer *rl) { tls12_record_protection_clear(rl->write); rl->write->epoch = rl->initial_epoch; tls12_record_protection_free(rl->write_previous); rl->write_previous = NULL; } void tls12_record_layer_reflect_seq_num(struct tls12_record_layer *rl) { memcpy(rl->write->seq_num, rl->read->seq_num, sizeof(rl->write->seq_num)); } static const uint8_t tls12_max_seq_num[TLS12_RECORD_SEQ_NUM_LEN] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, }; int tls12_record_layer_inc_seq_num(struct tls12_record_layer *rl, uint8_t *seq_num) { CBS max_seq_num; int i; /* * RFC 5246 section 6.1 and RFC 6347 section 4.1 - both TLS and DTLS * sequence numbers must not wrap. Note that for DTLS the first two * bytes are used as an "epoch" and not part of the sequence number. */ CBS_init(&max_seq_num, seq_num, TLS12_RECORD_SEQ_NUM_LEN); if (rl->dtls) { if (!CBS_skip(&max_seq_num, 2)) return 0; } if (CBS_mem_equal(&max_seq_num, tls12_max_seq_num, CBS_len(&max_seq_num))) return 0; for (i = TLS12_RECORD_SEQ_NUM_LEN - 1; i >= 0; i--) { if (++seq_num[i] != 0) break; } return 1; } static int tls12_record_layer_set_mac_key(struct tls12_record_protection *rp, const uint8_t *mac_key, size_t mac_key_len) { freezero(rp->mac_key, rp->mac_key_len); rp->mac_key = NULL; rp->mac_key_len = 0; if (mac_key == NULL || mac_key_len == 0) return 1; if ((rp->mac_key = calloc(1, mac_key_len)) == NULL) return 0; memcpy(rp->mac_key, mac_key, mac_key_len); rp->mac_key_len = mac_key_len; return 1; } static int tls12_record_layer_ccs_aead(struct tls12_record_layer *rl, struct tls12_record_protection *rp, int is_write, CBS *mac_key, CBS *key, CBS *iv) { if (!tls12_record_protection_unused(rp)) return 0; if ((rp->aead_ctx = EVP_AEAD_CTX_new()) == NULL) return 0; /* AES GCM cipher suites use variable nonce in record. */ if (rl->aead == EVP_aead_aes_128_gcm() || rl->aead == EVP_aead_aes_256_gcm()) rp->aead_variable_nonce_in_record = 1; /* ChaCha20 Poly1305 XORs the fixed and variable nonces. */ if (rl->aead == EVP_aead_chacha20_poly1305()) rp->aead_xor_nonces = 1; if (!CBS_stow(iv, &rp->aead_fixed_nonce, &rp->aead_fixed_nonce_len)) return 0; rp->aead_nonce = calloc(1, EVP_AEAD_nonce_length(rl->aead)); if (rp->aead_nonce == NULL) return 0; rp->aead_nonce_len = EVP_AEAD_nonce_length(rl->aead); rp->aead_tag_len = EVP_AEAD_max_overhead(rl->aead); rp->aead_variable_nonce_len = TLS12_RECORD_SEQ_NUM_LEN; if (rp->aead_xor_nonces) { /* Fixed nonce length must match, variable must not exceed. */ if (rp->aead_fixed_nonce_len != rp->aead_nonce_len) return 0; if (rp->aead_variable_nonce_len > rp->aead_nonce_len) return 0; } else { /* Concatenated nonce length must equal AEAD nonce length. */ if (rp->aead_fixed_nonce_len + rp->aead_variable_nonce_len != rp->aead_nonce_len) return 0; } if (!EVP_AEAD_CTX_init(rp->aead_ctx, rl->aead, CBS_data(key), CBS_len(key), EVP_AEAD_DEFAULT_TAG_LENGTH, NULL)) return 0; return 1; } static int tls12_record_layer_ccs_cipher(struct tls12_record_layer *rl, struct tls12_record_protection *rp, int is_write, CBS *mac_key, CBS *key, CBS *iv) { EVP_PKEY *mac_pkey = NULL; int mac_type; int ret = 0; if (!tls12_record_protection_unused(rp)) goto err; mac_type = EVP_PKEY_HMAC; rp->stream_mac = 0; if (CBS_len(iv) > INT_MAX || CBS_len(key) > INT_MAX) goto err; if (EVP_CIPHER_iv_length(rl->cipher) != CBS_len(iv)) goto err; if (EVP_CIPHER_key_length(rl->cipher) != CBS_len(key)) goto err; if (CBS_len(mac_key) > INT_MAX) goto err; if (EVP_MD_size(rl->mac_hash) != CBS_len(mac_key)) goto err; if ((rp->cipher_ctx = EVP_CIPHER_CTX_new()) == NULL) goto err; if ((rp->hash_ctx = EVP_MD_CTX_new()) == NULL) goto err; if (!tls12_record_layer_set_mac_key(rp, CBS_data(mac_key), CBS_len(mac_key))) goto err; if ((mac_pkey = EVP_PKEY_new_mac_key(mac_type, NULL, CBS_data(mac_key), CBS_len(mac_key))) == NULL) goto err; if (!EVP_CipherInit_ex(rp->cipher_ctx, rl->cipher, NULL, CBS_data(key), CBS_data(iv), is_write)) goto err; if (EVP_DigestSignInit(rp->hash_ctx, NULL, rl->mac_hash, NULL, mac_pkey) <= 0) goto err; ret = 1; err: EVP_PKEY_free(mac_pkey); return ret; } static int tls12_record_layer_change_cipher_state(struct tls12_record_layer *rl, struct tls12_record_protection *rp, int is_write, CBS *mac_key, CBS *key, CBS *iv) { if (rl->aead != NULL) return tls12_record_layer_ccs_aead(rl, rp, is_write, mac_key, key, iv); return tls12_record_layer_ccs_cipher(rl, rp, is_write, mac_key, key, iv); } int tls12_record_layer_change_read_cipher_state(struct tls12_record_layer *rl, CBS *mac_key, CBS *key, CBS *iv) { struct tls12_record_protection *read_new = NULL; int ret = 0; if ((read_new = tls12_record_protection_new()) == NULL) goto err; /* Read sequence number gets reset to zero. */ /* DTLS epoch is incremented and is permitted to wrap. */ if (rl->dtls) read_new->epoch = rl->read_current->epoch + 1; if (!tls12_record_layer_change_cipher_state(rl, read_new, 0, mac_key, key, iv)) goto err; tls12_record_protection_free(rl->read_current); rl->read = rl->read_current = read_new; read_new = NULL; ret = 1; err: tls12_record_protection_free(read_new); return ret; } int tls12_record_layer_change_write_cipher_state(struct tls12_record_layer *rl, CBS *mac_key, CBS *key, CBS *iv) { struct tls12_record_protection *write_new; int ret = 0; if ((write_new = tls12_record_protection_new()) == NULL) goto err; /* Write sequence number gets reset to zero. */ /* DTLS epoch is incremented and is permitted to wrap. */ if (rl->dtls) write_new->epoch = rl->write_current->epoch + 1; if (!tls12_record_layer_change_cipher_state(rl, write_new, 1, mac_key, key, iv)) goto err; if (rl->dtls) { tls12_record_protection_free(rl->write_previous); rl->write_previous = rl->write_current; rl->write_current = NULL; } tls12_record_protection_free(rl->write_current); rl->write = rl->write_current = write_new; write_new = NULL; ret = 1; err: tls12_record_protection_free(write_new); return ret; } static int tls12_record_layer_build_seq_num(struct tls12_record_layer *rl, CBB *cbb, uint16_t epoch, uint8_t *seq_num, size_t seq_num_len) { CBS seq; CBS_init(&seq, seq_num, seq_num_len); if (rl->dtls) { if (!CBB_add_u16(cbb, epoch)) return 0; if (!CBS_skip(&seq, 2)) return 0; } return CBB_add_bytes(cbb, CBS_data(&seq), CBS_len(&seq)); } static int tls12_record_layer_pseudo_header(struct tls12_record_layer *rl, uint8_t content_type, uint16_t record_len, CBS *seq_num, uint8_t **out, size_t *out_len) { CBB cbb; *out = NULL; *out_len = 0; /* Build the pseudo-header used for MAC/AEAD. */ if (!CBB_init(&cbb, 13)) goto err; if (!CBB_add_bytes(&cbb, CBS_data(seq_num), CBS_len(seq_num))) goto err; if (!CBB_add_u8(&cbb, content_type)) goto err; if (!CBB_add_u16(&cbb, rl->version)) goto err; if (!CBB_add_u16(&cbb, record_len)) goto err; if (!CBB_finish(&cbb, out, out_len)) goto err; return 1; err: CBB_cleanup(&cbb); return 0; } static int tls12_record_layer_mac(struct tls12_record_layer *rl, CBB *cbb, EVP_MD_CTX *hash_ctx, int stream_mac, CBS *seq_num, uint8_t content_type, const uint8_t *content, size_t content_len, size_t *out_len) { EVP_MD_CTX *mac_ctx = NULL; uint8_t *header = NULL; size_t header_len = 0; size_t mac_len; uint8_t *mac; int ret = 0; if ((mac_ctx = EVP_MD_CTX_new()) == NULL) goto err; if (!EVP_MD_CTX_copy(mac_ctx, hash_ctx)) goto err; if (!tls12_record_layer_pseudo_header(rl, content_type, content_len, seq_num, &header, &header_len)) goto err; if (EVP_DigestSignUpdate(mac_ctx, header, header_len) <= 0) goto err; if (EVP_DigestSignUpdate(mac_ctx, content, content_len) <= 0) goto err; if (EVP_DigestSignFinal(mac_ctx, NULL, &mac_len) <= 0) goto err; if (!CBB_add_space(cbb, &mac, mac_len)) goto err; if (EVP_DigestSignFinal(mac_ctx, mac, &mac_len) <= 0) goto err; if (mac_len == 0) goto err; if (stream_mac) { if (!EVP_MD_CTX_copy(hash_ctx, mac_ctx)) goto err; } *out_len = mac_len; ret = 1; err: EVP_MD_CTX_free(mac_ctx); freezero(header, header_len); return ret; } static int tls12_record_layer_read_mac_cbc(struct tls12_record_layer *rl, CBB *cbb, uint8_t content_type, CBS *seq_num, const uint8_t *content, size_t content_len, size_t mac_len, size_t padding_len) { uint8_t *header = NULL; size_t header_len = 0; uint8_t *mac = NULL; size_t out_mac_len = 0; int ret = 0; /* * Must be constant time to avoid leaking details about CBC padding. */ if (!ssl3_cbc_record_digest_supported(rl->read->hash_ctx)) goto err; if (!tls12_record_layer_pseudo_header(rl, content_type, content_len, seq_num, &header, &header_len)) goto err; if (!CBB_add_space(cbb, &mac, mac_len)) goto err; if (!ssl3_cbc_digest_record(rl->read->hash_ctx, mac, &out_mac_len, header, content, content_len + mac_len, content_len + mac_len + padding_len, rl->read->mac_key, rl->read->mac_key_len)) goto err; if (mac_len != out_mac_len) goto err; ret = 1; err: freezero(header, header_len); return ret; } static int tls12_record_layer_read_mac(struct tls12_record_layer *rl, CBB *cbb, uint8_t content_type, CBS *seq_num, const uint8_t *content, size_t content_len) { EVP_CIPHER_CTX *enc = rl->read->cipher_ctx; size_t out_len; if (EVP_CIPHER_CTX_mode(enc) == EVP_CIPH_CBC_MODE) return 0; return tls12_record_layer_mac(rl, cbb, rl->read->hash_ctx, rl->read->stream_mac, seq_num, content_type, content, content_len, &out_len); } static int tls12_record_layer_write_mac(struct tls12_record_layer *rl, CBB *cbb, uint8_t content_type, CBS *seq_num, const uint8_t *content, size_t content_len, size_t *out_len) { return tls12_record_layer_mac(rl, cbb, rl->write->hash_ctx, rl->write->stream_mac, seq_num, content_type, content, content_len, out_len); } static int tls12_record_layer_aead_concat_nonce(struct tls12_record_layer *rl, struct tls12_record_protection *rp, CBS *seq_num) { CBB cbb; if (rp->aead_variable_nonce_len > CBS_len(seq_num)) return 0; /* Fixed nonce and variable nonce (sequence number) are concatenated. */ if (!CBB_init_fixed(&cbb, rp->aead_nonce, rp->aead_nonce_len)) goto err; if (!CBB_add_bytes(&cbb, rp->aead_fixed_nonce, rp->aead_fixed_nonce_len)) goto err; if (!CBB_add_bytes(&cbb, CBS_data(seq_num), rp->aead_variable_nonce_len)) goto err; if (!CBB_finish(&cbb, NULL, NULL)) goto err; return 1; err: CBB_cleanup(&cbb); return 0; } static int tls12_record_layer_aead_xored_nonce(struct tls12_record_layer *rl, struct tls12_record_protection *rp, CBS *seq_num) { uint8_t *pad; CBB cbb; int i; if (rp->aead_variable_nonce_len > CBS_len(seq_num)) return 0; if (rp->aead_fixed_nonce_len < rp->aead_variable_nonce_len) return 0; if (rp->aead_fixed_nonce_len != rp->aead_nonce_len) return 0; /* * Variable nonce (sequence number) is right padded, before the fixed * nonce is XOR'd in. */ if (!CBB_init_fixed(&cbb, rp->aead_nonce, rp->aead_nonce_len)) goto err; if (!CBB_add_space(&cbb, &pad, rp->aead_fixed_nonce_len - rp->aead_variable_nonce_len)) goto err; if (!CBB_add_bytes(&cbb, CBS_data(seq_num), rp->aead_variable_nonce_len)) goto err; if (!CBB_finish(&cbb, NULL, NULL)) goto err; for (i = 0; i < rp->aead_fixed_nonce_len; i++) rp->aead_nonce[i] ^= rp->aead_fixed_nonce[i]; return 1; err: CBB_cleanup(&cbb); return 0; } static int tls12_record_layer_open_record_plaintext(struct tls12_record_layer *rl, uint8_t content_type, CBS *fragment, struct tls_content *out) { if (tls12_record_protection_engaged(rl->read)) return 0; return tls_content_dup_data(out, content_type, CBS_data(fragment), CBS_len(fragment)); } static int tls12_record_layer_open_record_protected_aead(struct tls12_record_layer *rl, uint8_t content_type, CBS *seq_num, CBS *fragment, struct tls_content *out) { struct tls12_record_protection *rp = rl->read; uint8_t *header = NULL; size_t header_len = 0; uint8_t *content = NULL; size_t content_len = 0; size_t out_len = 0; CBS var_nonce; int ret = 0; if (rp->aead_xor_nonces) { if (!tls12_record_layer_aead_xored_nonce(rl, rp, seq_num)) goto err; } else if (rp->aead_variable_nonce_in_record) { if (!CBS_get_bytes(fragment, &var_nonce, rp->aead_variable_nonce_len)) goto err; if (!tls12_record_layer_aead_concat_nonce(rl, rp, &var_nonce)) goto err; } else { if (!tls12_record_layer_aead_concat_nonce(rl, rp, seq_num)) goto err; } /* XXX EVP_AEAD_max_tag_len vs EVP_AEAD_CTX_tag_len. */ if (CBS_len(fragment) < rp->aead_tag_len) { rl->alert_desc = SSL_AD_BAD_RECORD_MAC; goto err; } if (CBS_len(fragment) > SSL3_RT_MAX_ENCRYPTED_LENGTH) { rl->alert_desc = SSL_AD_RECORD_OVERFLOW; goto err; } content_len = CBS_len(fragment) - rp->aead_tag_len; if ((content = calloc(1, CBS_len(fragment))) == NULL) { content_len = 0; goto err; } if (!tls12_record_layer_pseudo_header(rl, content_type, content_len, seq_num, &header, &header_len)) goto err; if (!EVP_AEAD_CTX_open(rp->aead_ctx, content, &out_len, content_len, rp->aead_nonce, rp->aead_nonce_len, CBS_data(fragment), CBS_len(fragment), header, header_len)) { rl->alert_desc = SSL_AD_BAD_RECORD_MAC; goto err; } if (out_len > SSL3_RT_MAX_PLAIN_LENGTH) { rl->alert_desc = SSL_AD_RECORD_OVERFLOW; goto err; } if (out_len != content_len) goto err; tls_content_set_data(out, content_type, content, content_len); content = NULL; content_len = 0; ret = 1; err: freezero(header, header_len); freezero(content, content_len); return ret; } static int tls12_record_layer_open_record_protected_cipher(struct tls12_record_layer *rl, uint8_t content_type, CBS *seq_num, CBS *fragment, struct tls_content *out) { EVP_CIPHER_CTX *enc = rl->read->cipher_ctx; SSL3_RECORD_INTERNAL rrec; size_t block_size, eiv_len; uint8_t *mac = NULL; size_t mac_len = 0; uint8_t *out_mac = NULL; size_t out_mac_len = 0; uint8_t *content = NULL; size_t content_len = 0; size_t min_len; CBB cbb_mac; int ret = 0; memset(&cbb_mac, 0, sizeof(cbb_mac)); memset(&rrec, 0, sizeof(rrec)); if (!tls12_record_protection_block_size(rl->read, &block_size)) goto err; /* Determine explicit IV length. */ eiv_len = 0; if (rl->version != TLS1_VERSION) { if (!tls12_record_protection_eiv_len(rl->read, &eiv_len)) goto err; } mac_len = 0; if (rl->read->hash_ctx != NULL) { if (!tls12_record_protection_mac_len(rl->read, &mac_len)) goto err; } /* CBC has at least one padding byte. */ min_len = eiv_len + mac_len; if (EVP_CIPHER_CTX_mode(enc) == EVP_CIPH_CBC_MODE) min_len += 1; if (CBS_len(fragment) < min_len) { rl->alert_desc = SSL_AD_BAD_RECORD_MAC; goto err; } if (CBS_len(fragment) > SSL3_RT_MAX_ENCRYPTED_LENGTH) { rl->alert_desc = SSL_AD_RECORD_OVERFLOW; goto err; } if (CBS_len(fragment) % block_size != 0) { rl->alert_desc = SSL_AD_BAD_RECORD_MAC; goto err; } if ((content = calloc(1, CBS_len(fragment))) == NULL) goto err; content_len = CBS_len(fragment); if (!EVP_Cipher(enc, content, CBS_data(fragment), CBS_len(fragment))) goto err; rrec.data = content; rrec.input = content; rrec.length = content_len; /* * We now have to remove padding, extract MAC, calculate MAC * and compare MAC in constant time. */ if (block_size > 1) ssl3_cbc_remove_padding(&rrec, eiv_len, mac_len); if ((mac = calloc(1, mac_len)) == NULL) goto err; if (!CBB_init(&cbb_mac, EVP_MAX_MD_SIZE)) goto err; if (EVP_CIPHER_CTX_mode(enc) == EVP_CIPH_CBC_MODE) { ssl3_cbc_copy_mac(mac, &rrec, mac_len, rrec.length + rrec.padding_length); rrec.length -= mac_len; if (!tls12_record_layer_read_mac_cbc(rl, &cbb_mac, content_type, seq_num, rrec.input, rrec.length, mac_len, rrec.padding_length)) goto err; } else { rrec.length -= mac_len; memcpy(mac, rrec.data + rrec.length, mac_len); if (!tls12_record_layer_read_mac(rl, &cbb_mac, content_type, seq_num, rrec.input, rrec.length)) goto err; } if (!CBB_finish(&cbb_mac, &out_mac, &out_mac_len)) goto err; if (mac_len != out_mac_len) goto err; if (timingsafe_memcmp(mac, out_mac, mac_len) != 0) { rl->alert_desc = SSL_AD_BAD_RECORD_MAC; goto err; } if (rrec.length > SSL3_RT_MAX_COMPRESSED_LENGTH + mac_len) { rl->alert_desc = SSL_AD_BAD_RECORD_MAC; goto err; } if (rrec.length > SSL3_RT_MAX_PLAIN_LENGTH) { rl->alert_desc = SSL_AD_RECORD_OVERFLOW; goto err; } tls_content_set_data(out, content_type, content, content_len); content = NULL; content_len = 0; /* Actual content is after EIV, minus padding and MAC. */ if (!tls_content_set_bounds(out, eiv_len, rrec.length)) goto err; ret = 1; err: CBB_cleanup(&cbb_mac); freezero(mac, mac_len); freezero(out_mac, out_mac_len); freezero(content, content_len); return ret; } int tls12_record_layer_open_record(struct tls12_record_layer *rl, uint8_t *buf, size_t buf_len, struct tls_content *out) { CBS cbs, fragment, seq_num; uint16_t version; uint8_t content_type; CBS_init(&cbs, buf, buf_len); CBS_init(&seq_num, rl->read->seq_num, sizeof(rl->read->seq_num)); if (!CBS_get_u8(&cbs, &content_type)) return 0; if (!CBS_get_u16(&cbs, &version)) return 0; if (rl->dtls) { /* * The DTLS sequence number is split into a 16 bit epoch and * 48 bit sequence number, however for the purposes of record * processing it is treated the same as a TLS 64 bit sequence * number. DTLS also uses explicit read sequence numbers, which * we need to extract from the DTLS record header. */ if (!CBS_get_bytes(&cbs, &seq_num, SSL3_SEQUENCE_SIZE)) return 0; if (!CBS_write_bytes(&seq_num, rl->read->seq_num, sizeof(rl->read->seq_num), NULL)) return 0; } if (!CBS_get_u16_length_prefixed(&cbs, &fragment)) return 0; if (rl->read->aead_ctx != NULL) { if (!tls12_record_layer_open_record_protected_aead(rl, content_type, &seq_num, &fragment, out)) return 0; } else if (rl->read->cipher_ctx != NULL) { if (!tls12_record_layer_open_record_protected_cipher(rl, content_type, &seq_num, &fragment, out)) return 0; } else { if (!tls12_record_layer_open_record_plaintext(rl, content_type, &fragment, out)) return 0; } if (!rl->dtls) { if (!tls12_record_layer_inc_seq_num(rl, rl->read->seq_num)) return 0; } return 1; } static int tls12_record_layer_seal_record_plaintext(struct tls12_record_layer *rl, uint8_t content_type, const uint8_t *content, size_t content_len, CBB *out) { if (tls12_record_protection_engaged(rl->write)) return 0; return CBB_add_bytes(out, content, content_len); } static int tls12_record_layer_seal_record_protected_aead(struct tls12_record_layer *rl, uint8_t content_type, CBS *seq_num, const uint8_t *content, size_t content_len, CBB *out) { struct tls12_record_protection *rp = rl->write; uint8_t *header = NULL; size_t header_len = 0; size_t enc_record_len, out_len; uint8_t *enc_data; int ret = 0; if (rp->aead_xor_nonces) { if (!tls12_record_layer_aead_xored_nonce(rl, rp, seq_num)) goto err; } else { if (!tls12_record_layer_aead_concat_nonce(rl, rp, seq_num)) goto err; } if (rp->aead_variable_nonce_in_record) { if (rp->aead_variable_nonce_len > CBS_len(seq_num)) goto err; if (!CBB_add_bytes(out, CBS_data(seq_num), rp->aead_variable_nonce_len)) goto err; } if (!tls12_record_layer_pseudo_header(rl, content_type, content_len, seq_num, &header, &header_len)) goto err; /* XXX EVP_AEAD_max_tag_len vs EVP_AEAD_CTX_tag_len. */ enc_record_len = content_len + rp->aead_tag_len; if (enc_record_len > SSL3_RT_MAX_ENCRYPTED_LENGTH) goto err; if (!CBB_add_space(out, &enc_data, enc_record_len)) goto err; if (!EVP_AEAD_CTX_seal(rp->aead_ctx, enc_data, &out_len, enc_record_len, rp->aead_nonce, rp->aead_nonce_len, content, content_len, header, header_len)) goto err; if (out_len != enc_record_len) goto err; ret = 1; err: freezero(header, header_len); return ret; } static int tls12_record_layer_seal_record_protected_cipher(struct tls12_record_layer *rl, uint8_t content_type, CBS *seq_num, const uint8_t *content, size_t content_len, CBB *out) { EVP_CIPHER_CTX *enc = rl->write->cipher_ctx; size_t block_size, eiv_len, mac_len, pad_len; uint8_t *enc_data, *eiv, *pad, pad_val; uint8_t *plain = NULL; size_t plain_len = 0; int ret = 0; CBB cbb; if (!CBB_init(&cbb, SSL3_RT_MAX_PLAIN_LENGTH)) goto err; /* Add explicit IV if necessary. */ eiv_len = 0; if (rl->version != TLS1_VERSION) { if (!tls12_record_protection_eiv_len(rl->write, &eiv_len)) goto err; } if (eiv_len > 0) { if (!CBB_add_space(&cbb, &eiv, eiv_len)) goto err; arc4random_buf(eiv, eiv_len); } if (!CBB_add_bytes(&cbb, content, content_len)) goto err; mac_len = 0; if (rl->write->hash_ctx != NULL) { if (!tls12_record_layer_write_mac(rl, &cbb, content_type, seq_num, content, content_len, &mac_len)) goto err; } plain_len = eiv_len + content_len + mac_len; /* Add padding to block size, if necessary. */ if (!tls12_record_protection_block_size(rl->write, &block_size)) goto err; if (block_size > 1) { pad_len = block_size - (plain_len % block_size); pad_val = pad_len - 1; if (pad_len > 255) goto err; if (!CBB_add_space(&cbb, &pad, pad_len)) goto err; memset(pad, pad_val, pad_len); } if (!CBB_finish(&cbb, &plain, &plain_len)) goto err; if (plain_len % block_size != 0) goto err; if (plain_len > SSL3_RT_MAX_ENCRYPTED_LENGTH) goto err; if (!CBB_add_space(out, &enc_data, plain_len)) goto err; if (!EVP_Cipher(enc, enc_data, plain, plain_len)) goto err; ret = 1; err: CBB_cleanup(&cbb); freezero(plain, plain_len); return ret; } int tls12_record_layer_seal_record(struct tls12_record_layer *rl, uint8_t content_type, const uint8_t *content, size_t content_len, CBB *cbb) { uint8_t *seq_num_data = NULL; size_t seq_num_len = 0; CBB fragment, seq_num_cbb; CBS seq_num; int ret = 0; /* * Construct the effective sequence number - this is used in both * the DTLS header and for MAC calculations. */ if (!CBB_init(&seq_num_cbb, SSL3_SEQUENCE_SIZE)) goto err; if (!tls12_record_layer_build_seq_num(rl, &seq_num_cbb, rl->write->epoch, rl->write->seq_num, sizeof(rl->write->seq_num))) goto err; if (!CBB_finish(&seq_num_cbb, &seq_num_data, &seq_num_len)) goto err; CBS_init(&seq_num, seq_num_data, seq_num_len); if (!CBB_add_u8(cbb, content_type)) goto err; if (!CBB_add_u16(cbb, rl->version)) goto err; if (rl->dtls) { if (!CBB_add_bytes(cbb, CBS_data(&seq_num), CBS_len(&seq_num))) goto err; } if (!CBB_add_u16_length_prefixed(cbb, &fragment)) goto err; if (rl->write->aead_ctx != NULL) { if (!tls12_record_layer_seal_record_protected_aead(rl, content_type, &seq_num, content, content_len, &fragment)) goto err; } else if (rl->write->cipher_ctx != NULL) { if (!tls12_record_layer_seal_record_protected_cipher(rl, content_type, &seq_num, content, content_len, &fragment)) goto err; } else { if (!tls12_record_layer_seal_record_plaintext(rl, content_type, content, content_len, &fragment)) goto err; } if (!CBB_flush(cbb)) goto err; if (!tls12_record_layer_inc_seq_num(rl, rl->write->seq_num)) goto err; ret = 1; err: CBB_cleanup(&seq_num_cbb); free(seq_num_data); return ret; }