/* $OpenBSD: cexp_test.c,v 1.3 2021/12/13 18:04:28 deraadt Exp $ */ /*- * Copyright (c) 2008-2011 David Schultz * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include "macros.h" /* * Tests for corner cases in cexp*(). */ #include #include #include #include #include #include #include "test-utils.h" #pragma STDC FENV_ACCESS ON #pragma STDC CX_LIMITED_RANGE OFF /* * Test that a function returns the correct value and sets the * exception flags correctly. The exceptmask specifies which * exceptions we should check. We need to be lenient for several * reasons, but mainly because on some architectures it's impossible * to raise FE_OVERFLOW without raising FE_INEXACT. In some cases, * whether cexp() raises an invalid exception is unspecified. * * These are macros instead of functions so that assert provides more * meaningful error messages. * * XXX The volatile here is to avoid gcc's bogus constant folding and work * around the lack of support for the FENV_ACCESS pragma. */ #define test_t(type, func, z, result, exceptmask, excepts, checksign) \ do { \ volatile long double complex _d = z; \ volatile type complex _r = result; \ ATF_REQUIRE_EQ(0, feclearexcept(FE_ALL_EXCEPT)); \ CHECK_CFPEQUAL_CS((func)(_d), (_r), (checksign)); \ CHECK_FP_EXCEPTIONS_MSG(excepts, exceptmask, "for %s(%s)", \ #func, #z); \ } while (0) #define test(func, z, result, exceptmask, excepts, checksign) \ test_t(double, func, z, result, exceptmask, excepts, checksign) #define test_f(func, z, result, exceptmask, excepts, checksign) \ test_t(float, func, z, result, exceptmask, excepts, checksign) #define test_l(func, z, result, exceptmask, excepts, checksign) \ test_t(long double, func, z, result, exceptmask, excepts, \ checksign) /* Test within a given tolerance. */ #define test_tol(func, z, result, tol) do { \ CHECK_CFPEQUAL_TOL((func)(z), (result), (tol), \ FPE_ABS_ZERO | CS_BOTH); \ } while (0) /* Test all the functions that compute cexp(x). */ #define testall(x, result, exceptmask, excepts, checksign) do { \ test(cexp, x, result, exceptmask, excepts, checksign); \ test_f(cexpf, x, result, exceptmask, excepts, checksign); \ test_l(cexpl, x, result, exceptmask, excepts, checksign); \ } while (0) /* * Test all the functions that compute cexp(x), within a given tolerance. * The tolerance is specified in ulps. */ #define testall_tol(x, result, tol) do { \ test_tol(cexp, x, result, tol * DBL_ULP()); \ test_tol(cexpf, x, result, tol * FLT_ULP()); \ } while (0) /* Various finite non-zero numbers to test. */ static const float finites[] = { -42.0e20, -1.0, -1.0e-10, -0.0, 0.0, 1.0e-10, 1.0, 42.0e20 }; /* Tests for 0 */ ATF_TC_WITHOUT_HEAD(zero); ATF_TC_BODY(zero, tc) { /* cexp(0) = 1, no exceptions raised */ testall(0.0, 1.0, ALL_STD_EXCEPT, 0, 1); testall(-0.0, 1.0, ALL_STD_EXCEPT, 0, 1); testall(CMPLXL(0.0, -0.0), CMPLXL(1.0, -0.0), ALL_STD_EXCEPT, 0, 1); testall(CMPLXL(-0.0, -0.0), CMPLXL(1.0, -0.0), ALL_STD_EXCEPT, 0, 1); } /* * Tests for NaN. The signs of the results are indeterminate unless the * imaginary part is 0. */ ATF_TC_WITHOUT_HEAD(nan); ATF_TC_BODY(nan, tc) { unsigned i; /* cexp(x + NaNi) = NaN + NaNi and optionally raises invalid */ /* cexp(NaN + yi) = NaN + NaNi and optionally raises invalid (|y|>0) */ for (i = 0; i < nitems(finites); i++) { testall(CMPLXL(finites[i], NAN), CMPLXL(NAN, NAN), ALL_STD_EXCEPT & ~FE_INVALID, 0, 0); if (finites[i] == 0.0) continue; #ifndef __OpenBSD__ /* XXX FE_INEXACT shouldn't be raised here */ testall(CMPLXL(NAN, finites[i]), CMPLXL(NAN, NAN), ALL_STD_EXCEPT & ~(FE_INVALID | FE_INEXACT), 0, 0); #else testall(CMPLXL(NAN, finites[i]), CMPLXL(NAN, NAN), ALL_STD_EXCEPT & ~(FE_INVALID), 0, 0); #endif } /* cexp(NaN +- 0i) = NaN +- 0i */ testall(CMPLXL(NAN, 0.0), CMPLXL(NAN, 0.0), ALL_STD_EXCEPT, 0, 1); testall(CMPLXL(NAN, -0.0), CMPLXL(NAN, -0.0), ALL_STD_EXCEPT, 0, 1); /* cexp(inf + NaN i) = inf + nan i */ testall(CMPLXL(INFINITY, NAN), CMPLXL(INFINITY, NAN), ALL_STD_EXCEPT, 0, 0); /* cexp(-inf + NaN i) = 0 */ testall(CMPLXL(-INFINITY, NAN), CMPLXL(0.0, 0.0), ALL_STD_EXCEPT, 0, 0); /* cexp(NaN + NaN i) = NaN + NaN i */ testall(CMPLXL(NAN, NAN), CMPLXL(NAN, NAN), ALL_STD_EXCEPT, 0, 0); } ATF_TC_WITHOUT_HEAD(inf); ATF_TC_BODY(inf, tc) { unsigned i; /* cexp(x + inf i) = NaN + NaNi and raises invalid */ for (i = 0; i < nitems(finites); i++) { testall(CMPLXL(finites[i], INFINITY), CMPLXL(NAN, NAN), ALL_STD_EXCEPT, FE_INVALID, 1); } /* cexp(-inf + yi) = 0 * (cos(y) + sin(y)i) */ /* XXX shouldn't raise an inexact exception */ testall(CMPLXL(-INFINITY, M_PI_4), CMPLXL(0.0, 0.0), ALL_STD_EXCEPT & ~FE_INEXACT, 0, 1); testall(CMPLXL(-INFINITY, 3 * M_PI_4), CMPLXL(-0.0, 0.0), ALL_STD_EXCEPT & ~FE_INEXACT, 0, 1); testall(CMPLXL(-INFINITY, 5 * M_PI_4), CMPLXL(-0.0, -0.0), ALL_STD_EXCEPT & ~FE_INEXACT, 0, 1); testall(CMPLXL(-INFINITY, 7 * M_PI_4), CMPLXL(0.0, -0.0), ALL_STD_EXCEPT & ~FE_INEXACT, 0, 1); testall(CMPLXL(-INFINITY, 0.0), CMPLXL(0.0, 0.0), ALL_STD_EXCEPT, 0, 1); testall(CMPLXL(-INFINITY, -0.0), CMPLXL(0.0, -0.0), ALL_STD_EXCEPT, 0, 1); /* cexp(inf + yi) = inf * (cos(y) + sin(y)i) (except y=0) */ /* XXX shouldn't raise an inexact exception */ testall(CMPLXL(INFINITY, M_PI_4), CMPLXL(INFINITY, INFINITY), ALL_STD_EXCEPT & ~FE_INEXACT, 0, 1); testall(CMPLXL(INFINITY, 3 * M_PI_4), CMPLXL(-INFINITY, INFINITY), ALL_STD_EXCEPT & ~FE_INEXACT, 0, 1); testall(CMPLXL(INFINITY, 5 * M_PI_4), CMPLXL(-INFINITY, -INFINITY), ALL_STD_EXCEPT & ~FE_INEXACT, 0, 1); testall(CMPLXL(INFINITY, 7 * M_PI_4), CMPLXL(INFINITY, -INFINITY), ALL_STD_EXCEPT & ~FE_INEXACT, 0, 1); /* cexp(inf + 0i) = inf + 0i */ testall(CMPLXL(INFINITY, 0.0), CMPLXL(INFINITY, 0.0), ALL_STD_EXCEPT, 0, 1); testall(CMPLXL(INFINITY, -0.0), CMPLXL(INFINITY, -0.0), ALL_STD_EXCEPT, 0, 1); } ATF_TC_WITHOUT_HEAD(reals); ATF_TC_BODY(reals, tc) { unsigned i; for (i = 0; i < nitems(finites); i++) { /* XXX could check exceptions more meticulously */ test(cexp, CMPLXL(finites[i], 0.0), CMPLXL(exp(finites[i]), 0.0), FE_INVALID | FE_DIVBYZERO, 0, 1); test(cexp, CMPLXL(finites[i], -0.0), CMPLXL(exp(finites[i]), -0.0), FE_INVALID | FE_DIVBYZERO, 0, 1); test_f(cexpf, CMPLXL(finites[i], 0.0), CMPLXL(expf(finites[i]), 0.0), FE_INVALID | FE_DIVBYZERO, 0, 1); test_f(cexpf, CMPLXL(finites[i], -0.0), CMPLXL(expf(finites[i]), -0.0), FE_INVALID | FE_DIVBYZERO, 0, 1); } } ATF_TC_WITHOUT_HEAD(imaginaries); ATF_TC_BODY(imaginaries, tc) { unsigned i; for (i = 0; i < nitems(finites); i++) { test(cexp, CMPLXL(0.0, finites[i]), CMPLXL(cos(finites[i]), sin(finites[i])), ALL_STD_EXCEPT & ~FE_INEXACT, 0, 1); test(cexp, CMPLXL(-0.0, finites[i]), CMPLXL(cos(finites[i]), sin(finites[i])), ALL_STD_EXCEPT & ~FE_INEXACT, 0, 1); test_f(cexpf, CMPLXL(0.0, finites[i]), CMPLXL(cosf(finites[i]), sinf(finites[i])), ALL_STD_EXCEPT & ~FE_INEXACT, 0, 1); test_f(cexpf, CMPLXL(-0.0, finites[i]), CMPLXL(cosf(finites[i]), sinf(finites[i])), ALL_STD_EXCEPT & ~FE_INEXACT, 0, 1); } } ATF_TC_WITHOUT_HEAD(small); ATF_TC_BODY(small, tc) { static const double tests[] = { /* csqrt(a + bI) = x + yI */ /* a b x y */ 1.0, M_PI_4, M_SQRT2 * 0.5 * M_E, M_SQRT2 * 0.5 * M_E, -1.0, M_PI_4, M_SQRT2 * 0.5 / M_E, M_SQRT2 * 0.5 / M_E, 2.0, M_PI_2, 0.0, M_E * M_E, M_LN2, M_PI, -2.0, 0.0, }; double a, b; double x, y; unsigned i; for (i = 0; i < nitems(tests); i += 4) { a = tests[i]; b = tests[i + 1]; x = tests[i + 2]; y = tests[i + 3]; test_tol(cexp, CMPLXL(a, b), CMPLXL(x, y), 3 * DBL_ULP()); /* float doesn't have enough precision to pass these tests */ if (x == 0 || y == 0) continue; test_tol(cexpf, CMPLXL(a, b), CMPLXL(x, y), 1 * FLT_ULP()); } } /* Test inputs with a real part r that would overflow exp(r). */ ATF_TC_WITHOUT_HEAD(large); ATF_TC_BODY(large, tc) { test_tol(cexp, CMPLXL(709.79, 0x1p-1074), CMPLXL(INFINITY, 8.94674309915433533273e-16), DBL_ULP()); test_tol(cexp, CMPLXL(1000, 0x1p-1074), CMPLXL(INFINITY, 9.73344457300016401328e+110), DBL_ULP()); test_tol(cexp, CMPLXL(1400, 0x1p-1074), CMPLXL(INFINITY, 5.08228858149196559681e+284), DBL_ULP()); test_tol(cexp, CMPLXL(900, 0x1.23456789abcdep-1020), CMPLXL(INFINITY, 7.42156649354218408074e+83), DBL_ULP()); test_tol(cexp, CMPLXL(1300, 0x1.23456789abcdep-1020), CMPLXL(INFINITY, 3.87514844965996756704e+257), DBL_ULP()); test_tol(cexpf, CMPLXL(88.73, 0x1p-149), CMPLXL(INFINITY, 4.80265603e-07), 2 * FLT_ULP()); test_tol(cexpf, CMPLXL(90, 0x1p-149), CMPLXL(INFINITY, 1.7101492622e-06f), 2 * FLT_ULP()); test_tol(cexpf, CMPLXL(192, 0x1p-149), CMPLXL(INFINITY, 3.396809344e+38f), 2 * FLT_ULP()); test_tol(cexpf, CMPLXL(120, 0x1.234568p-120), CMPLXL(INFINITY, 1.1163382522e+16f), 2 * FLT_ULP()); test_tol(cexpf, CMPLXL(170, 0x1.234568p-120), CMPLXL(INFINITY, 5.7878851079e+37f), 2 * FLT_ULP()); } ATF_TP_ADD_TCS(tp) { ATF_TP_ADD_TC(tp, zero); ATF_TP_ADD_TC(tp, nan); ATF_TP_ADD_TC(tp, inf); ATF_TP_ADD_TC(tp, reals); ATF_TP_ADD_TC(tp, imaginaries); ATF_TP_ADD_TC(tp, small); ATF_TP_ADD_TC(tp, large); return (atf_no_error()); }