/* $OpenBSD: softraid_arm64.c,v 1.4 2022/08/15 13:13:41 kn Exp $ */ /* * Copyright (c) 2012 Joel Sing * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include #include #include #include #include #include #include #include #include #include #include "libsa.h" #include "disk.h" #include "efidev.h" #include "softraid_arm64.h" static int gpt_chk_mbr(struct dos_partition *, u_int64_t); static uint64_t findopenbsd_gpt(struct sr_boot_volume *, const char **); void srprobe_meta_opt_load(struct sr_metadata *sm, struct sr_meta_opt_head *som) { struct sr_meta_opt_hdr *omh; struct sr_meta_opt_item *omi; #if 0 u_int8_t checksum[MD5_DIGEST_LENGTH]; #endif int i; /* Process optional metadata. */ omh = (struct sr_meta_opt_hdr *)((u_int8_t *)(sm + 1) + sizeof(struct sr_meta_chunk) * sm->ssdi.ssd_chunk_no); for (i = 0; i < sm->ssdi.ssd_opt_no; i++) { #ifdef BIOS_DEBUG printf("Found optional metadata of type %u, length %u\n", omh->som_type, omh->som_length); #endif /* Unsupported old fixed length optional metadata. */ if (omh->som_length == 0) { omh = (struct sr_meta_opt_hdr *)((void *)omh + SR_OLD_META_OPT_SIZE); continue; } /* Load variable length optional metadata. */ omi = alloc(sizeof(struct sr_meta_opt_item)); bzero(omi, sizeof(struct sr_meta_opt_item)); SLIST_INSERT_HEAD(som, omi, omi_link); omi->omi_som = alloc(omh->som_length); bzero(omi->omi_som, omh->som_length); bcopy(omh, omi->omi_som, omh->som_length); #if 0 /* XXX - Validate checksum. */ bcopy(&omi->omi_som->som_checksum, &checksum, MD5_DIGEST_LENGTH); bzero(&omi->omi_som->som_checksum, MD5_DIGEST_LENGTH); sr_checksum(sc, omi->omi_som, &omi->omi_som->som_checksum, omh->som_length); if (bcmp(&checksum, &omi->omi_som->som_checksum, sizeof(checksum))) panic("%s: invalid optional metadata checksum", DEVNAME(sc)); #endif omh = (struct sr_meta_opt_hdr *)((void *)omh + omh->som_length); } } void srprobe_keydisk_load(struct sr_metadata *sm) { struct sr_meta_opt_hdr *omh; struct sr_meta_keydisk *skm; struct sr_boot_keydisk *kd; int i; /* Process optional metadata. */ omh = (struct sr_meta_opt_hdr *)((u_int8_t *)(sm + 1) + sizeof(struct sr_meta_chunk) * sm->ssdi.ssd_chunk_no); for (i = 0; i < sm->ssdi.ssd_opt_no; i++) { /* Unsupported old fixed length optional metadata. */ if (omh->som_length == 0) { omh = (struct sr_meta_opt_hdr *)((void *)omh + SR_OLD_META_OPT_SIZE); continue; } if (omh->som_type != SR_OPT_KEYDISK) { omh = (struct sr_meta_opt_hdr *)((void *)omh + omh->som_length); continue; } kd = alloc(sizeof(struct sr_boot_keydisk)); bcopy(&sm->ssdi.ssd_uuid, &kd->kd_uuid, sizeof(kd->kd_uuid)); skm = (struct sr_meta_keydisk*)omh; bcopy(&skm->skm_maskkey, &kd->kd_key, sizeof(kd->kd_key)); SLIST_INSERT_HEAD(&sr_keydisks, kd, kd_link); } } void srprobe(void) { struct sr_boot_volume *bv, *bv1, *bv2; struct sr_boot_chunk *bc, *bc1, *bc2; struct sr_meta_chunk *mc; struct sr_metadata *md; struct diskinfo *dip; struct partition *pp; int i, error, volno; daddr_t off; /* Probe for softraid volumes. */ SLIST_INIT(&sr_volumes); SLIST_INIT(&sr_keydisks); md = alloc(SR_META_SIZE * DEV_BSIZE); TAILQ_FOREACH(dip, &disklist, list) { /* Make sure disklabel has been read. */ if ((dip->flags & DISKINFO_FLAG_GOODLABEL) == 0) continue; for (i = 0; i < MAXPARTITIONS; i++) { pp = &dip->disklabel.d_partitions[i]; if (pp->p_fstype != FS_RAID || pp->p_size == 0) continue; /* Read softraid metadata. */ bzero(md, SR_META_SIZE * DEV_BSIZE); off = DL_SECTOBLK(&dip->disklabel, DL_GETPOFFSET(pp)); off += SR_META_OFFSET; error = dip->diskio(F_READ, dip, off, SR_META_SIZE, md); if (error) continue; /* Is this valid softraid metadata? */ if (md->ssdi.ssd_magic != SR_MAGIC) continue; /* XXX - validate checksum. */ /* Handle key disks separately... */ if (md->ssdi.ssd_level == SR_KEYDISK_LEVEL) { srprobe_keydisk_load(md); continue; } /* Locate chunk-specific metadata for this chunk. */ mc = (struct sr_meta_chunk *)(md + 1); mc += md->ssdi.ssd_chunk_id; bc = alloc(sizeof(struct sr_boot_chunk)); bc->sbc_diskinfo = dip; bc->sbc_disk = 0; bc->sbc_part = 'a' + i; bc->sbc_mm = 0; bc->sbc_chunk_id = md->ssdi.ssd_chunk_id; bc->sbc_ondisk = md->ssd_ondisk; bc->sbc_state = mc->scm_status; SLIST_FOREACH(bv, &sr_volumes, sbv_link) { if (bcmp(&md->ssdi.ssd_uuid, &bv->sbv_uuid, sizeof(md->ssdi.ssd_uuid)) == 0) break; } if (bv == NULL) { bv = alloc(sizeof(struct sr_boot_volume)); bzero(bv, sizeof(struct sr_boot_volume)); bv->sbv_level = md->ssdi.ssd_level; bv->sbv_volid = md->ssdi.ssd_volid; bv->sbv_chunk_no = md->ssdi.ssd_chunk_no; bv->sbv_flags = md->ssdi.ssd_vol_flags; bv->sbv_size = md->ssdi.ssd_size; bv->sbv_secsize = md->ssdi.ssd_secsize; bv->sbv_data_blkno = md->ssd_data_blkno; bcopy(&md->ssdi.ssd_uuid, &bv->sbv_uuid, sizeof(md->ssdi.ssd_uuid)); SLIST_INIT(&bv->sbv_chunks); SLIST_INIT(&bv->sbv_meta_opt); /* Load optional metadata for this volume. */ srprobe_meta_opt_load(md, &bv->sbv_meta_opt); /* Maintain volume order. */ bv2 = NULL; SLIST_FOREACH(bv1, &sr_volumes, sbv_link) { if (bv1->sbv_volid > bv->sbv_volid) break; bv2 = bv1; } if (bv2 == NULL) SLIST_INSERT_HEAD(&sr_volumes, bv, sbv_link); else SLIST_INSERT_AFTER(bv2, bv, sbv_link); } /* Maintain chunk order. */ bc2 = NULL; SLIST_FOREACH(bc1, &bv->sbv_chunks, sbc_link) { if (bc1->sbc_chunk_id > bc->sbc_chunk_id) break; bc2 = bc1; } if (bc2 == NULL) SLIST_INSERT_HEAD(&bv->sbv_chunks, bc, sbc_link); else SLIST_INSERT_AFTER(bc2, bc, sbc_link); bv->sbv_chunks_found++; } } /* * Assemble RAID volumes. */ volno = 0; SLIST_FOREACH(bv, &sr_volumes, sbv_link) { /* Skip if this is a hotspare "volume". */ if (bv->sbv_level == SR_HOTSPARE_LEVEL && bv->sbv_chunk_no == 1) continue; /* Determine current ondisk version. */ bv->sbv_ondisk = 0; SLIST_FOREACH(bc, &bv->sbv_chunks, sbc_link) { if (bc->sbc_ondisk > bv->sbv_ondisk) bv->sbv_ondisk = bc->sbc_ondisk; } SLIST_FOREACH(bc, &bv->sbv_chunks, sbc_link) { if (bc->sbc_ondisk != bv->sbv_ondisk) bc->sbc_state = BIOC_SDOFFLINE; } /* XXX - Check for duplicate chunks. */ /* * Validate that volume has sufficient chunks for * read-only access. * * XXX - check chunk states. */ bv->sbv_state = BIOC_SVOFFLINE; switch (bv->sbv_level) { case 0: case 'C': case 'c': if (bv->sbv_chunk_no == bv->sbv_chunks_found) bv->sbv_state = BIOC_SVONLINE; break; case 1: case 0x1C: if (bv->sbv_chunk_no == bv->sbv_chunks_found) bv->sbv_state = BIOC_SVONLINE; else if (bv->sbv_chunks_found > 0) bv->sbv_state = BIOC_SVDEGRADED; break; } bv->sbv_unit = volno++; if (bv->sbv_state != BIOC_SVOFFLINE) printf(" sr%d%s", bv->sbv_unit, bv->sbv_flags & BIOC_SCBOOTABLE ? "*" : ""); } explicit_bzero(md, SR_META_SIZE * DEV_BSIZE); free(md, SR_META_SIZE * DEV_BSIZE); } int sr_strategy(struct sr_boot_volume *bv, int rw, daddr_t blk, size_t size, void *buf, size_t *rsize) { struct diskinfo *sr_dip, *dip; struct sr_boot_chunk *bc; struct aes_xts_ctx ctx; size_t i, j, nsect; daddr_t blkno; u_char iv[8]; u_char *bp; int err; /* We only support read-only softraid. */ if (rw != F_READ) return ENOTSUP; /* Partition offset within softraid volume. */ sr_dip = (struct diskinfo *)bv->sbv_diskinfo; blk += DL_SECTOBLK(&sr_dip->disklabel, sr_dip->disklabel.d_partitions[bv->sbv_part - 'a'].p_offset); if (bv->sbv_level == 0) { return ENOTSUP; } else if (bv->sbv_level == 1) { /* Select first online chunk. */ SLIST_FOREACH(bc, &bv->sbv_chunks, sbc_link) if (bc->sbc_state == BIOC_SDONLINE) break; if (bc == NULL) return EIO; dip = (struct diskinfo *)bc->sbc_diskinfo; blk += bv->sbv_data_blkno; /* XXX - If I/O failed we should try another chunk... */ return dip->strategy(dip, rw, blk, size, buf, rsize); } else if (bv->sbv_level == 'C' || bv->sbv_level == 0x1C) { /* Select first online chunk. */ SLIST_FOREACH(bc, &bv->sbv_chunks, sbc_link) if (bc->sbc_state == BIOC_SDONLINE) break; if (bc == NULL) return EIO; dip = (struct diskinfo *)bc->sbc_diskinfo; /* XXX - select correct key. */ aes_xts_setkey(&ctx, (u_char *)bv->sbv_keys, 64); nsect = (size + DEV_BSIZE - 1) / DEV_BSIZE; for (i = 0; i < nsect; i++) { blkno = blk + i; bp = ((u_char *)buf) + i * DEV_BSIZE; err = dip->strategy(dip, rw, bv->sbv_data_blkno + blkno, DEV_BSIZE, bp, NULL); if (err != 0) return err; bcopy(&blkno, iv, sizeof(blkno)); aes_xts_reinit(&ctx, iv); for (j = 0; j < DEV_BSIZE; j += AES_XTS_BLOCKSIZE) aes_xts_decrypt(&ctx, bp + j); } if (rsize != NULL) *rsize = nsect * DEV_BSIZE; return err; } else return ENOTSUP; } /* * Returns 0 if the MBR with the provided partition array is a GPT protective * MBR, and returns 1 otherwise. A GPT protective MBR would have one and only * one MBR partition, an EFI partition that either covers the whole disk or as * much of it as is possible with a 32bit size field. * * Taken from kern/subr_disk.c. * * NOTE: MS always uses a size of UINT32_MAX for the EFI partition!** */ static int gpt_chk_mbr(struct dos_partition *dp, u_int64_t dsize) { struct dos_partition *dp2; int efi, found, i; u_int32_t psize; found = efi = 0; for (dp2=dp, i=0; i < NDOSPART; i++, dp2++) { if (dp2->dp_typ == DOSPTYP_UNUSED) continue; found++; if (dp2->dp_typ != DOSPTYP_EFI) continue; if (letoh32(dp2->dp_start) != GPTSECTOR) continue; psize = letoh32(dp2->dp_size); if (psize <= (dsize - GPTSECTOR) || psize == UINT32_MAX) efi++; } if (found == 1 && efi == 1) return (0); return (1); } static uint64_t findopenbsd_gpt(struct sr_boot_volume *bv, const char **err) { struct gpt_header gh; int i, part, found; uint64_t lba; uint32_t orig_csum, new_csum; uint32_t ghsize, ghpartsize, ghpartnum, ghpartspersec; uint32_t gpsectors; const char openbsd_uuid_code[] = GPT_UUID_OPENBSD; struct gpt_partition gp; static struct uuid *openbsd_uuid = NULL, openbsd_uuid_space; u_char *buf; /* Prepare OpenBSD UUID */ if (openbsd_uuid == NULL) { /* XXX: should be replaced by uuid_dec_be() */ memcpy(&openbsd_uuid_space, openbsd_uuid_code, sizeof(openbsd_uuid_space)); openbsd_uuid_space.time_low = betoh32(openbsd_uuid_space.time_low); openbsd_uuid_space.time_mid = betoh16(openbsd_uuid_space.time_mid); openbsd_uuid_space.time_hi_and_version = betoh16(openbsd_uuid_space.time_hi_and_version); openbsd_uuid = &openbsd_uuid_space; } if (bv->sbv_secsize > 4096) { *err = "disk sector > 4096 bytes\n"; return (-1); } buf = alloc(bv->sbv_secsize); if (buf == NULL) { *err = "out of memory\n"; return (-1); } bzero(buf, bv->sbv_secsize); /* GPT Header */ lba = GPTSECTOR; sr_strategy(bv, F_READ, lba * (bv->sbv_secsize / DEV_BSIZE), DEV_BSIZE, buf, NULL); memcpy(&gh, buf, sizeof(gh)); /* Check signature */ if (letoh64(gh.gh_sig) != GPTSIGNATURE) { *err = "bad GPT signature\n"; free(buf, bv->sbv_secsize); return (-1); } if (letoh32(gh.gh_rev) != GPTREVISION) { *err = "bad GPT revision\n"; free(buf, bv->sbv_secsize); return (-1); } ghsize = letoh32(gh.gh_size); if (ghsize < GPTMINHDRSIZE || ghsize > sizeof(struct gpt_header)) { *err = "bad GPT header size\n"; free(buf, bv->sbv_secsize); return (-1); } /* Check checksum */ orig_csum = gh.gh_csum; gh.gh_csum = 0; new_csum = crc32(0, (unsigned char *)&gh, ghsize); gh.gh_csum = orig_csum; if (letoh32(orig_csum) != new_csum) { *err = "bad GPT header checksum\n"; free(buf, bv->sbv_secsize); return (-1); } lba = letoh64(gh.gh_part_lba); ghpartsize = letoh32(gh.gh_part_size); ghpartspersec = bv->sbv_secsize / ghpartsize; ghpartnum = letoh32(gh.gh_part_num); gpsectors = (ghpartnum + ghpartspersec - 1) / ghpartspersec; new_csum = crc32(0L, Z_NULL, 0); found = 0; for (i = 0; i < gpsectors; i++, lba++) { sr_strategy(bv, F_READ, lba * (bv->sbv_secsize / DEV_BSIZE), bv->sbv_secsize, buf, NULL); for (part = 0; part < ghpartspersec; part++) { if (ghpartnum == 0) break; new_csum = crc32(new_csum, buf + part * sizeof(gp), sizeof(gp)); ghpartnum--; if (found) continue; memcpy(&gp, buf + part * sizeof(gp), sizeof(gp)); if (memcmp(&gp.gp_type, openbsd_uuid, sizeof(struct uuid)) == 0) found = 1; } } free(buf, bv->sbv_secsize); if (new_csum != letoh32(gh.gh_part_csum)) { *err = "bad GPT entries checksum\n"; return (-1); } if (found) return (letoh64(gp.gp_lba_start)); return (-1); } const char * sr_getdisklabel(struct sr_boot_volume *bv, struct disklabel *label) { struct dos_partition *dp; struct dos_mbr mbr; const char *err = NULL; u_int start = 0; char buf[DEV_BSIZE]; int i; /* Check for MBR to determine partition offset. */ bzero(&mbr, sizeof(mbr)); sr_strategy(bv, F_READ, DOSBBSECTOR, sizeof(mbr), &mbr, NULL); if (gpt_chk_mbr(mbr.dmbr_parts, bv->sbv_size / (bv->sbv_secsize / DEV_BSIZE)) == 0) { start = findopenbsd_gpt(bv, &err); if (start == (u_int)-1) { if (err != NULL) return (err); return "no OpenBSD partition\n"; } } else if (mbr.dmbr_sign == DOSMBR_SIGNATURE) { /* Search for OpenBSD partition */ for (i = 0; i < NDOSPART; i++) { dp = &mbr.dmbr_parts[i]; if (!dp->dp_size) continue; if (dp->dp_typ == DOSPTYP_OPENBSD) { start = dp->dp_start; break; } } } /* Read the disklabel. */ sr_strategy(bv, F_READ, start * (bv->sbv_secsize / DEV_BSIZE) + DOS_LABELSECTOR, sizeof(struct disklabel), buf, NULL); #ifdef BIOS_DEBUG printf("sr_getdisklabel: magic %lx\n", ((struct disklabel *)buf)->d_magic); for (i = 0; i < MAXPARTITIONS; i++) printf("part %c: type = %d, size = %d, offset = %d\n", 'a' + i, (int)((struct disklabel *)buf)->d_partitions[i].p_fstype, (int)((struct disklabel *)buf)->d_partitions[i].p_size, (int)((struct disklabel *)buf)->d_partitions[i].p_offset); #endif /* Fill in disklabel */ return (getdisklabel(buf, label)); } int sropen(struct open_file *f, ...) { struct diskinfo *dip = NULL; struct sr_boot_volume *bv; va_list ap; u_int unit, part; va_start(ap, f); unit = va_arg(ap, u_int); part = va_arg(ap, u_int); va_end(ap); /* Create a fake diskinfo for this softraid volume. */ SLIST_FOREACH(bv, &sr_volumes, sbv_link) if (bv->sbv_unit == unit) break; if (bv == NULL) { printf("Unknown device: sr%d\n", unit); return EADAPT; } if ((bv->sbv_level == 'C' || bv->sbv_level == 0x1C) && bv->sbv_keys == NULL) if (sr_crypto_unlock_volume(bv) != 0) return EPERM; if (bv->sbv_diskinfo == NULL) { dip = alloc(sizeof(struct diskinfo)); bzero(dip, sizeof(*dip)); dip->diskio = srdiskio; dip->strategy = srstrategy; bv->sbv_diskinfo = dip; dip->sr_vol = bv; } dip = bv->sbv_diskinfo; if ((dip->flags & DISKINFO_FLAG_GOODLABEL) == 0) { /* Attempt to read disklabel. */ bv->sbv_part = 'c'; if (sr_getdisklabel(bv, &dip->disklabel)) return ERDLAB; dip->flags |= DISKINFO_FLAG_GOODLABEL; } bv->sbv_part = part + 'a'; bootdev_dip = dip; f->f_devdata = dip; return 0; } int srstrategy(void *devdata, int rw, daddr_t blk, size_t size, void *buf, size_t *rsize) { struct diskinfo *dip = (struct diskinfo *)devdata; return sr_strategy(dip->sr_vol, rw, blk, size, buf, rsize); } int srdiskio(int rw, struct diskinfo *dip, u_int off, int nsect, void *buf) { return dip->diskio(rw, dip, off, nsect, buf); } int srclose(struct open_file *f) { f->f_devdata = NULL; return 0; } int srioctl(struct open_file *f, u_long cmd, void *data) { return 0; }