/* * Copyright 2019 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * */ #include #include #include "amdgpu_mes.h" #include "amdgpu.h" #include "soc15_common.h" #include "amdgpu_mes_ctx.h" #define AMDGPU_MES_MAX_NUM_OF_QUEUES_PER_PROCESS 1024 #define AMDGPU_ONE_DOORBELL_SIZE 8 int amdgpu_mes_doorbell_process_slice(struct amdgpu_device *adev) { return roundup(AMDGPU_ONE_DOORBELL_SIZE * AMDGPU_MES_MAX_NUM_OF_QUEUES_PER_PROCESS, PAGE_SIZE); } static int amdgpu_mes_kernel_doorbell_get(struct amdgpu_device *adev, struct amdgpu_mes_process *process, int ip_type, uint64_t *doorbell_index) { unsigned int offset, found; struct amdgpu_mes *mes = &adev->mes; if (ip_type == AMDGPU_RING_TYPE_SDMA) offset = adev->doorbell_index.sdma_engine[0]; else offset = 0; found = find_next_zero_bit(mes->doorbell_bitmap, mes->num_mes_dbs, offset); if (found >= mes->num_mes_dbs) { DRM_WARN("No doorbell available\n"); return -ENOSPC; } set_bit(found, mes->doorbell_bitmap); /* Get the absolute doorbell index on BAR */ *doorbell_index = mes->db_start_dw_offset + found * 2; return 0; } static void amdgpu_mes_kernel_doorbell_free(struct amdgpu_device *adev, struct amdgpu_mes_process *process, uint32_t doorbell_index) { unsigned int old, rel_index; struct amdgpu_mes *mes = &adev->mes; /* Find the relative index of the doorbell in this object */ rel_index = (doorbell_index - mes->db_start_dw_offset) / 2; old = test_and_clear_bit(rel_index, mes->doorbell_bitmap); WARN_ON(!old); } static int amdgpu_mes_doorbell_init(struct amdgpu_device *adev) { int i; struct amdgpu_mes *mes = &adev->mes; /* Bitmap for dynamic allocation of kernel doorbells */ mes->doorbell_bitmap = bitmap_zalloc(PAGE_SIZE / sizeof(u32), GFP_KERNEL); if (!mes->doorbell_bitmap) { DRM_ERROR("Failed to allocate MES doorbell bitmap\n"); return -ENOMEM; } mes->num_mes_dbs = PAGE_SIZE / AMDGPU_ONE_DOORBELL_SIZE; for (i = 0; i < AMDGPU_MES_PRIORITY_NUM_LEVELS; i++) { adev->mes.aggregated_doorbells[i] = mes->db_start_dw_offset + i * 2; set_bit(i, mes->doorbell_bitmap); } return 0; } static void amdgpu_mes_doorbell_free(struct amdgpu_device *adev) { bitmap_free(adev->mes.doorbell_bitmap); } int amdgpu_mes_init(struct amdgpu_device *adev) { int i, r; adev->mes.adev = adev; idr_init(&adev->mes.pasid_idr); idr_init(&adev->mes.gang_id_idr); idr_init(&adev->mes.queue_id_idr); ida_init(&adev->mes.doorbell_ida); mtx_init(&adev->mes.queue_id_lock, IPL_TTY); mtx_init(&adev->mes.ring_lock, IPL_TTY); rw_init(&adev->mes.mutex_hidden, "agmes"); adev->mes.total_max_queue = AMDGPU_FENCE_MES_QUEUE_ID_MASK; adev->mes.vmid_mask_mmhub = 0xffffff00; adev->mes.vmid_mask_gfxhub = 0xffffff00; for (i = 0; i < AMDGPU_MES_MAX_COMPUTE_PIPES; i++) { /* use only 1st MEC pipes */ if (i >= 4) continue; adev->mes.compute_hqd_mask[i] = 0xc; } for (i = 0; i < AMDGPU_MES_MAX_GFX_PIPES; i++) adev->mes.gfx_hqd_mask[i] = i ? 0 : 0xfffffffe; for (i = 0; i < AMDGPU_MES_MAX_SDMA_PIPES; i++) { if (adev->ip_versions[SDMA0_HWIP][0] < IP_VERSION(6, 0, 0)) adev->mes.sdma_hqd_mask[i] = i ? 0 : 0x3fc; /* zero sdma_hqd_mask for non-existent engine */ else if (adev->sdma.num_instances == 1) adev->mes.sdma_hqd_mask[i] = i ? 0 : 0xfc; else adev->mes.sdma_hqd_mask[i] = 0xfc; } r = amdgpu_device_wb_get(adev, &adev->mes.sch_ctx_offs); if (r) { dev_err(adev->dev, "(%d) ring trail_fence_offs wb alloc failed\n", r); goto error_ids; } adev->mes.sch_ctx_gpu_addr = adev->wb.gpu_addr + (adev->mes.sch_ctx_offs * 4); adev->mes.sch_ctx_ptr = (uint64_t *)&adev->wb.wb[adev->mes.sch_ctx_offs]; r = amdgpu_device_wb_get(adev, &adev->mes.query_status_fence_offs); if (r) { amdgpu_device_wb_free(adev, adev->mes.sch_ctx_offs); dev_err(adev->dev, "(%d) query_status_fence_offs wb alloc failed\n", r); goto error_ids; } adev->mes.query_status_fence_gpu_addr = adev->wb.gpu_addr + (adev->mes.query_status_fence_offs * 4); adev->mes.query_status_fence_ptr = (uint64_t *)&adev->wb.wb[adev->mes.query_status_fence_offs]; r = amdgpu_device_wb_get(adev, &adev->mes.read_val_offs); if (r) { amdgpu_device_wb_free(adev, adev->mes.sch_ctx_offs); amdgpu_device_wb_free(adev, adev->mes.query_status_fence_offs); dev_err(adev->dev, "(%d) read_val_offs alloc failed\n", r); goto error_ids; } adev->mes.read_val_gpu_addr = adev->wb.gpu_addr + (adev->mes.read_val_offs * 4); adev->mes.read_val_ptr = (uint32_t *)&adev->wb.wb[adev->mes.read_val_offs]; r = amdgpu_mes_doorbell_init(adev); if (r) goto error; return 0; error: amdgpu_device_wb_free(adev, adev->mes.sch_ctx_offs); amdgpu_device_wb_free(adev, adev->mes.query_status_fence_offs); amdgpu_device_wb_free(adev, adev->mes.read_val_offs); error_ids: idr_destroy(&adev->mes.pasid_idr); idr_destroy(&adev->mes.gang_id_idr); idr_destroy(&adev->mes.queue_id_idr); ida_destroy(&adev->mes.doorbell_ida); mutex_destroy(&adev->mes.mutex_hidden); return r; } void amdgpu_mes_fini(struct amdgpu_device *adev) { amdgpu_device_wb_free(adev, adev->mes.sch_ctx_offs); amdgpu_device_wb_free(adev, adev->mes.query_status_fence_offs); amdgpu_device_wb_free(adev, adev->mes.read_val_offs); amdgpu_mes_doorbell_free(adev); idr_destroy(&adev->mes.pasid_idr); idr_destroy(&adev->mes.gang_id_idr); idr_destroy(&adev->mes.queue_id_idr); ida_destroy(&adev->mes.doorbell_ida); mutex_destroy(&adev->mes.mutex_hidden); } static void amdgpu_mes_queue_free_mqd(struct amdgpu_mes_queue *q) { amdgpu_bo_free_kernel(&q->mqd_obj, &q->mqd_gpu_addr, &q->mqd_cpu_ptr); } int amdgpu_mes_create_process(struct amdgpu_device *adev, int pasid, struct amdgpu_vm *vm) { struct amdgpu_mes_process *process; int r; /* allocate the mes process buffer */ process = kzalloc(sizeof(struct amdgpu_mes_process), GFP_KERNEL); if (!process) { DRM_ERROR("no more memory to create mes process\n"); return -ENOMEM; } /* allocate the process context bo and map it */ r = amdgpu_bo_create_kernel(adev, AMDGPU_MES_PROC_CTX_SIZE, PAGE_SIZE, AMDGPU_GEM_DOMAIN_GTT, &process->proc_ctx_bo, &process->proc_ctx_gpu_addr, &process->proc_ctx_cpu_ptr); if (r) { DRM_ERROR("failed to allocate process context bo\n"); goto clean_up_memory; } memset(process->proc_ctx_cpu_ptr, 0, AMDGPU_MES_PROC_CTX_SIZE); /* * Avoid taking any other locks under MES lock to avoid circular * lock dependencies. */ amdgpu_mes_lock(&adev->mes); /* add the mes process to idr list */ r = idr_alloc(&adev->mes.pasid_idr, process, pasid, pasid + 1, GFP_KERNEL); if (r < 0) { DRM_ERROR("failed to lock pasid=%d\n", pasid); goto clean_up_ctx; } INIT_LIST_HEAD(&process->gang_list); process->vm = vm; process->pasid = pasid; process->process_quantum = adev->mes.default_process_quantum; process->pd_gpu_addr = amdgpu_bo_gpu_offset(vm->root.bo); amdgpu_mes_unlock(&adev->mes); return 0; clean_up_ctx: amdgpu_mes_unlock(&adev->mes); amdgpu_bo_free_kernel(&process->proc_ctx_bo, &process->proc_ctx_gpu_addr, &process->proc_ctx_cpu_ptr); clean_up_memory: kfree(process); return r; } void amdgpu_mes_destroy_process(struct amdgpu_device *adev, int pasid) { struct amdgpu_mes_process *process; struct amdgpu_mes_gang *gang, *tmp1; struct amdgpu_mes_queue *queue, *tmp2; struct mes_remove_queue_input queue_input; unsigned long flags; int r; /* * Avoid taking any other locks under MES lock to avoid circular * lock dependencies. */ amdgpu_mes_lock(&adev->mes); process = idr_find(&adev->mes.pasid_idr, pasid); if (!process) { DRM_WARN("pasid %d doesn't exist\n", pasid); amdgpu_mes_unlock(&adev->mes); return; } /* Remove all queues from hardware */ list_for_each_entry_safe(gang, tmp1, &process->gang_list, list) { list_for_each_entry_safe(queue, tmp2, &gang->queue_list, list) { spin_lock_irqsave(&adev->mes.queue_id_lock, flags); idr_remove(&adev->mes.queue_id_idr, queue->queue_id); spin_unlock_irqrestore(&adev->mes.queue_id_lock, flags); queue_input.doorbell_offset = queue->doorbell_off; queue_input.gang_context_addr = gang->gang_ctx_gpu_addr; r = adev->mes.funcs->remove_hw_queue(&adev->mes, &queue_input); if (r) DRM_WARN("failed to remove hardware queue\n"); } idr_remove(&adev->mes.gang_id_idr, gang->gang_id); } idr_remove(&adev->mes.pasid_idr, pasid); amdgpu_mes_unlock(&adev->mes); /* free all memory allocated by the process */ list_for_each_entry_safe(gang, tmp1, &process->gang_list, list) { /* free all queues in the gang */ list_for_each_entry_safe(queue, tmp2, &gang->queue_list, list) { amdgpu_mes_queue_free_mqd(queue); list_del(&queue->list); kfree(queue); } amdgpu_bo_free_kernel(&gang->gang_ctx_bo, &gang->gang_ctx_gpu_addr, &gang->gang_ctx_cpu_ptr); list_del(&gang->list); kfree(gang); } amdgpu_bo_free_kernel(&process->proc_ctx_bo, &process->proc_ctx_gpu_addr, &process->proc_ctx_cpu_ptr); kfree(process); } int amdgpu_mes_add_gang(struct amdgpu_device *adev, int pasid, struct amdgpu_mes_gang_properties *gprops, int *gang_id) { struct amdgpu_mes_process *process; struct amdgpu_mes_gang *gang; int r; /* allocate the mes gang buffer */ gang = kzalloc(sizeof(struct amdgpu_mes_gang), GFP_KERNEL); if (!gang) { return -ENOMEM; } /* allocate the gang context bo and map it to cpu space */ r = amdgpu_bo_create_kernel(adev, AMDGPU_MES_GANG_CTX_SIZE, PAGE_SIZE, AMDGPU_GEM_DOMAIN_GTT, &gang->gang_ctx_bo, &gang->gang_ctx_gpu_addr, &gang->gang_ctx_cpu_ptr); if (r) { DRM_ERROR("failed to allocate process context bo\n"); goto clean_up_mem; } memset(gang->gang_ctx_cpu_ptr, 0, AMDGPU_MES_GANG_CTX_SIZE); /* * Avoid taking any other locks under MES lock to avoid circular * lock dependencies. */ amdgpu_mes_lock(&adev->mes); process = idr_find(&adev->mes.pasid_idr, pasid); if (!process) { DRM_ERROR("pasid %d doesn't exist\n", pasid); r = -EINVAL; goto clean_up_ctx; } /* add the mes gang to idr list */ r = idr_alloc(&adev->mes.gang_id_idr, gang, 1, 0, GFP_KERNEL); if (r < 0) { DRM_ERROR("failed to allocate idr for gang\n"); goto clean_up_ctx; } gang->gang_id = r; *gang_id = r; INIT_LIST_HEAD(&gang->queue_list); gang->process = process; gang->priority = gprops->priority; gang->gang_quantum = gprops->gang_quantum ? gprops->gang_quantum : adev->mes.default_gang_quantum; gang->global_priority_level = gprops->global_priority_level; gang->inprocess_gang_priority = gprops->inprocess_gang_priority; list_add_tail(&gang->list, &process->gang_list); amdgpu_mes_unlock(&adev->mes); return 0; clean_up_ctx: amdgpu_mes_unlock(&adev->mes); amdgpu_bo_free_kernel(&gang->gang_ctx_bo, &gang->gang_ctx_gpu_addr, &gang->gang_ctx_cpu_ptr); clean_up_mem: kfree(gang); return r; } int amdgpu_mes_remove_gang(struct amdgpu_device *adev, int gang_id) { struct amdgpu_mes_gang *gang; /* * Avoid taking any other locks under MES lock to avoid circular * lock dependencies. */ amdgpu_mes_lock(&adev->mes); gang = idr_find(&adev->mes.gang_id_idr, gang_id); if (!gang) { DRM_ERROR("gang id %d doesn't exist\n", gang_id); amdgpu_mes_unlock(&adev->mes); return -EINVAL; } if (!list_empty(&gang->queue_list)) { DRM_ERROR("queue list is not empty\n"); amdgpu_mes_unlock(&adev->mes); return -EBUSY; } idr_remove(&adev->mes.gang_id_idr, gang->gang_id); list_del(&gang->list); amdgpu_mes_unlock(&adev->mes); amdgpu_bo_free_kernel(&gang->gang_ctx_bo, &gang->gang_ctx_gpu_addr, &gang->gang_ctx_cpu_ptr); kfree(gang); return 0; } int amdgpu_mes_suspend(struct amdgpu_device *adev) { struct idr *idp; struct amdgpu_mes_process *process; struct amdgpu_mes_gang *gang; struct mes_suspend_gang_input input; int r, pasid; /* * Avoid taking any other locks under MES lock to avoid circular * lock dependencies. */ amdgpu_mes_lock(&adev->mes); idp = &adev->mes.pasid_idr; idr_for_each_entry(idp, process, pasid) { list_for_each_entry(gang, &process->gang_list, list) { r = adev->mes.funcs->suspend_gang(&adev->mes, &input); if (r) DRM_ERROR("failed to suspend pasid %d gangid %d", pasid, gang->gang_id); } } amdgpu_mes_unlock(&adev->mes); return 0; } int amdgpu_mes_resume(struct amdgpu_device *adev) { struct idr *idp; struct amdgpu_mes_process *process; struct amdgpu_mes_gang *gang; struct mes_resume_gang_input input; int r, pasid; /* * Avoid taking any other locks under MES lock to avoid circular * lock dependencies. */ amdgpu_mes_lock(&adev->mes); idp = &adev->mes.pasid_idr; idr_for_each_entry(idp, process, pasid) { list_for_each_entry(gang, &process->gang_list, list) { r = adev->mes.funcs->resume_gang(&adev->mes, &input); if (r) DRM_ERROR("failed to resume pasid %d gangid %d", pasid, gang->gang_id); } } amdgpu_mes_unlock(&adev->mes); return 0; } static int amdgpu_mes_queue_alloc_mqd(struct amdgpu_device *adev, struct amdgpu_mes_queue *q, struct amdgpu_mes_queue_properties *p) { struct amdgpu_mqd *mqd_mgr = &adev->mqds[p->queue_type]; u32 mqd_size = mqd_mgr->mqd_size; int r; r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE, AMDGPU_GEM_DOMAIN_GTT, &q->mqd_obj, &q->mqd_gpu_addr, &q->mqd_cpu_ptr); if (r) { dev_warn(adev->dev, "failed to create queue mqd bo (%d)", r); return r; } memset(q->mqd_cpu_ptr, 0, mqd_size); r = amdgpu_bo_reserve(q->mqd_obj, false); if (unlikely(r != 0)) goto clean_up; return 0; clean_up: amdgpu_bo_free_kernel(&q->mqd_obj, &q->mqd_gpu_addr, &q->mqd_cpu_ptr); return r; } static void amdgpu_mes_queue_init_mqd(struct amdgpu_device *adev, struct amdgpu_mes_queue *q, struct amdgpu_mes_queue_properties *p) { struct amdgpu_mqd *mqd_mgr = &adev->mqds[p->queue_type]; struct amdgpu_mqd_prop mqd_prop = {0}; mqd_prop.mqd_gpu_addr = q->mqd_gpu_addr; mqd_prop.hqd_base_gpu_addr = p->hqd_base_gpu_addr; mqd_prop.rptr_gpu_addr = p->rptr_gpu_addr; mqd_prop.wptr_gpu_addr = p->wptr_gpu_addr; mqd_prop.queue_size = p->queue_size; mqd_prop.use_doorbell = true; mqd_prop.doorbell_index = p->doorbell_off; mqd_prop.eop_gpu_addr = p->eop_gpu_addr; mqd_prop.hqd_pipe_priority = p->hqd_pipe_priority; mqd_prop.hqd_queue_priority = p->hqd_queue_priority; mqd_prop.hqd_active = false; if (p->queue_type == AMDGPU_RING_TYPE_GFX || p->queue_type == AMDGPU_RING_TYPE_COMPUTE) { mutex_lock(&adev->srbm_mutex); amdgpu_gfx_select_me_pipe_q(adev, p->ring->me, p->ring->pipe, 0, 0, 0); } mqd_mgr->init_mqd(adev, q->mqd_cpu_ptr, &mqd_prop); if (p->queue_type == AMDGPU_RING_TYPE_GFX || p->queue_type == AMDGPU_RING_TYPE_COMPUTE) { amdgpu_gfx_select_me_pipe_q(adev, 0, 0, 0, 0, 0); mutex_unlock(&adev->srbm_mutex); } amdgpu_bo_unreserve(q->mqd_obj); } int amdgpu_mes_add_hw_queue(struct amdgpu_device *adev, int gang_id, struct amdgpu_mes_queue_properties *qprops, int *queue_id) { struct amdgpu_mes_queue *queue; struct amdgpu_mes_gang *gang; struct mes_add_queue_input queue_input; unsigned long flags; int r; memset(&queue_input, 0, sizeof(struct mes_add_queue_input)); /* allocate the mes queue buffer */ queue = kzalloc(sizeof(struct amdgpu_mes_queue), GFP_KERNEL); if (!queue) { DRM_ERROR("Failed to allocate memory for queue\n"); return -ENOMEM; } /* Allocate the queue mqd */ r = amdgpu_mes_queue_alloc_mqd(adev, queue, qprops); if (r) goto clean_up_memory; /* * Avoid taking any other locks under MES lock to avoid circular * lock dependencies. */ amdgpu_mes_lock(&adev->mes); gang = idr_find(&adev->mes.gang_id_idr, gang_id); if (!gang) { DRM_ERROR("gang id %d doesn't exist\n", gang_id); r = -EINVAL; goto clean_up_mqd; } /* add the mes gang to idr list */ spin_lock_irqsave(&adev->mes.queue_id_lock, flags); r = idr_alloc(&adev->mes.queue_id_idr, queue, 1, 0, GFP_ATOMIC); if (r < 0) { spin_unlock_irqrestore(&adev->mes.queue_id_lock, flags); goto clean_up_mqd; } spin_unlock_irqrestore(&adev->mes.queue_id_lock, flags); *queue_id = queue->queue_id = r; /* allocate a doorbell index for the queue */ r = amdgpu_mes_kernel_doorbell_get(adev, gang->process, qprops->queue_type, &qprops->doorbell_off); if (r) goto clean_up_queue_id; /* initialize the queue mqd */ amdgpu_mes_queue_init_mqd(adev, queue, qprops); /* add hw queue to mes */ queue_input.process_id = gang->process->pasid; queue_input.page_table_base_addr = adev->vm_manager.vram_base_offset + gang->process->pd_gpu_addr - adev->gmc.vram_start; queue_input.process_va_start = 0; queue_input.process_va_end = (adev->vm_manager.max_pfn - 1) << AMDGPU_GPU_PAGE_SHIFT; queue_input.process_quantum = gang->process->process_quantum; queue_input.process_context_addr = gang->process->proc_ctx_gpu_addr; queue_input.gang_quantum = gang->gang_quantum; queue_input.gang_context_addr = gang->gang_ctx_gpu_addr; queue_input.inprocess_gang_priority = gang->inprocess_gang_priority; queue_input.gang_global_priority_level = gang->global_priority_level; queue_input.doorbell_offset = qprops->doorbell_off; queue_input.mqd_addr = queue->mqd_gpu_addr; queue_input.wptr_addr = qprops->wptr_gpu_addr; queue_input.wptr_mc_addr = qprops->wptr_mc_addr; queue_input.queue_type = qprops->queue_type; queue_input.paging = qprops->paging; queue_input.is_kfd_process = 0; r = adev->mes.funcs->add_hw_queue(&adev->mes, &queue_input); if (r) { DRM_ERROR("failed to add hardware queue to MES, doorbell=0x%llx\n", qprops->doorbell_off); goto clean_up_doorbell; } DRM_DEBUG("MES hw queue was added, pasid=%d, gang id=%d, " "queue type=%d, doorbell=0x%llx\n", gang->process->pasid, gang_id, qprops->queue_type, qprops->doorbell_off); queue->ring = qprops->ring; queue->doorbell_off = qprops->doorbell_off; queue->wptr_gpu_addr = qprops->wptr_gpu_addr; queue->queue_type = qprops->queue_type; queue->paging = qprops->paging; queue->gang = gang; queue->ring->mqd_ptr = queue->mqd_cpu_ptr; list_add_tail(&queue->list, &gang->queue_list); amdgpu_mes_unlock(&adev->mes); return 0; clean_up_doorbell: amdgpu_mes_kernel_doorbell_free(adev, gang->process, qprops->doorbell_off); clean_up_queue_id: spin_lock_irqsave(&adev->mes.queue_id_lock, flags); idr_remove(&adev->mes.queue_id_idr, queue->queue_id); spin_unlock_irqrestore(&adev->mes.queue_id_lock, flags); clean_up_mqd: amdgpu_mes_unlock(&adev->mes); amdgpu_mes_queue_free_mqd(queue); clean_up_memory: kfree(queue); return r; } int amdgpu_mes_remove_hw_queue(struct amdgpu_device *adev, int queue_id) { unsigned long flags; struct amdgpu_mes_queue *queue; struct amdgpu_mes_gang *gang; struct mes_remove_queue_input queue_input; int r; /* * Avoid taking any other locks under MES lock to avoid circular * lock dependencies. */ amdgpu_mes_lock(&adev->mes); /* remove the mes gang from idr list */ spin_lock_irqsave(&adev->mes.queue_id_lock, flags); queue = idr_find(&adev->mes.queue_id_idr, queue_id); if (!queue) { spin_unlock_irqrestore(&adev->mes.queue_id_lock, flags); amdgpu_mes_unlock(&adev->mes); DRM_ERROR("queue id %d doesn't exist\n", queue_id); return -EINVAL; } idr_remove(&adev->mes.queue_id_idr, queue_id); spin_unlock_irqrestore(&adev->mes.queue_id_lock, flags); DRM_DEBUG("try to remove queue, doorbell off = 0x%llx\n", queue->doorbell_off); gang = queue->gang; queue_input.doorbell_offset = queue->doorbell_off; queue_input.gang_context_addr = gang->gang_ctx_gpu_addr; r = adev->mes.funcs->remove_hw_queue(&adev->mes, &queue_input); if (r) DRM_ERROR("failed to remove hardware queue, queue id = %d\n", queue_id); list_del(&queue->list); amdgpu_mes_kernel_doorbell_free(adev, gang->process, queue->doorbell_off); amdgpu_mes_unlock(&adev->mes); amdgpu_mes_queue_free_mqd(queue); kfree(queue); return 0; } int amdgpu_mes_unmap_legacy_queue(struct amdgpu_device *adev, struct amdgpu_ring *ring, enum amdgpu_unmap_queues_action action, u64 gpu_addr, u64 seq) { struct mes_unmap_legacy_queue_input queue_input; int r; queue_input.action = action; queue_input.queue_type = ring->funcs->type; queue_input.doorbell_offset = ring->doorbell_index; queue_input.pipe_id = ring->pipe; queue_input.queue_id = ring->queue; queue_input.trail_fence_addr = gpu_addr; queue_input.trail_fence_data = seq; r = adev->mes.funcs->unmap_legacy_queue(&adev->mes, &queue_input); if (r) DRM_ERROR("failed to unmap legacy queue\n"); return r; } uint32_t amdgpu_mes_rreg(struct amdgpu_device *adev, uint32_t reg) { struct mes_misc_op_input op_input; int r, val = 0; op_input.op = MES_MISC_OP_READ_REG; op_input.read_reg.reg_offset = reg; op_input.read_reg.buffer_addr = adev->mes.read_val_gpu_addr; if (!adev->mes.funcs->misc_op) { DRM_ERROR("mes rreg is not supported!\n"); goto error; } r = adev->mes.funcs->misc_op(&adev->mes, &op_input); if (r) DRM_ERROR("failed to read reg (0x%x)\n", reg); else val = *(adev->mes.read_val_ptr); error: return val; } int amdgpu_mes_wreg(struct amdgpu_device *adev, uint32_t reg, uint32_t val) { struct mes_misc_op_input op_input; int r; op_input.op = MES_MISC_OP_WRITE_REG; op_input.write_reg.reg_offset = reg; op_input.write_reg.reg_value = val; if (!adev->mes.funcs->misc_op) { DRM_ERROR("mes wreg is not supported!\n"); r = -EINVAL; goto error; } r = adev->mes.funcs->misc_op(&adev->mes, &op_input); if (r) DRM_ERROR("failed to write reg (0x%x)\n", reg); error: return r; } int amdgpu_mes_reg_write_reg_wait(struct amdgpu_device *adev, uint32_t reg0, uint32_t reg1, uint32_t ref, uint32_t mask) { struct mes_misc_op_input op_input; int r; op_input.op = MES_MISC_OP_WRM_REG_WR_WAIT; op_input.wrm_reg.reg0 = reg0; op_input.wrm_reg.reg1 = reg1; op_input.wrm_reg.ref = ref; op_input.wrm_reg.mask = mask; if (!adev->mes.funcs->misc_op) { DRM_ERROR("mes reg_write_reg_wait is not supported!\n"); r = -EINVAL; goto error; } r = adev->mes.funcs->misc_op(&adev->mes, &op_input); if (r) DRM_ERROR("failed to reg_write_reg_wait\n"); error: return r; } int amdgpu_mes_reg_wait(struct amdgpu_device *adev, uint32_t reg, uint32_t val, uint32_t mask) { struct mes_misc_op_input op_input; int r; op_input.op = MES_MISC_OP_WRM_REG_WAIT; op_input.wrm_reg.reg0 = reg; op_input.wrm_reg.ref = val; op_input.wrm_reg.mask = mask; if (!adev->mes.funcs->misc_op) { DRM_ERROR("mes reg wait is not supported!\n"); r = -EINVAL; goto error; } r = adev->mes.funcs->misc_op(&adev->mes, &op_input); if (r) DRM_ERROR("failed to reg_write_reg_wait\n"); error: return r; } int amdgpu_mes_set_shader_debugger(struct amdgpu_device *adev, uint64_t process_context_addr, uint32_t spi_gdbg_per_vmid_cntl, const uint32_t *tcp_watch_cntl, uint32_t flags, bool trap_en) { struct mes_misc_op_input op_input = {0}; int r; if (!adev->mes.funcs->misc_op) { DRM_ERROR("mes set shader debugger is not supported!\n"); return -EINVAL; } op_input.op = MES_MISC_OP_SET_SHADER_DEBUGGER; op_input.set_shader_debugger.process_context_addr = process_context_addr; op_input.set_shader_debugger.flags.u32all = flags; /* use amdgpu mes_flush_shader_debugger instead */ if (op_input.set_shader_debugger.flags.process_ctx_flush) return -EINVAL; op_input.set_shader_debugger.spi_gdbg_per_vmid_cntl = spi_gdbg_per_vmid_cntl; memcpy(op_input.set_shader_debugger.tcp_watch_cntl, tcp_watch_cntl, sizeof(op_input.set_shader_debugger.tcp_watch_cntl)); if (((adev->mes.sched_version & AMDGPU_MES_API_VERSION_MASK) >> AMDGPU_MES_API_VERSION_SHIFT) >= 14) op_input.set_shader_debugger.trap_en = trap_en; amdgpu_mes_lock(&adev->mes); r = adev->mes.funcs->misc_op(&adev->mes, &op_input); if (r) DRM_ERROR("failed to set_shader_debugger\n"); amdgpu_mes_unlock(&adev->mes); return r; } int amdgpu_mes_flush_shader_debugger(struct amdgpu_device *adev, uint64_t process_context_addr) { struct mes_misc_op_input op_input = {0}; int r; if (!adev->mes.funcs->misc_op) { DRM_ERROR("mes flush shader debugger is not supported!\n"); return -EINVAL; } op_input.op = MES_MISC_OP_SET_SHADER_DEBUGGER; op_input.set_shader_debugger.process_context_addr = process_context_addr; op_input.set_shader_debugger.flags.process_ctx_flush = true; amdgpu_mes_lock(&adev->mes); r = adev->mes.funcs->misc_op(&adev->mes, &op_input); if (r) DRM_ERROR("failed to set_shader_debugger\n"); amdgpu_mes_unlock(&adev->mes); return r; } static void amdgpu_mes_ring_to_queue_props(struct amdgpu_device *adev, struct amdgpu_ring *ring, struct amdgpu_mes_queue_properties *props) { props->queue_type = ring->funcs->type; props->hqd_base_gpu_addr = ring->gpu_addr; props->rptr_gpu_addr = ring->rptr_gpu_addr; props->wptr_gpu_addr = ring->wptr_gpu_addr; props->wptr_mc_addr = ring->mes_ctx->meta_data_mc_addr + ring->wptr_offs; props->queue_size = ring->ring_size; props->eop_gpu_addr = ring->eop_gpu_addr; props->hqd_pipe_priority = AMDGPU_GFX_PIPE_PRIO_NORMAL; props->hqd_queue_priority = AMDGPU_GFX_QUEUE_PRIORITY_MINIMUM; props->paging = false; props->ring = ring; } #define DEFINE_AMDGPU_MES_CTX_GET_OFFS_ENG(_eng) \ do { \ if (id_offs < AMDGPU_MES_CTX_MAX_OFFS) \ return offsetof(struct amdgpu_mes_ctx_meta_data, \ _eng[ring->idx].slots[id_offs]); \ else if (id_offs == AMDGPU_MES_CTX_RING_OFFS) \ return offsetof(struct amdgpu_mes_ctx_meta_data, \ _eng[ring->idx].ring); \ else if (id_offs == AMDGPU_MES_CTX_IB_OFFS) \ return offsetof(struct amdgpu_mes_ctx_meta_data, \ _eng[ring->idx].ib); \ else if (id_offs == AMDGPU_MES_CTX_PADDING_OFFS) \ return offsetof(struct amdgpu_mes_ctx_meta_data, \ _eng[ring->idx].padding); \ } while(0) int amdgpu_mes_ctx_get_offs(struct amdgpu_ring *ring, unsigned int id_offs) { switch (ring->funcs->type) { case AMDGPU_RING_TYPE_GFX: DEFINE_AMDGPU_MES_CTX_GET_OFFS_ENG(gfx); break; case AMDGPU_RING_TYPE_COMPUTE: DEFINE_AMDGPU_MES_CTX_GET_OFFS_ENG(compute); break; case AMDGPU_RING_TYPE_SDMA: DEFINE_AMDGPU_MES_CTX_GET_OFFS_ENG(sdma); break; default: break; } WARN_ON(1); return -EINVAL; } int amdgpu_mes_add_ring(struct amdgpu_device *adev, int gang_id, int queue_type, int idx, struct amdgpu_mes_ctx_data *ctx_data, struct amdgpu_ring **out) { struct amdgpu_ring *ring; struct amdgpu_mes_gang *gang; struct amdgpu_mes_queue_properties qprops = {0}; int r, queue_id, pasid; /* * Avoid taking any other locks under MES lock to avoid circular * lock dependencies. */ amdgpu_mes_lock(&adev->mes); gang = idr_find(&adev->mes.gang_id_idr, gang_id); if (!gang) { DRM_ERROR("gang id %d doesn't exist\n", gang_id); amdgpu_mes_unlock(&adev->mes); return -EINVAL; } pasid = gang->process->pasid; ring = kzalloc(sizeof(struct amdgpu_ring), GFP_KERNEL); if (!ring) { amdgpu_mes_unlock(&adev->mes); return -ENOMEM; } ring->ring_obj = NULL; ring->use_doorbell = true; ring->is_mes_queue = true; ring->mes_ctx = ctx_data; ring->idx = idx; ring->no_scheduler = true; if (queue_type == AMDGPU_RING_TYPE_COMPUTE) { int offset = offsetof(struct amdgpu_mes_ctx_meta_data, compute[ring->idx].mec_hpd); ring->eop_gpu_addr = amdgpu_mes_ctx_get_offs_gpu_addr(ring, offset); } switch (queue_type) { case AMDGPU_RING_TYPE_GFX: ring->funcs = adev->gfx.gfx_ring[0].funcs; ring->me = adev->gfx.gfx_ring[0].me; ring->pipe = adev->gfx.gfx_ring[0].pipe; break; case AMDGPU_RING_TYPE_COMPUTE: ring->funcs = adev->gfx.compute_ring[0].funcs; ring->me = adev->gfx.compute_ring[0].me; ring->pipe = adev->gfx.compute_ring[0].pipe; break; case AMDGPU_RING_TYPE_SDMA: ring->funcs = adev->sdma.instance[0].ring.funcs; break; default: BUG(); } r = amdgpu_ring_init(adev, ring, 1024, NULL, 0, AMDGPU_RING_PRIO_DEFAULT, NULL); if (r) { amdgpu_mes_unlock(&adev->mes); goto clean_up_memory; } amdgpu_mes_ring_to_queue_props(adev, ring, &qprops); dma_fence_wait(gang->process->vm->last_update, false); dma_fence_wait(ctx_data->meta_data_va->last_pt_update, false); amdgpu_mes_unlock(&adev->mes); r = amdgpu_mes_add_hw_queue(adev, gang_id, &qprops, &queue_id); if (r) goto clean_up_ring; ring->hw_queue_id = queue_id; ring->doorbell_index = qprops.doorbell_off; if (queue_type == AMDGPU_RING_TYPE_GFX) snprintf(ring->name, sizeof(ring->name), "gfx_%d.%d.%d", pasid, gang_id, queue_id); else if (queue_type == AMDGPU_RING_TYPE_COMPUTE) snprintf(ring->name, sizeof(ring->name), "compute_%d.%d.%d", pasid, gang_id, queue_id); else if (queue_type == AMDGPU_RING_TYPE_SDMA) snprintf(ring->name, sizeof(ring->name), "sdma_%d.%d.%d", pasid, gang_id, queue_id); else BUG(); *out = ring; return 0; clean_up_ring: amdgpu_ring_fini(ring); clean_up_memory: kfree(ring); return r; } void amdgpu_mes_remove_ring(struct amdgpu_device *adev, struct amdgpu_ring *ring) { if (!ring) return; amdgpu_mes_remove_hw_queue(adev, ring->hw_queue_id); del_timer_sync(&ring->fence_drv.fallback_timer); amdgpu_ring_fini(ring); kfree(ring); } uint32_t amdgpu_mes_get_aggregated_doorbell_index(struct amdgpu_device *adev, enum amdgpu_mes_priority_level prio) { return adev->mes.aggregated_doorbells[prio]; } int amdgpu_mes_ctx_alloc_meta_data(struct amdgpu_device *adev, struct amdgpu_mes_ctx_data *ctx_data) { int r; r = amdgpu_bo_create_kernel(adev, sizeof(struct amdgpu_mes_ctx_meta_data), PAGE_SIZE, AMDGPU_GEM_DOMAIN_GTT, &ctx_data->meta_data_obj, &ctx_data->meta_data_mc_addr, &ctx_data->meta_data_ptr); if (r) { dev_warn(adev->dev, "(%d) create CTX bo failed\n", r); return r; } if (!ctx_data->meta_data_obj) return -ENOMEM; memset(ctx_data->meta_data_ptr, 0, sizeof(struct amdgpu_mes_ctx_meta_data)); return 0; } void amdgpu_mes_ctx_free_meta_data(struct amdgpu_mes_ctx_data *ctx_data) { if (ctx_data->meta_data_obj) amdgpu_bo_free_kernel(&ctx_data->meta_data_obj, &ctx_data->meta_data_mc_addr, &ctx_data->meta_data_ptr); } int amdgpu_mes_ctx_map_meta_data(struct amdgpu_device *adev, struct amdgpu_vm *vm, struct amdgpu_mes_ctx_data *ctx_data) { struct amdgpu_bo_va *bo_va; struct amdgpu_sync sync; struct drm_exec exec; int r; amdgpu_sync_create(&sync); drm_exec_init(&exec, 0); drm_exec_until_all_locked(&exec) { r = drm_exec_lock_obj(&exec, &ctx_data->meta_data_obj->tbo.base); drm_exec_retry_on_contention(&exec); if (unlikely(r)) goto error_fini_exec; r = amdgpu_vm_lock_pd(vm, &exec, 0); drm_exec_retry_on_contention(&exec); if (unlikely(r)) goto error_fini_exec; } bo_va = amdgpu_vm_bo_add(adev, vm, ctx_data->meta_data_obj); if (!bo_va) { DRM_ERROR("failed to create bo_va for meta data BO\n"); r = -ENOMEM; goto error_fini_exec; } r = amdgpu_vm_bo_map(adev, bo_va, ctx_data->meta_data_gpu_addr, 0, sizeof(struct amdgpu_mes_ctx_meta_data), AMDGPU_PTE_READABLE | AMDGPU_PTE_WRITEABLE | AMDGPU_PTE_EXECUTABLE); if (r) { DRM_ERROR("failed to do bo_map on meta data, err=%d\n", r); goto error_del_bo_va; } r = amdgpu_vm_bo_update(adev, bo_va, false); if (r) { DRM_ERROR("failed to do vm_bo_update on meta data\n"); goto error_del_bo_va; } amdgpu_sync_fence(&sync, bo_va->last_pt_update); r = amdgpu_vm_update_pdes(adev, vm, false); if (r) { DRM_ERROR("failed to update pdes on meta data\n"); goto error_del_bo_va; } amdgpu_sync_fence(&sync, vm->last_update); amdgpu_sync_wait(&sync, false); drm_exec_fini(&exec); amdgpu_sync_free(&sync); ctx_data->meta_data_va = bo_va; return 0; error_del_bo_va: amdgpu_vm_bo_del(adev, bo_va); error_fini_exec: drm_exec_fini(&exec); amdgpu_sync_free(&sync); return r; } int amdgpu_mes_ctx_unmap_meta_data(struct amdgpu_device *adev, struct amdgpu_mes_ctx_data *ctx_data) { struct amdgpu_bo_va *bo_va = ctx_data->meta_data_va; struct amdgpu_bo *bo = ctx_data->meta_data_obj; struct amdgpu_vm *vm = bo_va->base.vm; struct dma_fence *fence; struct drm_exec exec; long r; drm_exec_init(&exec, 0); drm_exec_until_all_locked(&exec) { r = drm_exec_lock_obj(&exec, &ctx_data->meta_data_obj->tbo.base); drm_exec_retry_on_contention(&exec); if (unlikely(r)) goto out_unlock; r = amdgpu_vm_lock_pd(vm, &exec, 0); drm_exec_retry_on_contention(&exec); if (unlikely(r)) goto out_unlock; } amdgpu_vm_bo_del(adev, bo_va); if (!amdgpu_vm_ready(vm)) goto out_unlock; r = dma_resv_get_singleton(bo->tbo.base.resv, DMA_RESV_USAGE_BOOKKEEP, &fence); if (r) goto out_unlock; if (fence) { amdgpu_bo_fence(bo, fence, true); fence = NULL; } r = amdgpu_vm_clear_freed(adev, vm, &fence); if (r || !fence) goto out_unlock; dma_fence_wait(fence, false); amdgpu_bo_fence(bo, fence, true); dma_fence_put(fence); out_unlock: if (unlikely(r < 0)) dev_err(adev->dev, "failed to clear page tables (%ld)\n", r); drm_exec_fini(&exec); return r; } static int amdgpu_mes_test_create_gang_and_queues(struct amdgpu_device *adev, int pasid, int *gang_id, int queue_type, int num_queue, struct amdgpu_ring **added_rings, struct amdgpu_mes_ctx_data *ctx_data) { struct amdgpu_ring *ring; struct amdgpu_mes_gang_properties gprops = {0}; int r, j; /* create a gang for the process */ gprops.priority = AMDGPU_MES_PRIORITY_LEVEL_NORMAL; gprops.gang_quantum = adev->mes.default_gang_quantum; gprops.inprocess_gang_priority = AMDGPU_MES_PRIORITY_LEVEL_NORMAL; gprops.priority_level = AMDGPU_MES_PRIORITY_LEVEL_NORMAL; gprops.global_priority_level = AMDGPU_MES_PRIORITY_LEVEL_NORMAL; r = amdgpu_mes_add_gang(adev, pasid, &gprops, gang_id); if (r) { DRM_ERROR("failed to add gang\n"); return r; } /* create queues for the gang */ for (j = 0; j < num_queue; j++) { r = amdgpu_mes_add_ring(adev, *gang_id, queue_type, j, ctx_data, &ring); if (r) { DRM_ERROR("failed to add ring\n"); break; } DRM_INFO("ring %s was added\n", ring->name); added_rings[j] = ring; } return 0; } static int amdgpu_mes_test_queues(struct amdgpu_ring **added_rings) { struct amdgpu_ring *ring; int i, r; for (i = 0; i < AMDGPU_MES_CTX_MAX_RINGS; i++) { ring = added_rings[i]; if (!ring) continue; r = amdgpu_ring_test_helper(ring); if (r) return r; r = amdgpu_ring_test_ib(ring, 1000 * 10); if (r) { DRM_DEV_ERROR(ring->adev->dev, "ring %s ib test failed (%d)\n", ring->name, r); return r; } else DRM_INFO("ring %s ib test pass\n", ring->name); } return 0; } int amdgpu_mes_self_test(struct amdgpu_device *adev) { struct amdgpu_vm *vm = NULL; struct amdgpu_mes_ctx_data ctx_data = {0}; struct amdgpu_ring *added_rings[AMDGPU_MES_CTX_MAX_RINGS] = { NULL }; int gang_ids[3] = {0}; int queue_types[][2] = { { AMDGPU_RING_TYPE_GFX, 1 }, { AMDGPU_RING_TYPE_COMPUTE, 1 }, { AMDGPU_RING_TYPE_SDMA, 1} }; int i, r, pasid, k = 0; pasid = amdgpu_pasid_alloc(16); if (pasid < 0) { dev_warn(adev->dev, "No more PASIDs available!"); pasid = 0; } vm = kzalloc(sizeof(*vm), GFP_KERNEL); if (!vm) { r = -ENOMEM; goto error_pasid; } r = amdgpu_vm_init(adev, vm, -1); if (r) { DRM_ERROR("failed to initialize vm\n"); goto error_pasid; } r = amdgpu_mes_ctx_alloc_meta_data(adev, &ctx_data); if (r) { DRM_ERROR("failed to alloc ctx meta data\n"); goto error_fini; } ctx_data.meta_data_gpu_addr = AMDGPU_VA_RESERVED_SIZE; r = amdgpu_mes_ctx_map_meta_data(adev, vm, &ctx_data); if (r) { DRM_ERROR("failed to map ctx meta data\n"); goto error_vm; } r = amdgpu_mes_create_process(adev, pasid, vm); if (r) { DRM_ERROR("failed to create MES process\n"); goto error_vm; } for (i = 0; i < ARRAY_SIZE(queue_types); i++) { /* On GFX v10.3, fw hasn't supported to map sdma queue. */ if (adev->ip_versions[GC_HWIP][0] >= IP_VERSION(10, 3, 0) && adev->ip_versions[GC_HWIP][0] < IP_VERSION(11, 0, 0) && queue_types[i][0] == AMDGPU_RING_TYPE_SDMA) continue; r = amdgpu_mes_test_create_gang_and_queues(adev, pasid, &gang_ids[i], queue_types[i][0], queue_types[i][1], &added_rings[k], &ctx_data); if (r) goto error_queues; k += queue_types[i][1]; } /* start ring test and ib test for MES queues */ amdgpu_mes_test_queues(added_rings); error_queues: /* remove all queues */ for (i = 0; i < ARRAY_SIZE(added_rings); i++) { if (!added_rings[i]) continue; amdgpu_mes_remove_ring(adev, added_rings[i]); } for (i = 0; i < ARRAY_SIZE(gang_ids); i++) { if (!gang_ids[i]) continue; amdgpu_mes_remove_gang(adev, gang_ids[i]); } amdgpu_mes_destroy_process(adev, pasid); error_vm: amdgpu_mes_ctx_unmap_meta_data(adev, &ctx_data); error_fini: amdgpu_vm_fini(adev, vm); error_pasid: if (pasid) amdgpu_pasid_free(pasid); amdgpu_mes_ctx_free_meta_data(&ctx_data); kfree(vm); return 0; } int amdgpu_mes_init_microcode(struct amdgpu_device *adev, int pipe) { const struct mes_firmware_header_v1_0 *mes_hdr; struct amdgpu_firmware_info *info; char ucode_prefix[30]; char fw_name[40]; bool need_retry = false; int r; amdgpu_ucode_ip_version_decode(adev, GC_HWIP, ucode_prefix, sizeof(ucode_prefix)); if (adev->ip_versions[GC_HWIP][0] >= IP_VERSION(11, 0, 0)) { snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_mes%s.bin", ucode_prefix, pipe == AMDGPU_MES_SCHED_PIPE ? "_2" : "1"); need_retry = true; } else { snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_mes%s.bin", ucode_prefix, pipe == AMDGPU_MES_SCHED_PIPE ? "" : "1"); } r = amdgpu_ucode_request(adev, &adev->mes.fw[pipe], fw_name); if (r && need_retry && pipe == AMDGPU_MES_SCHED_PIPE) { snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_mes.bin", ucode_prefix); DRM_INFO("try to fall back to %s\n", fw_name); r = amdgpu_ucode_request(adev, &adev->mes.fw[pipe], fw_name); } if (r) goto out; mes_hdr = (const struct mes_firmware_header_v1_0 *) adev->mes.fw[pipe]->data; adev->mes.uc_start_addr[pipe] = le32_to_cpu(mes_hdr->mes_uc_start_addr_lo) | ((uint64_t)(le32_to_cpu(mes_hdr->mes_uc_start_addr_hi)) << 32); adev->mes.data_start_addr[pipe] = le32_to_cpu(mes_hdr->mes_data_start_addr_lo) | ((uint64_t)(le32_to_cpu(mes_hdr->mes_data_start_addr_hi)) << 32); if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) { int ucode, ucode_data; if (pipe == AMDGPU_MES_SCHED_PIPE) { ucode = AMDGPU_UCODE_ID_CP_MES; ucode_data = AMDGPU_UCODE_ID_CP_MES_DATA; } else { ucode = AMDGPU_UCODE_ID_CP_MES1; ucode_data = AMDGPU_UCODE_ID_CP_MES1_DATA; } info = &adev->firmware.ucode[ucode]; info->ucode_id = ucode; info->fw = adev->mes.fw[pipe]; adev->firmware.fw_size += ALIGN(le32_to_cpu(mes_hdr->mes_ucode_size_bytes), PAGE_SIZE); info = &adev->firmware.ucode[ucode_data]; info->ucode_id = ucode_data; info->fw = adev->mes.fw[pipe]; adev->firmware.fw_size += ALIGN(le32_to_cpu(mes_hdr->mes_ucode_data_size_bytes), PAGE_SIZE); } return 0; out: amdgpu_ucode_release(&adev->mes.fw[pipe]); return r; }