/* * Copyright 2022 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * */ #include #include #include "amdgpu_ring_mux.h" #include "amdgpu_ring.h" #include "amdgpu.h" #define AMDGPU_MUX_RESUBMIT_JIFFIES_TIMEOUT (HZ / 2) #define AMDGPU_MAX_LAST_UNSIGNALED_THRESHOLD_US 10000 static const struct ring_info { unsigned int hw_pio; const char *ring_name; } sw_ring_info[] = { { AMDGPU_RING_PRIO_DEFAULT, "gfx_low"}, { AMDGPU_RING_PRIO_2, "gfx_high"}, }; static struct pool amdgpu_mux_chunk_slab; static inline struct amdgpu_mux_entry *amdgpu_ring_mux_sw_entry(struct amdgpu_ring_mux *mux, struct amdgpu_ring *ring) { return ring->entry_index < mux->ring_entry_size ? &mux->ring_entry[ring->entry_index] : NULL; } /* copy packages on sw ring range[begin, end) */ static void amdgpu_ring_mux_copy_pkt_from_sw_ring(struct amdgpu_ring_mux *mux, struct amdgpu_ring *ring, u64 s_start, u64 s_end) { u64 start, end; struct amdgpu_ring *real_ring = mux->real_ring; start = s_start & ring->buf_mask; end = s_end & ring->buf_mask; if (start == end) { DRM_ERROR("no more data copied from sw ring\n"); return; } if (start > end) { amdgpu_ring_alloc(real_ring, (ring->ring_size >> 2) + end - start); amdgpu_ring_write_multiple(real_ring, (void *)&ring->ring[start], (ring->ring_size >> 2) - start); amdgpu_ring_write_multiple(real_ring, (void *)&ring->ring[0], end); } else { amdgpu_ring_alloc(real_ring, end - start); amdgpu_ring_write_multiple(real_ring, (void *)&ring->ring[start], end - start); } } static void amdgpu_mux_resubmit_chunks(struct amdgpu_ring_mux *mux) { struct amdgpu_mux_entry *e = NULL; struct amdgpu_mux_chunk *chunk; uint32_t seq, last_seq; int i; /*find low priority entries:*/ if (!mux->s_resubmit) return; for (i = 0; i < mux->num_ring_entries; i++) { if (mux->ring_entry[i].ring->hw_prio <= AMDGPU_RING_PRIO_DEFAULT) { e = &mux->ring_entry[i]; break; } } if (!e) { DRM_ERROR("%s no low priority ring found\n", __func__); return; } last_seq = atomic_read(&e->ring->fence_drv.last_seq); seq = mux->seqno_to_resubmit; if (last_seq < seq) { /*resubmit all the fences between (last_seq, seq]*/ list_for_each_entry(chunk, &e->list, entry) { if (chunk->sync_seq > last_seq && chunk->sync_seq <= seq) { amdgpu_fence_update_start_timestamp(e->ring, chunk->sync_seq, ktime_get()); if (chunk->sync_seq == le32_to_cpu(*(e->ring->fence_drv.cpu_addr + 2))) { if (chunk->cntl_offset <= e->ring->buf_mask) amdgpu_ring_patch_cntl(e->ring, chunk->cntl_offset); if (chunk->ce_offset <= e->ring->buf_mask) amdgpu_ring_patch_ce(e->ring, chunk->ce_offset); if (chunk->de_offset <= e->ring->buf_mask) amdgpu_ring_patch_de(e->ring, chunk->de_offset); } amdgpu_ring_mux_copy_pkt_from_sw_ring(mux, e->ring, chunk->start, chunk->end); mux->wptr_resubmit = chunk->end; amdgpu_ring_commit(mux->real_ring); } } } del_timer(&mux->resubmit_timer); mux->s_resubmit = false; } static void amdgpu_ring_mux_schedule_resubmit(struct amdgpu_ring_mux *mux) { mod_timer(&mux->resubmit_timer, jiffies + AMDGPU_MUX_RESUBMIT_JIFFIES_TIMEOUT); } static void amdgpu_mux_resubmit_fallback(void *arg) { struct amdgpu_ring_mux *mux = arg; if (!spin_trylock(&mux->lock)) { amdgpu_ring_mux_schedule_resubmit(mux); DRM_ERROR("reschedule resubmit\n"); return; } amdgpu_mux_resubmit_chunks(mux); spin_unlock(&mux->lock); } int amdgpu_ring_mux_init(struct amdgpu_ring_mux *mux, struct amdgpu_ring *ring, unsigned int entry_size) { mux->real_ring = ring; mux->num_ring_entries = 0; mux->ring_entry = kcalloc(entry_size, sizeof(struct amdgpu_mux_entry), GFP_KERNEL); if (!mux->ring_entry) return -ENOMEM; mux->ring_entry_size = entry_size; mux->s_resubmit = false; #ifdef __linux__ amdgpu_mux_chunk_slab = kmem_cache_create("amdgpu_mux_chunk", sizeof(struct amdgpu_mux_chunk), 0, SLAB_HWCACHE_ALIGN, NULL); if (!amdgpu_mux_chunk_slab) { DRM_ERROR("create amdgpu_mux_chunk cache failed\n"); return -ENOMEM; } #else pool_init(&amdgpu_mux_chunk_slab, sizeof(struct amdgpu_mux_chunk), CACHELINESIZE, IPL_TTY, 0, "amdgpu_mux_chunk", NULL); #endif mtx_init(&mux->lock, IPL_NONE); #ifdef __linux__ timer_setup(&mux->resubmit_timer, amdgpu_mux_resubmit_fallback, 0); #else timeout_set(&mux->resubmit_timer, amdgpu_mux_resubmit_fallback, mux); #endif return 0; } void amdgpu_ring_mux_fini(struct amdgpu_ring_mux *mux) { struct amdgpu_mux_entry *e; struct amdgpu_mux_chunk *chunk, *chunk2; int i; for (i = 0; i < mux->num_ring_entries; i++) { e = &mux->ring_entry[i]; list_for_each_entry_safe(chunk, chunk2, &e->list, entry) { list_del(&chunk->entry); #ifdef __linux__ kmem_cache_free(amdgpu_mux_chunk_slab, chunk); #else pool_put(&amdgpu_mux_chunk_slab, chunk); #endif } } #ifdef __linux__ kmem_cache_destroy(amdgpu_mux_chunk_slab); #else pool_destroy(&amdgpu_mux_chunk_slab); #endif kfree(mux->ring_entry); mux->ring_entry = NULL; mux->num_ring_entries = 0; mux->ring_entry_size = 0; } int amdgpu_ring_mux_add_sw_ring(struct amdgpu_ring_mux *mux, struct amdgpu_ring *ring) { struct amdgpu_mux_entry *e; if (mux->num_ring_entries >= mux->ring_entry_size) { DRM_ERROR("add sw ring exceeding max entry size\n"); return -ENOENT; } e = &mux->ring_entry[mux->num_ring_entries]; ring->entry_index = mux->num_ring_entries; e->ring = ring; INIT_LIST_HEAD(&e->list); mux->num_ring_entries += 1; return 0; } void amdgpu_ring_mux_set_wptr(struct amdgpu_ring_mux *mux, struct amdgpu_ring *ring, u64 wptr) { struct amdgpu_mux_entry *e; spin_lock(&mux->lock); if (ring->hw_prio <= AMDGPU_RING_PRIO_DEFAULT) amdgpu_mux_resubmit_chunks(mux); e = amdgpu_ring_mux_sw_entry(mux, ring); if (!e) { DRM_ERROR("cannot find entry for sw ring\n"); spin_unlock(&mux->lock); return; } /* We could skip this set wptr as preemption in process. */ if (ring->hw_prio <= AMDGPU_RING_PRIO_DEFAULT && mux->pending_trailing_fence_signaled) { spin_unlock(&mux->lock); return; } e->sw_cptr = e->sw_wptr; /* Update cptr if the package already copied in resubmit functions */ if (ring->hw_prio <= AMDGPU_RING_PRIO_DEFAULT && e->sw_cptr < mux->wptr_resubmit) e->sw_cptr = mux->wptr_resubmit; e->sw_wptr = wptr; e->start_ptr_in_hw_ring = mux->real_ring->wptr; /* Skip copying for the packages already resubmitted.*/ if (ring->hw_prio > AMDGPU_RING_PRIO_DEFAULT || mux->wptr_resubmit < wptr) { amdgpu_ring_mux_copy_pkt_from_sw_ring(mux, ring, e->sw_cptr, wptr); e->end_ptr_in_hw_ring = mux->real_ring->wptr; amdgpu_ring_commit(mux->real_ring); } else { e->end_ptr_in_hw_ring = mux->real_ring->wptr; } spin_unlock(&mux->lock); } u64 amdgpu_ring_mux_get_wptr(struct amdgpu_ring_mux *mux, struct amdgpu_ring *ring) { struct amdgpu_mux_entry *e; e = amdgpu_ring_mux_sw_entry(mux, ring); if (!e) { DRM_ERROR("cannot find entry for sw ring\n"); return 0; } return e->sw_wptr; } /** * amdgpu_ring_mux_get_rptr - get the readptr of the software ring * @mux: the multiplexer the software rings attach to * @ring: the software ring of which we calculate the readptr * * The return value of the readptr is not precise while the other rings could * write data onto the real ring buffer.After overwriting on the real ring, we * can not decide if our packages have been excuted or not read yet. However, * this function is only called by the tools such as umr to collect the latest * packages for the hang analysis. We assume the hang happens near our latest * submit. Thus we could use the following logic to give the clue: * If the readptr is between start and end, then we return the copy pointer * plus the distance from start to readptr. If the readptr is before start, we * return the copy pointer. Lastly, if the readptr is past end, we return the * write pointer. */ u64 amdgpu_ring_mux_get_rptr(struct amdgpu_ring_mux *mux, struct amdgpu_ring *ring) { struct amdgpu_mux_entry *e; u64 readp, offset, start, end; e = amdgpu_ring_mux_sw_entry(mux, ring); if (!e) { DRM_ERROR("no sw entry found!\n"); return 0; } readp = amdgpu_ring_get_rptr(mux->real_ring); start = e->start_ptr_in_hw_ring & mux->real_ring->buf_mask; end = e->end_ptr_in_hw_ring & mux->real_ring->buf_mask; if (start > end) { if (readp <= end) readp += mux->real_ring->ring_size >> 2; end += mux->real_ring->ring_size >> 2; } if (start <= readp && readp <= end) { offset = readp - start; e->sw_rptr = (e->sw_cptr + offset) & ring->buf_mask; } else if (readp < start) { e->sw_rptr = e->sw_cptr; } else { /* end < readptr */ e->sw_rptr = e->sw_wptr; } return e->sw_rptr; } u64 amdgpu_sw_ring_get_rptr_gfx(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; struct amdgpu_ring_mux *mux = &adev->gfx.muxer; WARN_ON(!ring->is_sw_ring); return amdgpu_ring_mux_get_rptr(mux, ring); } u64 amdgpu_sw_ring_get_wptr_gfx(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; struct amdgpu_ring_mux *mux = &adev->gfx.muxer; WARN_ON(!ring->is_sw_ring); return amdgpu_ring_mux_get_wptr(mux, ring); } void amdgpu_sw_ring_set_wptr_gfx(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; struct amdgpu_ring_mux *mux = &adev->gfx.muxer; WARN_ON(!ring->is_sw_ring); amdgpu_ring_mux_set_wptr(mux, ring, ring->wptr); } /* Override insert_nop to prevent emitting nops to the software rings */ void amdgpu_sw_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count) { WARN_ON(!ring->is_sw_ring); } const char *amdgpu_sw_ring_name(int idx) { return idx < ARRAY_SIZE(sw_ring_info) ? sw_ring_info[idx].ring_name : NULL; } unsigned int amdgpu_sw_ring_priority(int idx) { return idx < ARRAY_SIZE(sw_ring_info) ? sw_ring_info[idx].hw_pio : AMDGPU_RING_PRIO_DEFAULT; } /*Scan on low prio rings to have unsignaled fence and high ring has no fence.*/ static int amdgpu_mcbp_scan(struct amdgpu_ring_mux *mux) { struct amdgpu_ring *ring; int i, need_preempt; need_preempt = 0; for (i = 0; i < mux->num_ring_entries; i++) { ring = mux->ring_entry[i].ring; if (ring->hw_prio > AMDGPU_RING_PRIO_DEFAULT && amdgpu_fence_count_emitted(ring) > 0) return 0; if (ring->hw_prio <= AMDGPU_RING_PRIO_DEFAULT && amdgpu_fence_last_unsignaled_time_us(ring) > AMDGPU_MAX_LAST_UNSIGNALED_THRESHOLD_US) need_preempt = 1; } return need_preempt && !mux->s_resubmit; } /* Trigger Mid-Command Buffer Preemption (MCBP) and find if we need to resubmit. */ static int amdgpu_mcbp_trigger_preempt(struct amdgpu_ring_mux *mux) { int r; spin_lock(&mux->lock); mux->pending_trailing_fence_signaled = true; r = amdgpu_ring_preempt_ib(mux->real_ring); spin_unlock(&mux->lock); return r; } void amdgpu_sw_ring_ib_begin(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; struct amdgpu_ring_mux *mux = &adev->gfx.muxer; WARN_ON(!ring->is_sw_ring); if (adev->gfx.mcbp && ring->hw_prio > AMDGPU_RING_PRIO_DEFAULT) { if (amdgpu_mcbp_scan(mux) > 0) amdgpu_mcbp_trigger_preempt(mux); return; } amdgpu_ring_mux_start_ib(mux, ring); } void amdgpu_sw_ring_ib_end(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; struct amdgpu_ring_mux *mux = &adev->gfx.muxer; WARN_ON(!ring->is_sw_ring); if (ring->hw_prio > AMDGPU_RING_PRIO_DEFAULT) return; amdgpu_ring_mux_end_ib(mux, ring); } void amdgpu_sw_ring_ib_mark_offset(struct amdgpu_ring *ring, enum amdgpu_ring_mux_offset_type type) { struct amdgpu_device *adev = ring->adev; struct amdgpu_ring_mux *mux = &adev->gfx.muxer; unsigned offset; if (ring->hw_prio > AMDGPU_RING_PRIO_DEFAULT) return; offset = ring->wptr & ring->buf_mask; amdgpu_ring_mux_ib_mark_offset(mux, ring, offset, type); } void amdgpu_ring_mux_start_ib(struct amdgpu_ring_mux *mux, struct amdgpu_ring *ring) { struct amdgpu_mux_entry *e; struct amdgpu_mux_chunk *chunk; spin_lock(&mux->lock); amdgpu_mux_resubmit_chunks(mux); spin_unlock(&mux->lock); e = amdgpu_ring_mux_sw_entry(mux, ring); if (!e) { DRM_ERROR("cannot find entry!\n"); return; } #ifdef __linux__ chunk = kmem_cache_alloc(amdgpu_mux_chunk_slab, GFP_KERNEL); #else chunk = pool_get(&amdgpu_mux_chunk_slab, PR_WAITOK); #endif if (!chunk) { DRM_ERROR("alloc amdgpu_mux_chunk_slab failed\n"); return; } chunk->start = ring->wptr; /* the initialized value used to check if they are set by the ib submission*/ chunk->cntl_offset = ring->buf_mask + 1; chunk->de_offset = ring->buf_mask + 1; chunk->ce_offset = ring->buf_mask + 1; list_add_tail(&chunk->entry, &e->list); } static void scan_and_remove_signaled_chunk(struct amdgpu_ring_mux *mux, struct amdgpu_ring *ring) { uint32_t last_seq = 0; struct amdgpu_mux_entry *e; struct amdgpu_mux_chunk *chunk, *tmp; e = amdgpu_ring_mux_sw_entry(mux, ring); if (!e) { DRM_ERROR("cannot find entry!\n"); return; } last_seq = atomic_read(&ring->fence_drv.last_seq); list_for_each_entry_safe(chunk, tmp, &e->list, entry) { if (chunk->sync_seq <= last_seq) { list_del(&chunk->entry); #ifdef __linux__ kmem_cache_free(amdgpu_mux_chunk_slab, chunk); #else pool_put(&amdgpu_mux_chunk_slab, chunk); #endif } } } void amdgpu_ring_mux_ib_mark_offset(struct amdgpu_ring_mux *mux, struct amdgpu_ring *ring, u64 offset, enum amdgpu_ring_mux_offset_type type) { struct amdgpu_mux_entry *e; struct amdgpu_mux_chunk *chunk; e = amdgpu_ring_mux_sw_entry(mux, ring); if (!e) { DRM_ERROR("cannot find entry!\n"); return; } chunk = list_last_entry(&e->list, struct amdgpu_mux_chunk, entry); if (!chunk) { DRM_ERROR("cannot find chunk!\n"); return; } switch (type) { case AMDGPU_MUX_OFFSET_TYPE_CONTROL: chunk->cntl_offset = offset; break; case AMDGPU_MUX_OFFSET_TYPE_DE: chunk->de_offset = offset; break; case AMDGPU_MUX_OFFSET_TYPE_CE: chunk->ce_offset = offset; break; default: DRM_ERROR("invalid type (%d)\n", type); break; } } void amdgpu_ring_mux_end_ib(struct amdgpu_ring_mux *mux, struct amdgpu_ring *ring) { struct amdgpu_mux_entry *e; struct amdgpu_mux_chunk *chunk; e = amdgpu_ring_mux_sw_entry(mux, ring); if (!e) { DRM_ERROR("cannot find entry!\n"); return; } chunk = list_last_entry(&e->list, struct amdgpu_mux_chunk, entry); if (!chunk) { DRM_ERROR("cannot find chunk!\n"); return; } chunk->end = ring->wptr; chunk->sync_seq = READ_ONCE(ring->fence_drv.sync_seq); scan_and_remove_signaled_chunk(mux, ring); } bool amdgpu_mcbp_handle_trailing_fence_irq(struct amdgpu_ring_mux *mux) { struct amdgpu_mux_entry *e; struct amdgpu_ring *ring = NULL; int i; if (!mux->pending_trailing_fence_signaled) return false; if (mux->real_ring->trail_seq != le32_to_cpu(*mux->real_ring->trail_fence_cpu_addr)) return false; for (i = 0; i < mux->num_ring_entries; i++) { e = &mux->ring_entry[i]; if (e->ring->hw_prio <= AMDGPU_RING_PRIO_DEFAULT) { ring = e->ring; break; } } if (!ring) { DRM_ERROR("cannot find low priority ring\n"); return false; } amdgpu_fence_process(ring); if (amdgpu_fence_count_emitted(ring) > 0) { mux->s_resubmit = true; mux->seqno_to_resubmit = ring->fence_drv.sync_seq; amdgpu_ring_mux_schedule_resubmit(mux); } mux->pending_trailing_fence_signaled = false; return true; }