/* * Copyright 2013 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Alex Deucher */ #include #include #include "amdgpu.h" #include "amdgpu_ucode.h" #include "amdgpu_trace.h" #include "cikd.h" #include "cik.h" #include "bif/bif_4_1_d.h" #include "bif/bif_4_1_sh_mask.h" #include "gca/gfx_7_2_d.h" #include "gca/gfx_7_2_enum.h" #include "gca/gfx_7_2_sh_mask.h" #include "gmc/gmc_7_1_d.h" #include "gmc/gmc_7_1_sh_mask.h" #include "oss/oss_2_0_d.h" #include "oss/oss_2_0_sh_mask.h" static const u32 sdma_offsets[SDMA_MAX_INSTANCE] = { SDMA0_REGISTER_OFFSET, SDMA1_REGISTER_OFFSET }; static void cik_sdma_set_ring_funcs(struct amdgpu_device *adev); static void cik_sdma_set_irq_funcs(struct amdgpu_device *adev); static void cik_sdma_set_buffer_funcs(struct amdgpu_device *adev); static void cik_sdma_set_vm_pte_funcs(struct amdgpu_device *adev); static int cik_sdma_soft_reset(void *handle); MODULE_FIRMWARE("amdgpu/bonaire_sdma.bin"); MODULE_FIRMWARE("amdgpu/bonaire_sdma1.bin"); MODULE_FIRMWARE("amdgpu/hawaii_sdma.bin"); MODULE_FIRMWARE("amdgpu/hawaii_sdma1.bin"); MODULE_FIRMWARE("amdgpu/kaveri_sdma.bin"); MODULE_FIRMWARE("amdgpu/kaveri_sdma1.bin"); MODULE_FIRMWARE("amdgpu/kabini_sdma.bin"); MODULE_FIRMWARE("amdgpu/kabini_sdma1.bin"); MODULE_FIRMWARE("amdgpu/mullins_sdma.bin"); MODULE_FIRMWARE("amdgpu/mullins_sdma1.bin"); u32 amdgpu_cik_gpu_check_soft_reset(struct amdgpu_device *adev); static void cik_sdma_free_microcode(struct amdgpu_device *adev) { int i; for (i = 0; i < adev->sdma.num_instances; i++) amdgpu_ucode_release(&adev->sdma.instance[i].fw); } /* * sDMA - System DMA * Starting with CIK, the GPU has new asynchronous * DMA engines. These engines are used for compute * and gfx. There are two DMA engines (SDMA0, SDMA1) * and each one supports 1 ring buffer used for gfx * and 2 queues used for compute. * * The programming model is very similar to the CP * (ring buffer, IBs, etc.), but sDMA has it's own * packet format that is different from the PM4 format * used by the CP. sDMA supports copying data, writing * embedded data, solid fills, and a number of other * things. It also has support for tiling/detiling of * buffers. */ /** * cik_sdma_init_microcode - load ucode images from disk * * @adev: amdgpu_device pointer * * Use the firmware interface to load the ucode images into * the driver (not loaded into hw). * Returns 0 on success, error on failure. */ static int cik_sdma_init_microcode(struct amdgpu_device *adev) { const char *chip_name; char fw_name[30]; int err = 0, i; DRM_DEBUG("\n"); switch (adev->asic_type) { case CHIP_BONAIRE: chip_name = "bonaire"; break; case CHIP_HAWAII: chip_name = "hawaii"; break; case CHIP_KAVERI: chip_name = "kaveri"; break; case CHIP_KABINI: chip_name = "kabini"; break; case CHIP_MULLINS: chip_name = "mullins"; break; default: BUG(); } for (i = 0; i < adev->sdma.num_instances; i++) { if (i == 0) snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name); else snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name); err = amdgpu_ucode_request(adev, &adev->sdma.instance[i].fw, fw_name); if (err) goto out; } out: if (err) { pr_err("cik_sdma: Failed to load firmware \"%s\"\n", fw_name); for (i = 0; i < adev->sdma.num_instances; i++) amdgpu_ucode_release(&adev->sdma.instance[i].fw); } return err; } /** * cik_sdma_ring_get_rptr - get the current read pointer * * @ring: amdgpu ring pointer * * Get the current rptr from the hardware (CIK+). */ static uint64_t cik_sdma_ring_get_rptr(struct amdgpu_ring *ring) { u32 rptr; rptr = *ring->rptr_cpu_addr; return (rptr & 0x3fffc) >> 2; } /** * cik_sdma_ring_get_wptr - get the current write pointer * * @ring: amdgpu ring pointer * * Get the current wptr from the hardware (CIK+). */ static uint64_t cik_sdma_ring_get_wptr(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; return (RREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[ring->me]) & 0x3fffc) >> 2; } /** * cik_sdma_ring_set_wptr - commit the write pointer * * @ring: amdgpu ring pointer * * Write the wptr back to the hardware (CIK+). */ static void cik_sdma_ring_set_wptr(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[ring->me], (ring->wptr << 2) & 0x3fffc); } static void cik_sdma_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count) { struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring); int i; for (i = 0; i < count; i++) if (sdma && sdma->burst_nop && (i == 0)) amdgpu_ring_write(ring, ring->funcs->nop | SDMA_NOP_COUNT(count - 1)); else amdgpu_ring_write(ring, ring->funcs->nop); } /** * cik_sdma_ring_emit_ib - Schedule an IB on the DMA engine * * @ring: amdgpu ring pointer * @job: job to retrive vmid from * @ib: IB object to schedule * @flags: unused * * Schedule an IB in the DMA ring (CIK). */ static void cik_sdma_ring_emit_ib(struct amdgpu_ring *ring, struct amdgpu_job *job, struct amdgpu_ib *ib, uint32_t flags) { unsigned vmid = AMDGPU_JOB_GET_VMID(job); u32 extra_bits = vmid & 0xf; /* IB packet must end on a 8 DW boundary */ cik_sdma_ring_insert_nop(ring, (4 - lower_32_bits(ring->wptr)) & 7); amdgpu_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_INDIRECT_BUFFER, 0, extra_bits)); amdgpu_ring_write(ring, ib->gpu_addr & 0xffffffe0); /* base must be 32 byte aligned */ amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr) & 0xffffffff); amdgpu_ring_write(ring, ib->length_dw); } /** * cik_sdma_ring_emit_hdp_flush - emit an hdp flush on the DMA ring * * @ring: amdgpu ring pointer * * Emit an hdp flush packet on the requested DMA ring. */ static void cik_sdma_ring_emit_hdp_flush(struct amdgpu_ring *ring) { u32 extra_bits = (SDMA_POLL_REG_MEM_EXTRA_OP(1) | SDMA_POLL_REG_MEM_EXTRA_FUNC(3)); /* == */ u32 ref_and_mask; if (ring->me == 0) ref_and_mask = GPU_HDP_FLUSH_DONE__SDMA0_MASK; else ref_and_mask = GPU_HDP_FLUSH_DONE__SDMA1_MASK; amdgpu_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_POLL_REG_MEM, 0, extra_bits)); amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_DONE << 2); amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_REQ << 2); amdgpu_ring_write(ring, ref_and_mask); /* reference */ amdgpu_ring_write(ring, ref_and_mask); /* mask */ amdgpu_ring_write(ring, (0xfff << 16) | 10); /* retry count, poll interval */ } /** * cik_sdma_ring_emit_fence - emit a fence on the DMA ring * * @ring: amdgpu ring pointer * @addr: address * @seq: sequence number * @flags: fence related flags * * Add a DMA fence packet to the ring to write * the fence seq number and DMA trap packet to generate * an interrupt if needed (CIK). */ static void cik_sdma_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq, unsigned flags) { bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT; /* write the fence */ amdgpu_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_FENCE, 0, 0)); amdgpu_ring_write(ring, lower_32_bits(addr)); amdgpu_ring_write(ring, upper_32_bits(addr)); amdgpu_ring_write(ring, lower_32_bits(seq)); /* optionally write high bits as well */ if (write64bit) { addr += 4; amdgpu_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_FENCE, 0, 0)); amdgpu_ring_write(ring, lower_32_bits(addr)); amdgpu_ring_write(ring, upper_32_bits(addr)); amdgpu_ring_write(ring, upper_32_bits(seq)); } /* generate an interrupt */ amdgpu_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_TRAP, 0, 0)); } /** * cik_sdma_gfx_stop - stop the gfx async dma engines * * @adev: amdgpu_device pointer * * Stop the gfx async dma ring buffers (CIK). */ static void cik_sdma_gfx_stop(struct amdgpu_device *adev) { u32 rb_cntl; int i; amdgpu_sdma_unset_buffer_funcs_helper(adev); for (i = 0; i < adev->sdma.num_instances; i++) { rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]); rb_cntl &= ~SDMA0_GFX_RB_CNTL__RB_ENABLE_MASK; WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl); WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], 0); } } /** * cik_sdma_rlc_stop - stop the compute async dma engines * * @adev: amdgpu_device pointer * * Stop the compute async dma queues (CIK). */ static void cik_sdma_rlc_stop(struct amdgpu_device *adev) { /* XXX todo */ } /** * cik_ctx_switch_enable - stop the async dma engines context switch * * @adev: amdgpu_device pointer * @enable: enable/disable the DMA MEs context switch. * * Halt or unhalt the async dma engines context switch (VI). */ static void cik_ctx_switch_enable(struct amdgpu_device *adev, bool enable) { u32 f32_cntl, phase_quantum = 0; int i; if (amdgpu_sdma_phase_quantum) { unsigned value = amdgpu_sdma_phase_quantum; unsigned unit = 0; while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >> SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) { value = (value + 1) >> 1; unit++; } if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >> SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) { value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >> SDMA0_PHASE0_QUANTUM__VALUE__SHIFT); unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >> SDMA0_PHASE0_QUANTUM__UNIT__SHIFT); WARN_ONCE(1, "clamping sdma_phase_quantum to %uK clock cycles\n", value << unit); } phase_quantum = value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT | unit << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT; } for (i = 0; i < adev->sdma.num_instances; i++) { f32_cntl = RREG32(mmSDMA0_CNTL + sdma_offsets[i]); if (enable) { f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL, AUTO_CTXSW_ENABLE, 1); if (amdgpu_sdma_phase_quantum) { WREG32(mmSDMA0_PHASE0_QUANTUM + sdma_offsets[i], phase_quantum); WREG32(mmSDMA0_PHASE1_QUANTUM + sdma_offsets[i], phase_quantum); } } else { f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL, AUTO_CTXSW_ENABLE, 0); } WREG32(mmSDMA0_CNTL + sdma_offsets[i], f32_cntl); } } /** * cik_sdma_enable - stop the async dma engines * * @adev: amdgpu_device pointer * @enable: enable/disable the DMA MEs. * * Halt or unhalt the async dma engines (CIK). */ static void cik_sdma_enable(struct amdgpu_device *adev, bool enable) { u32 me_cntl; int i; if (!enable) { cik_sdma_gfx_stop(adev); cik_sdma_rlc_stop(adev); } for (i = 0; i < adev->sdma.num_instances; i++) { me_cntl = RREG32(mmSDMA0_F32_CNTL + sdma_offsets[i]); if (enable) me_cntl &= ~SDMA0_F32_CNTL__HALT_MASK; else me_cntl |= SDMA0_F32_CNTL__HALT_MASK; WREG32(mmSDMA0_F32_CNTL + sdma_offsets[i], me_cntl); } } /** * cik_sdma_gfx_resume - setup and start the async dma engines * * @adev: amdgpu_device pointer * * Set up the gfx DMA ring buffers and enable them (CIK). * Returns 0 for success, error for failure. */ static int cik_sdma_gfx_resume(struct amdgpu_device *adev) { struct amdgpu_ring *ring; u32 rb_cntl, ib_cntl; u32 rb_bufsz; int i, j, r; for (i = 0; i < adev->sdma.num_instances; i++) { ring = &adev->sdma.instance[i].ring; mutex_lock(&adev->srbm_mutex); for (j = 0; j < 16; j++) { cik_srbm_select(adev, 0, 0, 0, j); /* SDMA GFX */ WREG32(mmSDMA0_GFX_VIRTUAL_ADDR + sdma_offsets[i], 0); WREG32(mmSDMA0_GFX_APE1_CNTL + sdma_offsets[i], 0); /* XXX SDMA RLC - todo */ } cik_srbm_select(adev, 0, 0, 0, 0); mutex_unlock(&adev->srbm_mutex); WREG32(mmSDMA0_TILING_CONFIG + sdma_offsets[i], adev->gfx.config.gb_addr_config & 0x70); WREG32(mmSDMA0_SEM_INCOMPLETE_TIMER_CNTL + sdma_offsets[i], 0); WREG32(mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL + sdma_offsets[i], 0); /* Set ring buffer size in dwords */ rb_bufsz = order_base_2(ring->ring_size / 4); rb_cntl = rb_bufsz << 1; #ifdef __BIG_ENDIAN rb_cntl |= SDMA0_GFX_RB_CNTL__RB_SWAP_ENABLE_MASK | SDMA0_GFX_RB_CNTL__RPTR_WRITEBACK_SWAP_ENABLE_MASK; #endif WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl); /* Initialize the ring buffer's read and write pointers */ WREG32(mmSDMA0_GFX_RB_RPTR + sdma_offsets[i], 0); WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], 0); WREG32(mmSDMA0_GFX_IB_RPTR + sdma_offsets[i], 0); WREG32(mmSDMA0_GFX_IB_OFFSET + sdma_offsets[i], 0); /* set the wb address whether it's enabled or not */ WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_HI + sdma_offsets[i], upper_32_bits(ring->rptr_gpu_addr) & 0xFFFFFFFF); WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_LO + sdma_offsets[i], ((ring->rptr_gpu_addr) & 0xFFFFFFFC)); rb_cntl |= SDMA0_GFX_RB_CNTL__RPTR_WRITEBACK_ENABLE_MASK; WREG32(mmSDMA0_GFX_RB_BASE + sdma_offsets[i], ring->gpu_addr >> 8); WREG32(mmSDMA0_GFX_RB_BASE_HI + sdma_offsets[i], ring->gpu_addr >> 40); ring->wptr = 0; WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], ring->wptr << 2); /* enable DMA RB */ WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl | SDMA0_GFX_RB_CNTL__RB_ENABLE_MASK); ib_cntl = SDMA0_GFX_IB_CNTL__IB_ENABLE_MASK; #ifdef __BIG_ENDIAN ib_cntl |= SDMA0_GFX_IB_CNTL__IB_SWAP_ENABLE_MASK; #endif /* enable DMA IBs */ WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl); } cik_sdma_enable(adev, true); for (i = 0; i < adev->sdma.num_instances; i++) { ring = &adev->sdma.instance[i].ring; r = amdgpu_ring_test_helper(ring); if (r) return r; if (adev->mman.buffer_funcs_ring == ring) amdgpu_ttm_set_buffer_funcs_status(adev, true); } return 0; } /** * cik_sdma_rlc_resume - setup and start the async dma engines * * @adev: amdgpu_device pointer * * Set up the compute DMA queues and enable them (CIK). * Returns 0 for success, error for failure. */ static int cik_sdma_rlc_resume(struct amdgpu_device *adev) { /* XXX todo */ return 0; } /** * cik_sdma_load_microcode - load the sDMA ME ucode * * @adev: amdgpu_device pointer * * Loads the sDMA0/1 ucode. * Returns 0 for success, -EINVAL if the ucode is not available. */ static int cik_sdma_load_microcode(struct amdgpu_device *adev) { const struct sdma_firmware_header_v1_0 *hdr; const __le32 *fw_data; u32 fw_size; int i, j; /* halt the MEs */ cik_sdma_enable(adev, false); for (i = 0; i < adev->sdma.num_instances; i++) { if (!adev->sdma.instance[i].fw) return -EINVAL; hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data; amdgpu_ucode_print_sdma_hdr(&hdr->header); fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4; adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version); adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version); if (adev->sdma.instance[i].feature_version >= 20) adev->sdma.instance[i].burst_nop = true; fw_data = (const __le32 *) (adev->sdma.instance[i].fw->data + le32_to_cpu(hdr->header.ucode_array_offset_bytes)); WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], 0); for (j = 0; j < fw_size; j++) WREG32(mmSDMA0_UCODE_DATA + sdma_offsets[i], le32_to_cpup(fw_data++)); WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], adev->sdma.instance[i].fw_version); } return 0; } /** * cik_sdma_start - setup and start the async dma engines * * @adev: amdgpu_device pointer * * Set up the DMA engines and enable them (CIK). * Returns 0 for success, error for failure. */ static int cik_sdma_start(struct amdgpu_device *adev) { int r; r = cik_sdma_load_microcode(adev); if (r) return r; /* halt the engine before programing */ cik_sdma_enable(adev, false); /* enable sdma ring preemption */ cik_ctx_switch_enable(adev, true); /* start the gfx rings and rlc compute queues */ r = cik_sdma_gfx_resume(adev); if (r) return r; r = cik_sdma_rlc_resume(adev); if (r) return r; return 0; } /** * cik_sdma_ring_test_ring - simple async dma engine test * * @ring: amdgpu_ring structure holding ring information * * Test the DMA engine by writing using it to write an * value to memory. (CIK). * Returns 0 for success, error for failure. */ static int cik_sdma_ring_test_ring(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; unsigned i; unsigned index; int r; u32 tmp; u64 gpu_addr; r = amdgpu_device_wb_get(adev, &index); if (r) return r; gpu_addr = adev->wb.gpu_addr + (index * 4); tmp = 0xCAFEDEAD; adev->wb.wb[index] = cpu_to_le32(tmp); r = amdgpu_ring_alloc(ring, 5); if (r) goto error_free_wb; amdgpu_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_WRITE, SDMA_WRITE_SUB_OPCODE_LINEAR, 0)); amdgpu_ring_write(ring, lower_32_bits(gpu_addr)); amdgpu_ring_write(ring, upper_32_bits(gpu_addr)); amdgpu_ring_write(ring, 1); /* number of DWs to follow */ amdgpu_ring_write(ring, 0xDEADBEEF); amdgpu_ring_commit(ring); for (i = 0; i < adev->usec_timeout; i++) { tmp = le32_to_cpu(adev->wb.wb[index]); if (tmp == 0xDEADBEEF) break; udelay(1); } if (i >= adev->usec_timeout) r = -ETIMEDOUT; error_free_wb: amdgpu_device_wb_free(adev, index); return r; } /** * cik_sdma_ring_test_ib - test an IB on the DMA engine * * @ring: amdgpu_ring structure holding ring information * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT * * Test a simple IB in the DMA ring (CIK). * Returns 0 on success, error on failure. */ static int cik_sdma_ring_test_ib(struct amdgpu_ring *ring, long timeout) { struct amdgpu_device *adev = ring->adev; struct amdgpu_ib ib; struct dma_fence *f = NULL; unsigned index; u32 tmp = 0; u64 gpu_addr; long r; r = amdgpu_device_wb_get(adev, &index); if (r) return r; gpu_addr = adev->wb.gpu_addr + (index * 4); tmp = 0xCAFEDEAD; adev->wb.wb[index] = cpu_to_le32(tmp); memset(&ib, 0, sizeof(ib)); r = amdgpu_ib_get(adev, NULL, 256, AMDGPU_IB_POOL_DIRECT, &ib); if (r) goto err0; ib.ptr[0] = SDMA_PACKET(SDMA_OPCODE_WRITE, SDMA_WRITE_SUB_OPCODE_LINEAR, 0); ib.ptr[1] = lower_32_bits(gpu_addr); ib.ptr[2] = upper_32_bits(gpu_addr); ib.ptr[3] = 1; ib.ptr[4] = 0xDEADBEEF; ib.length_dw = 5; r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f); if (r) goto err1; r = dma_fence_wait_timeout(f, false, timeout); if (r == 0) { r = -ETIMEDOUT; goto err1; } else if (r < 0) { goto err1; } tmp = le32_to_cpu(adev->wb.wb[index]); if (tmp == 0xDEADBEEF) r = 0; else r = -EINVAL; err1: amdgpu_ib_free(adev, &ib, NULL); dma_fence_put(f); err0: amdgpu_device_wb_free(adev, index); return r; } /** * cik_sdma_vm_copy_pte - update PTEs by copying them from the GART * * @ib: indirect buffer to fill with commands * @pe: addr of the page entry * @src: src addr to copy from * @count: number of page entries to update * * Update PTEs by copying them from the GART using sDMA (CIK). */ static void cik_sdma_vm_copy_pte(struct amdgpu_ib *ib, uint64_t pe, uint64_t src, unsigned count) { unsigned bytes = count * 8; ib->ptr[ib->length_dw++] = SDMA_PACKET(SDMA_OPCODE_COPY, SDMA_WRITE_SUB_OPCODE_LINEAR, 0); ib->ptr[ib->length_dw++] = bytes; ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */ ib->ptr[ib->length_dw++] = lower_32_bits(src); ib->ptr[ib->length_dw++] = upper_32_bits(src); ib->ptr[ib->length_dw++] = lower_32_bits(pe); ib->ptr[ib->length_dw++] = upper_32_bits(pe); } /** * cik_sdma_vm_write_pte - update PTEs by writing them manually * * @ib: indirect buffer to fill with commands * @pe: addr of the page entry * @value: dst addr to write into pe * @count: number of page entries to update * @incr: increase next addr by incr bytes * * Update PTEs by writing them manually using sDMA (CIK). */ static void cik_sdma_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe, uint64_t value, unsigned count, uint32_t incr) { unsigned ndw = count * 2; ib->ptr[ib->length_dw++] = SDMA_PACKET(SDMA_OPCODE_WRITE, SDMA_WRITE_SUB_OPCODE_LINEAR, 0); ib->ptr[ib->length_dw++] = lower_32_bits(pe); ib->ptr[ib->length_dw++] = upper_32_bits(pe); ib->ptr[ib->length_dw++] = ndw; for (; ndw > 0; ndw -= 2) { ib->ptr[ib->length_dw++] = lower_32_bits(value); ib->ptr[ib->length_dw++] = upper_32_bits(value); value += incr; } } /** * cik_sdma_vm_set_pte_pde - update the page tables using sDMA * * @ib: indirect buffer to fill with commands * @pe: addr of the page entry * @addr: dst addr to write into pe * @count: number of page entries to update * @incr: increase next addr by incr bytes * @flags: access flags * * Update the page tables using sDMA (CIK). */ static void cik_sdma_vm_set_pte_pde(struct amdgpu_ib *ib, uint64_t pe, uint64_t addr, unsigned count, uint32_t incr, uint64_t flags) { /* for physically contiguous pages (vram) */ ib->ptr[ib->length_dw++] = SDMA_PACKET(SDMA_OPCODE_GENERATE_PTE_PDE, 0, 0); ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */ ib->ptr[ib->length_dw++] = upper_32_bits(pe); ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */ ib->ptr[ib->length_dw++] = upper_32_bits(flags); ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */ ib->ptr[ib->length_dw++] = upper_32_bits(addr); ib->ptr[ib->length_dw++] = incr; /* increment size */ ib->ptr[ib->length_dw++] = 0; ib->ptr[ib->length_dw++] = count; /* number of entries */ } /** * cik_sdma_ring_pad_ib - pad the IB to the required number of dw * * @ring: amdgpu_ring structure holding ring information * @ib: indirect buffer to fill with padding * */ static void cik_sdma_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib) { struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring); u32 pad_count; int i; pad_count = (-ib->length_dw) & 7; for (i = 0; i < pad_count; i++) if (sdma && sdma->burst_nop && (i == 0)) ib->ptr[ib->length_dw++] = SDMA_PACKET(SDMA_OPCODE_NOP, 0, 0) | SDMA_NOP_COUNT(pad_count - 1); else ib->ptr[ib->length_dw++] = SDMA_PACKET(SDMA_OPCODE_NOP, 0, 0); } /** * cik_sdma_ring_emit_pipeline_sync - sync the pipeline * * @ring: amdgpu_ring pointer * * Make sure all previous operations are completed (CIK). */ static void cik_sdma_ring_emit_pipeline_sync(struct amdgpu_ring *ring) { uint32_t seq = ring->fence_drv.sync_seq; uint64_t addr = ring->fence_drv.gpu_addr; /* wait for idle */ amdgpu_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_POLL_REG_MEM, 0, SDMA_POLL_REG_MEM_EXTRA_OP(0) | SDMA_POLL_REG_MEM_EXTRA_FUNC(3) | /* equal */ SDMA_POLL_REG_MEM_EXTRA_M)); amdgpu_ring_write(ring, addr & 0xfffffffc); amdgpu_ring_write(ring, upper_32_bits(addr) & 0xffffffff); amdgpu_ring_write(ring, seq); /* reference */ amdgpu_ring_write(ring, 0xffffffff); /* mask */ amdgpu_ring_write(ring, (0xfff << 16) | 4); /* retry count, poll interval */ } /** * cik_sdma_ring_emit_vm_flush - cik vm flush using sDMA * * @ring: amdgpu_ring pointer * @vmid: vmid number to use * @pd_addr: address * * Update the page table base and flush the VM TLB * using sDMA (CIK). */ static void cik_sdma_ring_emit_vm_flush(struct amdgpu_ring *ring, unsigned vmid, uint64_t pd_addr) { u32 extra_bits = (SDMA_POLL_REG_MEM_EXTRA_OP(0) | SDMA_POLL_REG_MEM_EXTRA_FUNC(0)); /* always */ amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr); amdgpu_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_POLL_REG_MEM, 0, extra_bits)); amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST << 2); amdgpu_ring_write(ring, 0); amdgpu_ring_write(ring, 0); /* reference */ amdgpu_ring_write(ring, 0); /* mask */ amdgpu_ring_write(ring, (0xfff << 16) | 10); /* retry count, poll interval */ } static void cik_sdma_ring_emit_wreg(struct amdgpu_ring *ring, uint32_t reg, uint32_t val) { amdgpu_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_SRBM_WRITE, 0, 0xf000)); amdgpu_ring_write(ring, reg); amdgpu_ring_write(ring, val); } static void cik_enable_sdma_mgcg(struct amdgpu_device *adev, bool enable) { u32 orig, data; if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) { WREG32(mmSDMA0_CLK_CTRL + SDMA0_REGISTER_OFFSET, 0x00000100); WREG32(mmSDMA0_CLK_CTRL + SDMA1_REGISTER_OFFSET, 0x00000100); } else { orig = data = RREG32(mmSDMA0_CLK_CTRL + SDMA0_REGISTER_OFFSET); data |= 0xff000000; if (data != orig) WREG32(mmSDMA0_CLK_CTRL + SDMA0_REGISTER_OFFSET, data); orig = data = RREG32(mmSDMA0_CLK_CTRL + SDMA1_REGISTER_OFFSET); data |= 0xff000000; if (data != orig) WREG32(mmSDMA0_CLK_CTRL + SDMA1_REGISTER_OFFSET, data); } } static void cik_enable_sdma_mgls(struct amdgpu_device *adev, bool enable) { u32 orig, data; if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) { orig = data = RREG32(mmSDMA0_POWER_CNTL + SDMA0_REGISTER_OFFSET); data |= 0x100; if (orig != data) WREG32(mmSDMA0_POWER_CNTL + SDMA0_REGISTER_OFFSET, data); orig = data = RREG32(mmSDMA0_POWER_CNTL + SDMA1_REGISTER_OFFSET); data |= 0x100; if (orig != data) WREG32(mmSDMA0_POWER_CNTL + SDMA1_REGISTER_OFFSET, data); } else { orig = data = RREG32(mmSDMA0_POWER_CNTL + SDMA0_REGISTER_OFFSET); data &= ~0x100; if (orig != data) WREG32(mmSDMA0_POWER_CNTL + SDMA0_REGISTER_OFFSET, data); orig = data = RREG32(mmSDMA0_POWER_CNTL + SDMA1_REGISTER_OFFSET); data &= ~0x100; if (orig != data) WREG32(mmSDMA0_POWER_CNTL + SDMA1_REGISTER_OFFSET, data); } } static int cik_sdma_early_init(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; adev->sdma.num_instances = SDMA_MAX_INSTANCE; cik_sdma_set_ring_funcs(adev); cik_sdma_set_irq_funcs(adev); cik_sdma_set_buffer_funcs(adev); cik_sdma_set_vm_pte_funcs(adev); return 0; } static int cik_sdma_sw_init(void *handle) { struct amdgpu_ring *ring; struct amdgpu_device *adev = (struct amdgpu_device *)handle; int r, i; r = cik_sdma_init_microcode(adev); if (r) { DRM_ERROR("Failed to load sdma firmware!\n"); return r; } /* SDMA trap event */ r = amdgpu_irq_add_id(adev, AMDGPU_IRQ_CLIENTID_LEGACY, 224, &adev->sdma.trap_irq); if (r) return r; /* SDMA Privileged inst */ r = amdgpu_irq_add_id(adev, AMDGPU_IRQ_CLIENTID_LEGACY, 241, &adev->sdma.illegal_inst_irq); if (r) return r; /* SDMA Privileged inst */ r = amdgpu_irq_add_id(adev, AMDGPU_IRQ_CLIENTID_LEGACY, 247, &adev->sdma.illegal_inst_irq); if (r) return r; for (i = 0; i < adev->sdma.num_instances; i++) { ring = &adev->sdma.instance[i].ring; ring->ring_obj = NULL; snprintf(ring->name, sizeof(ring->name), "sdma%d", i); r = amdgpu_ring_init(adev, ring, 1024, &adev->sdma.trap_irq, (i == 0) ? AMDGPU_SDMA_IRQ_INSTANCE0 : AMDGPU_SDMA_IRQ_INSTANCE1, AMDGPU_RING_PRIO_DEFAULT, NULL); if (r) return r; } return r; } static int cik_sdma_sw_fini(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; int i; for (i = 0; i < adev->sdma.num_instances; i++) amdgpu_ring_fini(&adev->sdma.instance[i].ring); cik_sdma_free_microcode(adev); return 0; } static int cik_sdma_hw_init(void *handle) { int r; struct amdgpu_device *adev = (struct amdgpu_device *)handle; r = cik_sdma_start(adev); if (r) return r; return r; } static int cik_sdma_hw_fini(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; cik_ctx_switch_enable(adev, false); cik_sdma_enable(adev, false); return 0; } static int cik_sdma_suspend(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; return cik_sdma_hw_fini(adev); } static int cik_sdma_resume(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; cik_sdma_soft_reset(handle); return cik_sdma_hw_init(adev); } static bool cik_sdma_is_idle(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; u32 tmp = RREG32(mmSRBM_STATUS2); if (tmp & (SRBM_STATUS2__SDMA_BUSY_MASK | SRBM_STATUS2__SDMA1_BUSY_MASK)) return false; return true; } static int cik_sdma_wait_for_idle(void *handle) { unsigned i; u32 tmp; struct amdgpu_device *adev = (struct amdgpu_device *)handle; for (i = 0; i < adev->usec_timeout; i++) { tmp = RREG32(mmSRBM_STATUS2) & (SRBM_STATUS2__SDMA_BUSY_MASK | SRBM_STATUS2__SDMA1_BUSY_MASK); if (!tmp) return 0; udelay(1); } return -ETIMEDOUT; } static int cik_sdma_soft_reset(void *handle) { u32 srbm_soft_reset = 0; struct amdgpu_device *adev = (struct amdgpu_device *)handle; u32 tmp; /* sdma0 */ tmp = RREG32(mmSDMA0_F32_CNTL + SDMA0_REGISTER_OFFSET); tmp |= SDMA0_F32_CNTL__HALT_MASK; WREG32(mmSDMA0_F32_CNTL + SDMA0_REGISTER_OFFSET, tmp); srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA_MASK; /* sdma1 */ tmp = RREG32(mmSDMA0_F32_CNTL + SDMA1_REGISTER_OFFSET); tmp |= SDMA0_F32_CNTL__HALT_MASK; WREG32(mmSDMA0_F32_CNTL + SDMA1_REGISTER_OFFSET, tmp); srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA1_MASK; if (srbm_soft_reset) { tmp = RREG32(mmSRBM_SOFT_RESET); tmp |= srbm_soft_reset; dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp); WREG32(mmSRBM_SOFT_RESET, tmp); tmp = RREG32(mmSRBM_SOFT_RESET); udelay(50); tmp &= ~srbm_soft_reset; WREG32(mmSRBM_SOFT_RESET, tmp); tmp = RREG32(mmSRBM_SOFT_RESET); /* Wait a little for things to settle down */ udelay(50); } return 0; } static int cik_sdma_set_trap_irq_state(struct amdgpu_device *adev, struct amdgpu_irq_src *src, unsigned type, enum amdgpu_interrupt_state state) { u32 sdma_cntl; switch (type) { case AMDGPU_SDMA_IRQ_INSTANCE0: switch (state) { case AMDGPU_IRQ_STATE_DISABLE: sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET); sdma_cntl &= ~SDMA0_CNTL__TRAP_ENABLE_MASK; WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl); break; case AMDGPU_IRQ_STATE_ENABLE: sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET); sdma_cntl |= SDMA0_CNTL__TRAP_ENABLE_MASK; WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl); break; default: break; } break; case AMDGPU_SDMA_IRQ_INSTANCE1: switch (state) { case AMDGPU_IRQ_STATE_DISABLE: sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET); sdma_cntl &= ~SDMA0_CNTL__TRAP_ENABLE_MASK; WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl); break; case AMDGPU_IRQ_STATE_ENABLE: sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET); sdma_cntl |= SDMA0_CNTL__TRAP_ENABLE_MASK; WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl); break; default: break; } break; default: break; } return 0; } static int cik_sdma_process_trap_irq(struct amdgpu_device *adev, struct amdgpu_irq_src *source, struct amdgpu_iv_entry *entry) { u8 instance_id, queue_id; instance_id = (entry->ring_id & 0x3) >> 0; queue_id = (entry->ring_id & 0xc) >> 2; DRM_DEBUG("IH: SDMA trap\n"); switch (instance_id) { case 0: switch (queue_id) { case 0: amdgpu_fence_process(&adev->sdma.instance[0].ring); break; case 1: /* XXX compute */ break; case 2: /* XXX compute */ break; } break; case 1: switch (queue_id) { case 0: amdgpu_fence_process(&adev->sdma.instance[1].ring); break; case 1: /* XXX compute */ break; case 2: /* XXX compute */ break; } break; } return 0; } static int cik_sdma_process_illegal_inst_irq(struct amdgpu_device *adev, struct amdgpu_irq_src *source, struct amdgpu_iv_entry *entry) { u8 instance_id; DRM_ERROR("Illegal instruction in SDMA command stream\n"); instance_id = (entry->ring_id & 0x3) >> 0; drm_sched_fault(&adev->sdma.instance[instance_id].ring.sched); return 0; } static int cik_sdma_set_clockgating_state(void *handle, enum amd_clockgating_state state) { bool gate = false; struct amdgpu_device *adev = (struct amdgpu_device *)handle; if (state == AMD_CG_STATE_GATE) gate = true; cik_enable_sdma_mgcg(adev, gate); cik_enable_sdma_mgls(adev, gate); return 0; } static int cik_sdma_set_powergating_state(void *handle, enum amd_powergating_state state) { return 0; } static const struct amd_ip_funcs cik_sdma_ip_funcs = { .name = "cik_sdma", .early_init = cik_sdma_early_init, .late_init = NULL, .sw_init = cik_sdma_sw_init, .sw_fini = cik_sdma_sw_fini, .hw_init = cik_sdma_hw_init, .hw_fini = cik_sdma_hw_fini, .suspend = cik_sdma_suspend, .resume = cik_sdma_resume, .is_idle = cik_sdma_is_idle, .wait_for_idle = cik_sdma_wait_for_idle, .soft_reset = cik_sdma_soft_reset, .set_clockgating_state = cik_sdma_set_clockgating_state, .set_powergating_state = cik_sdma_set_powergating_state, }; static const struct amdgpu_ring_funcs cik_sdma_ring_funcs = { .type = AMDGPU_RING_TYPE_SDMA, .align_mask = 0xf, .nop = SDMA_PACKET(SDMA_OPCODE_NOP, 0, 0), .support_64bit_ptrs = false, .get_rptr = cik_sdma_ring_get_rptr, .get_wptr = cik_sdma_ring_get_wptr, .set_wptr = cik_sdma_ring_set_wptr, .emit_frame_size = 6 + /* cik_sdma_ring_emit_hdp_flush */ 3 + /* hdp invalidate */ 6 + /* cik_sdma_ring_emit_pipeline_sync */ CIK_FLUSH_GPU_TLB_NUM_WREG * 3 + 6 + /* cik_sdma_ring_emit_vm_flush */ 9 + 9 + 9, /* cik_sdma_ring_emit_fence x3 for user fence, vm fence */ .emit_ib_size = 7 + 4, /* cik_sdma_ring_emit_ib */ .emit_ib = cik_sdma_ring_emit_ib, .emit_fence = cik_sdma_ring_emit_fence, .emit_pipeline_sync = cik_sdma_ring_emit_pipeline_sync, .emit_vm_flush = cik_sdma_ring_emit_vm_flush, .emit_hdp_flush = cik_sdma_ring_emit_hdp_flush, .test_ring = cik_sdma_ring_test_ring, .test_ib = cik_sdma_ring_test_ib, .insert_nop = cik_sdma_ring_insert_nop, .pad_ib = cik_sdma_ring_pad_ib, .emit_wreg = cik_sdma_ring_emit_wreg, }; static void cik_sdma_set_ring_funcs(struct amdgpu_device *adev) { int i; for (i = 0; i < adev->sdma.num_instances; i++) { adev->sdma.instance[i].ring.funcs = &cik_sdma_ring_funcs; adev->sdma.instance[i].ring.me = i; } } static const struct amdgpu_irq_src_funcs cik_sdma_trap_irq_funcs = { .set = cik_sdma_set_trap_irq_state, .process = cik_sdma_process_trap_irq, }; static const struct amdgpu_irq_src_funcs cik_sdma_illegal_inst_irq_funcs = { .process = cik_sdma_process_illegal_inst_irq, }; static void cik_sdma_set_irq_funcs(struct amdgpu_device *adev) { adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST; adev->sdma.trap_irq.funcs = &cik_sdma_trap_irq_funcs; adev->sdma.illegal_inst_irq.funcs = &cik_sdma_illegal_inst_irq_funcs; } /** * cik_sdma_emit_copy_buffer - copy buffer using the sDMA engine * * @ib: indirect buffer to copy to * @src_offset: src GPU address * @dst_offset: dst GPU address * @byte_count: number of bytes to xfer * @tmz: is this a secure operation * * Copy GPU buffers using the DMA engine (CIK). * Used by the amdgpu ttm implementation to move pages if * registered as the asic copy callback. */ static void cik_sdma_emit_copy_buffer(struct amdgpu_ib *ib, uint64_t src_offset, uint64_t dst_offset, uint32_t byte_count, bool tmz) { ib->ptr[ib->length_dw++] = SDMA_PACKET(SDMA_OPCODE_COPY, SDMA_COPY_SUB_OPCODE_LINEAR, 0); ib->ptr[ib->length_dw++] = byte_count; ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */ ib->ptr[ib->length_dw++] = lower_32_bits(src_offset); ib->ptr[ib->length_dw++] = upper_32_bits(src_offset); ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset); ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset); } /** * cik_sdma_emit_fill_buffer - fill buffer using the sDMA engine * * @ib: indirect buffer to fill * @src_data: value to write to buffer * @dst_offset: dst GPU address * @byte_count: number of bytes to xfer * * Fill GPU buffers using the DMA engine (CIK). */ static void cik_sdma_emit_fill_buffer(struct amdgpu_ib *ib, uint32_t src_data, uint64_t dst_offset, uint32_t byte_count) { ib->ptr[ib->length_dw++] = SDMA_PACKET(SDMA_OPCODE_CONSTANT_FILL, 0, 0); ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset); ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset); ib->ptr[ib->length_dw++] = src_data; ib->ptr[ib->length_dw++] = byte_count; } static const struct amdgpu_buffer_funcs cik_sdma_buffer_funcs = { .copy_max_bytes = 0x1fffff, .copy_num_dw = 7, .emit_copy_buffer = cik_sdma_emit_copy_buffer, .fill_max_bytes = 0x1fffff, .fill_num_dw = 5, .emit_fill_buffer = cik_sdma_emit_fill_buffer, }; static void cik_sdma_set_buffer_funcs(struct amdgpu_device *adev) { adev->mman.buffer_funcs = &cik_sdma_buffer_funcs; adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring; } static const struct amdgpu_vm_pte_funcs cik_sdma_vm_pte_funcs = { .copy_pte_num_dw = 7, .copy_pte = cik_sdma_vm_copy_pte, .write_pte = cik_sdma_vm_write_pte, .set_pte_pde = cik_sdma_vm_set_pte_pde, }; static void cik_sdma_set_vm_pte_funcs(struct amdgpu_device *adev) { unsigned i; adev->vm_manager.vm_pte_funcs = &cik_sdma_vm_pte_funcs; for (i = 0; i < adev->sdma.num_instances; i++) { adev->vm_manager.vm_pte_scheds[i] = &adev->sdma.instance[i].ring.sched; } adev->vm_manager.vm_pte_num_scheds = adev->sdma.num_instances; } const struct amdgpu_ip_block_version cik_sdma_ip_block = { .type = AMD_IP_BLOCK_TYPE_SDMA, .major = 2, .minor = 0, .rev = 0, .funcs = &cik_sdma_ip_funcs, };