/* $OpenBSD: zs.c,v 1.34 2024/09/04 07:54:51 mglocker Exp $ */ /* $NetBSD: zs.c,v 1.17 2001/06/19 13:42:15 wiz Exp $ */ /* * Copyright (c) 1996, 1998 Bill Studenmund * Copyright (c) 1995 Gordon W. Ross * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * Zilog Z8530 Dual UART driver (machine-dependent part) * * Runs two serial lines per chip using slave drivers. * Plain tty/async lines use the zstty slave. * Sun keyboard/mouse uses the zskbd/zsms slaves. * Other ports use their own mice & keyboard slaves. * * Credits & history: * * With NetBSD 1.1, port-mac68k started using a port of the port-sparc * (port-sun3?) zs.c driver (which was in turn based on code in the * Berkeley 4.4 Lite release). Bill Studenmund did the port, with * help from Allen Briggs and Gordon Ross . Noud de * Brouwer field-tested the driver at a local ISP. * * Bill Studenmund and Gordon Ross then ported the machine-independent * z8530 driver to work with port-mac68k. NetBSD 1.2 contained an * intermediate version (mac68k using a local, patched version of * the m.i. drivers), with NetBSD 1.3 containing a full version. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "zs.h" /* * Some warts needed by z8530tty.c - */ int zs_def_cflag = (CREAD | CS8 | HUPCL); int zs_major = 7; struct zsdevice { /* Yes, they are backwards. */ struct zschan zs_chan_b; struct zschan zs_chan_a; }; /* Flags from cninit() */ static int zs_hwflags[NZS][2]; /* Default speed for each channel */ static int zs_defspeed[NZS][2] = { { 38400, /* tty00 */ 38400 }, /* tty01 */ }; /* console stuff */ void *zs_conschan = 0; #ifdef ZS_CONSOLE_ABORT int zs_cons_canabort = 1; #else int zs_cons_canabort = 0; #endif /* ZS_CONSOLE_ABORT*/ /* device to which the console is attached--if serial. */ /* Mac stuff */ int zs_get_speed(struct zs_chanstate *); /* * Even though zsparam will set up the clock multiples, etc., we * still set them here as: 1) mice & keyboards don't use zsparam, * and 2) the console stuff uses these defaults before device * attach. */ static u_char zs_init_reg[16] = { 0, /* 0: CMD (reset, etc.) */ ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE, /* 1: No interrupts yet. ??? */ 0, /* IVECT */ ZSWR3_RX_8 | ZSWR3_RX_ENABLE, ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP, ZSWR5_TX_8 | ZSWR5_TX_ENABLE, 0, /* 6: TXSYNC/SYNCLO */ 0, /* 7: RXSYNC/SYNCHI */ 0, /* 8: alias for data port */ ZSWR9_MASTER_IE, 0, /*10: Misc. TX/RX control bits */ ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD, ((PCLK/32)/38400)-2, /*12: BAUDLO (default=38400) */ 0, /*13: BAUDHI (default=38400) */ ZSWR14_BAUD_ENA, ZSWR15_BREAK_IE, }; /**************************************************************** * Autoconfig ****************************************************************/ struct cfdriver zs_cd = { NULL, "zs", DV_TTY }; /* Definition of the driver for autoconfig. */ int zs_match(struct device *, void *, void *); void zs_attach(struct device *, struct device *, void *); int zs_print(void *, const char *name); /* Power management hooks */ int zs_enable (struct zs_chanstate *); void zs_disable (struct zs_chanstate *); const struct cfattach zs_ca = { sizeof(struct zsc_softc), zs_match, zs_attach }; int zshard(void *); void zssoft(void *); #ifdef ZS_TXDMA int zs_txdma_int(void *); #endif /* * Is the zs chip present? */ int zs_match(struct device *parent, void *match, void *aux) { struct confargs *ca = aux; struct cfdata *cf = match; if (strcmp(ca->ca_name, "escc") != 0) return 0; if (ca->ca_nreg < 8) return 0; if (cf->cf_unit > 1) return 0; return 1; } /* * Attach a found zs. * * Match slave number to zs unit number, so that misconfiguration will * not set up the keyboard as ttya, etc. */ void zs_attach(struct device *parent, struct device *self, void *aux) { struct zsc_softc *zsc = (void *)self; struct confargs *ca = aux; struct zsc_attach_args zsc_args; volatile struct zschan *zc; struct xzs_chanstate *xcs; struct zs_chanstate *cs; struct zsdevice *zsd; int zs_unit, channel; int s; int node, intr[3][3]; u_int regs[16]; zs_unit = zsc->zsc_dev.dv_unit; zsd = mapiodev(ca->ca_baseaddr + ca->ca_reg[0], ca->ca_reg[1]); node = OF_child(ca->ca_node); /* ch-a */ for (channel = 0; channel < 2; channel++) { if (OF_getprop(node, "AAPL,interrupts", intr[channel], sizeof(intr[0])) == -1 && OF_getprop(node, "interrupts", intr[channel], sizeof(intr[0])) == -1) { printf(": cannot find interrupt property\n"); return; } if (OF_getprop(node, "reg", regs, sizeof(regs)) < 24) { printf(": cannot find reg property\n"); return; } regs[2] += ca->ca_baseaddr; regs[4] += ca->ca_baseaddr; #ifdef ZS_TXDMA zsc->zsc_txdmareg[channel] = mapiodev(regs[2], regs[3]); zsc->zsc_txdmacmd[channel] = dbdma_alloc(sizeof(dbdma_command_t) * 3); memset(zsc->zsc_txdmacmd[channel], 0, sizeof(dbdma_command_t) * 3); dbdma_reset(zsc->zsc_txdmareg[channel]); #endif node = OF_peer(node); /* ch-b */ } printf(": irq %d,%d\n", intr[0][0], intr[1][0]); /* * Initialize software state for each channel. */ for (channel = 0; channel < 2; channel++) { zsc_args.channel = channel; zsc_args.hwflags = zs_hwflags[zs_unit][channel]; xcs = &zsc->xzsc_xcs_store[channel]; cs = &xcs->xzs_cs; zsc->zsc_cs[channel] = cs; cs->cs_channel = channel; cs->cs_private = NULL; cs->cs_ops = &zsops_null; zc = (channel == 0) ? &zsd->zs_chan_a : &zsd->zs_chan_b; cs->cs_reg_csr = &zc->zc_csr; cs->cs_reg_data = &zc->zc_data; memcpy(cs->cs_creg, zs_init_reg, 16); memcpy(cs->cs_preg, zs_init_reg, 16); /* Current BAUD rate generator clock. */ /* RTxC is 230400*16, so use 230400 */ cs->cs_brg_clk = PCLK / 16; if (zsc_args.hwflags & ZS_HWFLAG_CONSOLE) cs->cs_defspeed = zs_get_speed(cs); else cs->cs_defspeed = zs_defspeed[zs_unit][channel]; cs->cs_defcflag = zs_def_cflag; /* Make these correspond to cs_defcflag (-crtscts) */ cs->cs_rr0_dcd = ZSRR0_DCD; cs->cs_rr0_cts = 0; cs->cs_wr5_dtr = ZSWR5_DTR; cs->cs_wr5_rts = 0; #ifdef __notyet__ cs->cs_slave_type = ZS_SLAVE_NONE; #endif /* Define BAUD rate stuff. */ xcs->cs_clocks[0].clk = PCLK; xcs->cs_clocks[0].flags = ZSC_RTXBRG | ZSC_RTXDIV; xcs->cs_clocks[1].flags = ZSC_RTXBRG | ZSC_RTXDIV | ZSC_VARIABLE | ZSC_EXTERN; xcs->cs_clocks[2].flags = ZSC_TRXDIV | ZSC_VARIABLE; xcs->cs_clock_count = 3; if (channel == 0) { /*xcs->cs_clocks[1].clk = mac68k_machine.modem_dcd_clk;*/ /*xcs->cs_clocks[2].clk = mac68k_machine.modem_cts_clk;*/ xcs->cs_clocks[1].clk = 0; xcs->cs_clocks[2].clk = 0; } else { xcs->cs_clocks[1].flags = ZSC_VARIABLE; /* * Yes, we aren't defining ANY clock source enables for the * printer's DCD clock in. The hardware won't let us * use it. But a clock will freak out the chip, so we * let you set it, telling us to bar interrupts on the line. */ /*xcs->cs_clocks[1].clk = mac68k_machine.print_dcd_clk;*/ /*xcs->cs_clocks[2].clk = mac68k_machine.print_cts_clk;*/ xcs->cs_clocks[1].clk = 0; xcs->cs_clocks[2].clk = 0; } if (xcs->cs_clocks[1].clk) zsc_args.hwflags |= ZS_HWFLAG_NO_DCD; if (xcs->cs_clocks[2].clk) zsc_args.hwflags |= ZS_HWFLAG_NO_CTS; /* Set defaults in our "extended" chanstate. */ xcs->cs_csource = 0; xcs->cs_psource = 0; xcs->cs_cclk_flag = 0; /* Nothing fancy by default */ xcs->cs_pclk_flag = 0; /* * We used to disable chip interrupts here, but we now * do that in zscnprobe, just in case MacOS left the chip on. */ xcs->cs_chip = 0; /* Stash away a copy of the final H/W flags. */ xcs->cs_hwflags = zsc_args.hwflags; /* * Look for a child driver for this channel. * The child attach will setup the hardware. */ if (!config_found(self, (void *)&zsc_args, zs_print)) { /* No sub-driver. Just reset it. */ u_char reset = (channel == 0) ? ZSWR9_A_RESET : ZSWR9_B_RESET; s = splzs(); zs_write_reg(cs, 9, reset); splx(s); } } /* XXX - Now safe to install interrupt handlers. */ mac_intr_establish(parent, intr[0][0], IST_LEVEL, IPL_TTY, zshard, NULL, "zs0"); mac_intr_establish(parent, intr[1][0], IST_LEVEL, IPL_TTY, zshard, NULL, "zs1"); #ifdef ZS_TXDMA mac_intr_establish(parent, intr[0][1], IST_LEVEL, IPL_TTY, zs_txdma_int, NULL, "zsdma0"); mac_intr_establish(parent, intr[1][1], IST_LEVEL, IPL_TTY, zs_txdma_int, (void *)1, "zsdma1"); #endif zsc->zsc_softintr = softintr_establish(IPL_SOFTTTY, zssoft, zsc); if (zsc->zsc_softintr == NULL) panic("zsattach: could not establish soft interrupt"); /* * Set the master interrupt enable and interrupt vector. * (common to both channels, do it on A) */ cs = zsc->zsc_cs[0]; s = splzs(); /* interrupt vector */ zs_write_reg(cs, 2, zs_init_reg[2]); /* master interrupt control (enable) */ zs_write_reg(cs, 9, zs_init_reg[9]); splx(s); /* connect power management for port 0 */ cs->enable = zs_enable; cs->disable = zs_disable; } int zs_print(void *aux, const char *name) { struct zsc_attach_args *args = aux; if (name != NULL) printf("%s: ", name); if (args->channel != -1) printf(" channel %d", args->channel); return UNCONF; } int zsmdioctl(struct zs_chanstate *cs, u_long cmd, caddr_t data) { switch (cmd) { default: return (-1); } return (0); } void zsmd_setclock(struct zs_chanstate *cs) { #ifdef NOTYET struct xzs_chanstate *xcs = (void *)cs; if (cs->cs_channel != 0) return; /* * If the new clock has the external bit set, then select the * external source. */ via_set_modem((xcs->cs_pclk_flag & ZSC_EXTERN) ? 1 : 0); #endif } static int zssoftpending; /* * Our ZS chips all share a common, autovectored interrupt, * so we have to look at all of them on each interrupt. */ int zshard(void *arg) { struct zsc_softc *zsc; int unit, rval; rval = 0; for (unit = 0; unit < zs_cd.cd_ndevs; unit++) { zsc = zs_cd.cd_devs[unit]; if (zsc == NULL) continue; rval |= zsc_intr_hard(zsc); if (zsc->zsc_cs[0]->cs_softreq) { /* zs_req_softint(zsc); */ /* We are at splzs here, so no need to lock. */ if (zssoftpending == 0) { zssoftpending = 1; softintr_schedule(zsc->zsc_softintr); } } } return (rval); } /* * Similar scheme as for zshard (look at all of them) */ void zssoft(void *arg) { struct zsc_softc *zsc; int unit; /* This is not the only ISR on this IPL. */ if (zssoftpending == 0) return; /* * The soft intr. bit will be set by zshard only if * the variable zssoftpending is zero. */ zssoftpending = 0; for (unit = 0; unit < zs_cd.cd_ndevs; ++unit) { zsc = zs_cd.cd_devs[unit]; if (zsc == NULL) continue; (void) zsc_intr_soft(zsc); } } #ifdef ZS_TXDMA int zs_txdma_int(void *arg) { int ch = (int)arg; struct zsc_softc *zsc; struct zs_chanstate *cs; int unit = 0; /* XXX */ extern int zstty_txdma_int(); zsc = zs_cd.cd_devs[unit]; if (zsc == NULL) panic("zs_txdma_int"); cs = zsc->zsc_cs[ch]; zstty_txdma_int(cs); if (cs->cs_softreq) { if (zssoftpending == 0) { zssoftpending = 1; softintr_schedule(zsc->zsc_softintr); } } return 1; } void zs_dma_setup(struct zs_chanstate *cs, caddr_t pa, int len) { struct zsc_softc *zsc; dbdma_command_t *cmdp; int ch = cs->cs_channel; zsc = zs_cd.cd_devs[ch]; cmdp = zsc->zsc_txdmacmd[ch]; DBDMA_BUILD(cmdp, DBDMA_CMD_OUT_LAST, 0, len, kvtop(pa), DBDMA_INT_ALWAYS, DBDMA_WAIT_NEVER, DBDMA_BRANCH_NEVER); cmdp++; DBDMA_BUILD(cmdp, DBDMA_CMD_STOP, 0, 0, 0, DBDMA_INT_NEVER, DBDMA_WAIT_NEVER, DBDMA_BRANCH_NEVER); __asm volatile("eieio"); dbdma_start(zsc->zsc_txdmareg[ch], zsc->zsc_txdmacmd[ch]); } #endif /* * Compute the current baud rate given a ZS channel. * XXX Assume internal BRG. */ int zs_get_speed(struct zs_chanstate *cs) { int tconst; tconst = zs_read_reg(cs, 12); tconst |= zs_read_reg(cs, 13) << 8; return TCONST_TO_BPS(cs->cs_brg_clk, tconst); } #ifndef ZS_TOLERANCE #define ZS_TOLERANCE 51 /* 5% in tenths of a %, plus 1 so that exactly 5% will be ok. */ #endif /* * Search through the signal sources in the channel, and * pick the best one for the baud rate requested. Return * a -1 if not achievable in tolerance. Otherwise return 0 * and fill in the values. * * This routine draws inspiration from the Atari port's zs.c * driver in NetBSD 1.1 which did the same type of source switching. * Tolerance code inspired by comspeed routine in isa/com.c. * * By Bill Studenmund, 1996-05-12 */ int zs_set_speed(struct zs_chanstate *cs, int bps) { struct xzs_chanstate *xcs = (void *)cs; int i, tc, tc0 = 0, tc1, s, sf = 0; int src, rate0, rate1, err, tol; if (bps == 0) return (0); src = -1; /* no valid source yet */ tol = ZS_TOLERANCE; /* * Step through all the sources and see which one matches * the best. A source has to match BETTER than tol to be chosen. * Thus if two sources give the same error, the first one will be * chosen. Also, allow for the possibility that one source might run * both the BRG and the direct divider (i.e. RTxC). */ for (i = 0; i < xcs->cs_clock_count; i++) { if (xcs->cs_clocks[i].clk <= 0) continue; /* skip non-existent or bad clocks */ if (xcs->cs_clocks[i].flags & ZSC_BRG) { /* check out BRG at /16 */ tc1 = BPS_TO_TCONST(xcs->cs_clocks[i].clk >> 4, bps); if (tc1 >= 0) { rate1 = TCONST_TO_BPS(xcs->cs_clocks[i].clk >> 4, tc1); err = abs(((rate1 - bps)*1000)/bps); if (err < tol) { tol = err; src = i; sf = xcs->cs_clocks[i].flags & ~ZSC_DIV; tc0 = tc1; rate0 = rate1; } } } if (xcs->cs_clocks[i].flags & ZSC_DIV) { /* * Check out either /1, /16, /32, or /64 * Note: for /1, you'd better be using a synchronized * clock! */ int b0 = xcs->cs_clocks[i].clk, e0 = abs(b0-bps); int b1 = b0 >> 4, e1 = abs(b1-bps); int b2 = b1 >> 1, e2 = abs(b2-bps); int b3 = b2 >> 1, e3 = abs(b3-bps); if (e0 < e1 && e0 < e2 && e0 < e3) { err = e0; rate1 = b0; tc1 = ZSWR4_CLK_X1; } else if (e0 > e1 && e1 < e2 && e1 < e3) { err = e1; rate1 = b1; tc1 = ZSWR4_CLK_X16; } else if (e0 > e2 && e1 > e2 && e2 < e3) { err = e2; rate1 = b2; tc1 = ZSWR4_CLK_X32; } else { err = e3; rate1 = b3; tc1 = ZSWR4_CLK_X64; } err = (err * 1000)/bps; if (err < tol) { tol = err; src = i; sf = xcs->cs_clocks[i].flags & ~ZSC_BRG; tc0 = tc1; rate0 = rate1; } } } #ifdef ZSMACDEBUG printf("Checking for rate %d. Found source #%d.\n",bps, src); #endif if (src == -1) return (EINVAL); /* no can do */ /* * The M.I. layer likes to keep cs_brg_clk current, even though * we are the only ones who should be touching the BRG's rate. * * Note: we are assuming that any ZSC_EXTERN signal source comes in * on the RTxC pin. Correct for the mac68k obio zsc. */ if (sf & ZSC_EXTERN) cs->cs_brg_clk = xcs->cs_clocks[i].clk >> 4; else cs->cs_brg_clk = PCLK / 16; /* * Now we have a source, so set it up. */ s = splzs(); xcs->cs_psource = src; xcs->cs_pclk_flag = sf; bps = rate0; if (sf & ZSC_BRG) { cs->cs_preg[4] = ZSWR4_CLK_X16; cs->cs_preg[11]= ZSWR11_RXCLK_BAUD | ZSWR11_TXCLK_BAUD; if (sf & ZSC_PCLK) { cs->cs_preg[14] = ZSWR14_BAUD_ENA | ZSWR14_BAUD_FROM_PCLK; } else { cs->cs_preg[14] = ZSWR14_BAUD_ENA; } tc = tc0; } else { cs->cs_preg[4] = tc0; if (sf & ZSC_RTXDIV) { cs->cs_preg[11] = ZSWR11_RXCLK_RTXC | ZSWR11_TXCLK_RTXC; } else { cs->cs_preg[11] = ZSWR11_RXCLK_TRXC | ZSWR11_TXCLK_TRXC; } cs->cs_preg[14]= 0; tc = 0xffff; } /* Set the BAUD rate divisor. */ cs->cs_preg[12] = tc; cs->cs_preg[13] = tc >> 8; splx(s); #ifdef ZSMACDEBUG printf("Rate is %7d, tc is %7d, source no. %2d, flags %4x\n", \ bps, tc, src, sf); printf("Registers are: 4 %x, 11 %x, 14 %x\n\n", cs->cs_preg[4], cs->cs_preg[11], cs->cs_preg[14]); #endif cs->cs_preg[5] |= ZSWR5_RTS; /* Make sure the drivers are on! */ /* Caller will stuff the pending registers. */ return (0); } int zs_set_modes(struct zs_chanstate *cs, int cflag) { struct xzs_chanstate *xcs = (void*)cs; int s; /* * Make sure we don't enable hfc on a signal line we're ignoring. * As we enable CTS interrupts only if we have CRTSCTS or CDTRCTS, * this code also effectively turns off ZSWR15_CTS_IE. * * Also, disable DCD interrupts if we've been told to ignore * the DCD pin. Happens on mac68k because the input line for * DCD can also be used as a clock input. (Just set CLOCAL.) * * If someone tries to turn an invalid flow mode on, Just Say No * (Suggested by gwr) */ if (xcs->cs_hwflags & ZS_HWFLAG_NO_DCD) { if (cflag & MDMBUF) return (EINVAL); cflag |= CLOCAL; } #if 0 if ((xcs->cs_hwflags & ZS_HWFLAG_NO_CTS) && (cflag & CRTSCTS)) return (EINVAL); #endif /* * Output hardware flow control on the chip is horrendous: * if carrier detect drops, the receiver is disabled, and if * CTS drops, the transmitter is stopped IN MID CHARACTER! * Therefore, NEVER set the HFC bit, and instead use the * status interrupt to detect CTS changes. */ s = splzs(); if ((cflag & (CLOCAL | MDMBUF)) != 0) cs->cs_rr0_dcd = 0; else cs->cs_rr0_dcd = ZSRR0_DCD; /* * The mac hardware only has one output, DTR (HSKo in Mac * parlance). In HFC mode, we use it for the functions * typically served by RTS and DTR on other ports, so we * have to fake the upper layer out some. * * CRTSCTS we use CTS as an input which tells us when to shut up. * We make no effort to shut up the other side of the connection. * DTR is used to hang up the modem. * * In CDTRCTS, we use CTS to tell us to stop, but we use DTR to * shut up the other side. */ if ((cflag & CRTSCTS) != 0) { cs->cs_wr5_dtr = ZSWR5_DTR; cs->cs_wr5_rts = 0; cs->cs_rr0_cts = ZSRR0_CTS; #if 0 } else if ((cflag & CDTRCTS) != 0) { cs->cs_wr5_dtr = 0; cs->cs_wr5_rts = ZSWR5_DTR; cs->cs_rr0_cts = ZSRR0_CTS; #endif } else if ((cflag & MDMBUF) != 0) { cs->cs_wr5_dtr = 0; cs->cs_wr5_rts = ZSWR5_DTR; cs->cs_rr0_cts = ZSRR0_DCD; } else { cs->cs_wr5_dtr = ZSWR5_DTR; cs->cs_wr5_rts = 0; cs->cs_rr0_cts = 0; } splx(s); /* Caller will stuff the pending registers. */ return (0); } /* * Read or write the chip with suitable delays. * MacII hardware has the delay built in. * No need for extra delay. :-) However, some clock-chirped * macs, or zsc's on serial add-on boards might need it. */ #define ZS_DELAY() u_char zs_read_reg(struct zs_chanstate *cs, u_char reg) { u_char val; out8(cs->cs_reg_csr, reg); ZS_DELAY(); val = in8(cs->cs_reg_csr); ZS_DELAY(); return val; } void zs_write_reg(struct zs_chanstate *cs, u_char reg, u_char val) { out8(cs->cs_reg_csr, reg); ZS_DELAY(); out8(cs->cs_reg_csr, val); ZS_DELAY(); } u_char zs_read_csr(struct zs_chanstate *cs) { u_char val; val = in8(cs->cs_reg_csr); ZS_DELAY(); /* make up for the fact CTS is wired backwards */ val ^= ZSRR0_CTS; return val; } void zs_write_csr(struct zs_chanstate *cs, u_char val) { /* Note, the csr does not write CTS... */ out8(cs->cs_reg_csr, val); ZS_DELAY(); } u_char zs_read_data(struct zs_chanstate *cs) { u_char val; val = in8(cs->cs_reg_data); ZS_DELAY(); return val; } void zs_write_data(struct zs_chanstate *cs, u_char val) { out8(cs->cs_reg_data, val); ZS_DELAY(); } /* * Power management hooks for zsopen() and zsclose(). * We use them to power on/off the ports, if necessary. * This should be modified to turn on/off modem in PBG4, etc. */ void macobio_modem_power(int enable); int zs_enable(struct zs_chanstate *cs) { macobio_modem_power(1); /* Whee */ cs->enabled = 1; return(0); } void zs_disable(struct zs_chanstate *cs) { macobio_modem_power(0); /* Whee */ cs->enabled = 0; } /**************************************************************** * Console support functions (powermac specific!) * Note: this code is allowed to know about the layout of * the chip registers, and uses that to keep things simple. * XXX - I think I like the mvme167 code better. -gwr * XXX - Well :-P :-) -wrs ****************************************************************/ cons_decl(zs); void zs_putc(volatile struct zschan *, int); int zs_getc(volatile struct zschan *); extern int zsopen( dev_t dev, int flags, int mode, struct proc *p); static int stdin, stdout; /* * Console functions. */ /* * zscnprobe is the routine which gets called as the kernel is trying to * figure out where the console should be. Each io driver which might * be the console (as defined in mac68k/conf.c) gets probed. The probe * fills in the consdev structure. Important parts are the device #, * and the console priority. Values are CN_DEAD (don't touch me), * CN_LOWPRI (I'm here, but elsewhere might be better), CN_MIDPRI * (the video, better than CN_LOWPRI), and CN_HIGHPRI (pick me!) * * As the mac's a bit different, we do extra work here. We mainly check * to see if we have serial echo going on. Also could check for default * speeds. */ /* * Polled input char. */ int zs_getc(volatile struct zschan *zc) { register int s, c, rr0; s = splhigh(); /* Wait for a character to arrive. */ do { rr0 = in8(&zc->zc_csr); ZS_DELAY(); } while ((rr0 & ZSRR0_RX_READY) == 0); c = in8(&zc->zc_data); ZS_DELAY(); splx(s); return (c); } /* * Polled output char. */ void zs_putc(volatile struct zschan *zc, int c) { register int s, rr0; register long wait = 0; s = splhigh(); /* Wait for transmitter to become ready. */ do { rr0 = in8(&zc->zc_csr); ZS_DELAY(); } while (((rr0 & ZSRR0_TX_READY) == 0) && (wait++ < 1000000)); if ((rr0 & ZSRR0_TX_READY) != 0) { out8(&zc->zc_data, c); ZS_DELAY(); } splx(s); } /* * Polled console input putchar. */ int zscngetc(dev_t dev) { register volatile struct zschan *zc = zs_conschan; register int c; if (zc) { c = zs_getc(zc); } else { char ch = 0; OF_read(stdin, &ch, 1); c = ch; } return c; } /* * Polled console output putchar. */ void zscnputc(dev_t dev, int c) { register volatile struct zschan *zc = zs_conschan; if (zc) { zs_putc(zc, c); } else { char ch = c; OF_write(stdout, &ch, 1); } } void zscnprobe(struct consdev *cp) { int chosen, pkg; int unit = 0; int maj; char name[16]; if ((chosen = OF_finddevice("/chosen")) == -1) return; if (OF_getprop(chosen, "stdin", &stdin, sizeof(stdin)) == -1) return; if (OF_getprop(chosen, "stdout", &stdout, sizeof(stdout)) == -1) return; if ((pkg = OF_instance_to_package(stdin)) == -1) return; bzero(name, sizeof(name)); if (OF_getprop(pkg, "device_type", name, sizeof(name)) == -1) return; if (strcmp(name, "serial") != 0) return; bzero(name, sizeof(name)); if (OF_getprop(pkg, "name", name, sizeof(name)) == -1) return; if (strcmp(name, "ch-b") == 0) unit = 1; /* locate the major number */ for (maj = 0; maj < nchrdev; maj++) if (cdevsw[maj].d_open == zsopen) break; cp->cn_dev = makedev(maj, unit); cp->cn_pri = CN_HIGHPRI; } void zscninit(struct consdev *cp) { int escc, escc_ch, obio; unsigned int zs_offset, zs_size; int ch = 0; u_int32_t reg[5]; char name[16]; if ((escc_ch = OF_instance_to_package(stdin)) == -1) return; bzero(name, sizeof(name)); if (OF_getprop(escc_ch, "name", name, sizeof(name)) == -1) return; if (strcmp(name, "ch-b") == 0) ch = 1; if (OF_getprop(escc_ch, "reg", reg, sizeof(reg)) < 8) return; zs_offset = reg[0]; zs_size = reg[1]; escc = OF_parent(escc_ch); obio = OF_parent(escc); if (OF_getprop(obio, "assigned-addresses", reg, sizeof(reg)) < 12) return; zs_conschan = mapiodev(reg[2] + zs_offset, zs_size); zs_hwflags[0][ch] = ZS_HWFLAG_CONSOLE; } void zs_abort(struct zs_chanstate *channel) { volatile struct zschan *zc = zs_conschan; int rr0; /* Wait for end of break to avoid PROM abort. */ /* XXX - Limit the wait? */ do { rr0 = zc->zc_csr; ZS_DELAY(); } while (rr0 & ZSRR0_BREAK); #if defined(DDB) if (!db_active) db_enter(); #endif } /* copied from sparc - XXX? */ void zscnpollc(dev_t dev, int on) { /* * Need to tell zs driver to acknowledge all interrupts or we get * annoying spurious interrupt messages. This is because mucking * with spl() levels during polling does not prevent interrupts from * being generated. */ #if 0 if (on) swallow_zsintrs++; else swallow_zsintrs--; #endif }